
Multi-label Collective Classification using Adaptive Neighborhoods

Tanwistha Saha, Huzefa Rangwala and Carlotta Domeniconi
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

tsaha@gmu.edu, {rangwala,carlotta}@cs.gmu.edu

Abstract—Multi-label learning in graph-based relational data
has gained popularity in recent years due to the increasingly
complex structures of real world applications. Collective Classifi-
cation deals with the simultaneous classification of neighboring
instances in relational data, until a convergence criterion is
reached. The rationale behind collective classification stems
from the fact that an entity in a network (or relational data)
is most likely influenced by the neighboring entities, and can
be classified accordingly, based on the class assignment of
the neighbors. Although extensive work has been done on
collective classification of single labeled data, the domain of
multi-labeled relational data has not been sufficiently explored.
In this paper, we propose a neighborhood ranking method
for multi-label classification, which can be further used in
the Multi-label Collective Classification framework. We test
our methods on real world datasets and also discuss the
relevance of our approach for other multi-labeled relational
data. Our experimental results show that the use of ranking
in neighborhood selection for collective classification improves
the performance of the classifier.

Keywords-Multi-label; co-authorship networks; collective clas-
sification

I. INTRODUCTION

Multi-label learning in graph-based relational data has
gained popularity in recent years due to the increasingly
complex structures of real world applications. Examples of
relational data include social networks, biological protein-
protein interaction (PPI) networks, and research collaboration
networks. In social networks, different entities (people) are
associated with multiple groups and interests. Traditional
multi-label classification algorithms (except a few [1], [2],
[3]) treat every node independently and assume independence
among different labels. As such, these methods perform
poorly on multi-labeled relational datasets.
Given a network, three possible correlations are relevant

while determining the labels of nodes [4]: (i) the correlation
between the label of a node and the observed attributes
of the node, (ii) the correlation between the label of a
node and the observed attributes and labels of neighboring
nodes, and (iii) the correlation between a known label of
a node and the unobserved labels of neighboring nodes.
Collective classification approaches jointly classify a set of
related (linked) nodes by exploiting the above underlying
correlations [5]. Most collective classification methods are
applicable to single-labeled relational data [6], [7], [8],
[9]. Recently, a method was proposed for the multi-label
collective classification problem [10]. However, none of

these approaches discuss how to differentiate between the
influence of labels of “closely-related” neighbors from that
of “unrelated” neighbors.
We approach the problem of multi-labeled collective clas-

sification by combining three different types of information.
Firstly, we use the information that is associated with a given
node in the form of attributes or features. Secondly, we use
information associated with a given node in the form of
“other” labels. Finally, within the collective classification
paradigm, we use the label information provided by the
node’s neighborhood. Our primary contribution is realizing
that, for a given node, not every neighboring node has the
same influence when predicting its multiple labels. As such,
we develop a method to rank the neighboring nodes using the
pairwise interaction information between them, coupled with
the association of neighboring nodes with different labels.
We then propose a method for pruning the neighborhood
using the rank values, which is incorporated within the
standard collective classification algorithms.
We evaluate the performance of our approach on a col-

laboration network of authors, who have published papers
in different research areas. For our problem, we know the
labels (i.e., the research areas) of some of the nodes (i.e.,
authors); the task is to predict the labels of the remaining
unlabeled nodes (i.e., the most likely research areas for
authors). Our experimental results on co-authorship network
data (http://www.informatik.uni-trier.de/̃ ley/db/) show that
pruning the neighborhoods during collective classification
improves the prediction performance.

II. RELATED WORK

Collective classification is a semi-supervised method, first
proposed almost ten years ago [7], [6]. State-of-the-art col-
lective classification methods on single labeled datasets are
described in a comprehensive survey [4]. Conventional col-
lective classification approaches focus on classifying single
labeled datasets, and can be broadly categorized into local
and global methods. Local methods (e.g., logistic regression,
naive Bayes) classify each test instance using relational and
attribute features, and later update the labels and relational
features through an iterative process until convergence [6],
[7]. McDowell et al. [9] proposed a cautious approach to ex-
ploit intermediate relational data which can be noisy. This ap-
proach computes relational features by filtering links between
the different pairs of nodes. Macskassy et al. have developed

a toolkit that combines different components e.g., use of
any local classifier with any collective inference algorithm
[8]. Global methods optimize an objective function across
the entire relational dataset using topological and node-
level information [11]. The classifier uses both attributes and
relational features for inference. Examples of methods used
for inference include Loopy Belief Propagation (LBP) and
Mean Field Relaxation Labelling (MF) [4]. Gallagher et. al.
have proposed another approach [12] which attempts to find
features that are independent of node labels and analyzed
the effects of label-independent features on within-network
classification. Besides the recently proposed work of Kong
et al. [10], not much has been done towards the development
of multi-labeled collective classification algorithms.
Multi-label learning focuses on the prediction of multiple

labels for each test instance simultaneously. Several algo-
rithms have been proposed in this area (see the survey
in [13]). Zhang et al. developed a k-nearest neighbors
based method for multi-label classification, which treats each
label independently, and then computes the probability of
assigning a particular label [2]. Another method proposed
by Zhang uses label specific features for classifying in-
stances [1]. Zhang et al. also proposed a Bayesian network
based approach to capture the conditional dependencies
between labels as well as the feature set [3]. A recently
developed algorithm simultaneously ranked and classified
objects within the DBLP citation data [14]. This algorithm
was designed for a heterogeneous network of different types
of objects (nodes), and computes the within-class ranking
of these objects. In this paper, we discuss an approach for
multi-labeled collective classification within a homogeneous
network. In our approach, the use of word rank as a measure
of influence is strictly to impose a pruning strategy, for
determining those neighboring nodes that would affect the
prediction of a label. This is different from the approaches
that study influence of a node within a relational network
[15], e.g., to determine influencing nodes for a viral market-
ing campaign.

III. METHODOLOGY

Let graph G = (V, E) represent a relational dataset
D = (X ,Y), where X = {x1,x2, · · · ,xn} is the set
of node attributes and Y = {y1,y2, · · · ,yn} is the set
of corresponding label vectors for the |V| = n nodes in
the network. Let K be the number of classes, denoted by
k = 1, 2, · · · ,K, to which the nodes can belong. Given the
set L of training nodes, the training data DL = (XL,YL), the
set U of unlabeled test nodes and the set of node attributes
XU for the test nodes in U ; the goal is to predict the label
vector yu = (yu1, · · · , yuk, · · · , yuK) of each test node
u ∈ U , where yuk ∈ {0, 1}. For convenience, we denote
ŶU = {ŷ1, · · · , ŷu, · · · , ŷ|U |} as the set of label vectors
predicted by our models, and YU = {y1, · · · ,yu, · · · ,y|U |}
as the set of true label vectors for all the test nodes in U .
This problem is similar to collective classification in a single
labeled dataset, except that, in this case, we have to predict

multiple labels for each of the test nodes. This paper aims
to exploit the information hidden in the interactions between
entities by using properties of graphs. In addition to capturing
information from the topology of the graph, we also capture
the association between a node and its label. We prune the
neighborhood of a test node based on the “ranks” of the
training nodes, so that, while predicting the label of the test
node, we only trust the label information propagated from
the influential neighbors.

A. RankNN Algorithm
We propose RankNN (Algorithm 1) which estimates the

labels of test nodes using a naive Bayes approach. Assuming
that a node’s label is influenced by that of its neighbors, a
node’s posterior label assignment might change based on the
beliefs shared by its neighborhood. Given a set L of training
nodes and K labels, we compute the ranking (importance)
for each of the labels. The rank rk for label k is given by
(line 3 in Algorithm 1),

rk =
|Lk|
|L|

(1)

where Lk is the set of training instances with la-
bel k. Using Equation 1, the label rank vector R =
(r1, r2, · · · , rk, · · · , rK) of all the K labels is determined.
We then compute the rank of a labeled node l as follows
(line 5 in Algorithm 1),

rankl =
∑
j∈Nl

CljAlj +

K∑
k=1

Mlkrk (2)

where Nl is the set of labeled neighbors of node l. An×n
is the weighted adjacency matrix representing the number of
interactions between any pair of nodes in the network. We
use the weighted adjacency matrix for training nodes only.
Cn×n is the pairwise cosine similarity measure between the
attributes of the entities. Mn×K is a matrix representing the
association of a node, say l, with a label, say k. Equation
2 can be explained as: (i) The first term captures the
level of interactivity of an individual. This is measured by
the similarity the author has with his neighbors (captured
by the cosine similarity matrix Cn×n), weighted by the
number of interactions (co-authored papers) the author has
had with them. (ii) The second term measures the reputation
of the individual in terms of his association with different
groups (or labels), and the author’s contribution towards
those groups (captured by Mn×K). (iii) We define the rank
of a label as the frequency of entities in the training data
that has that corresponding label (e.g., rk in Equation (1) is
rank of label k). A highly reputed group will tend to have a
large number of members, and hence will be ranked higher.
For our DBLP collaboration network, the association be-

tween an author and a research area is determined by the
number of publications he/she has in the conferences under
that research track. If the author is a prolific researcher
but does not publish too many papers in a highly ranked
conference, then the second term will weigh down his/her
rank. Similarly, if the author has several publications in

Algorithm 1 RankNN
Input: A graph G = (V, E), weighted adjacency matrix An×n, similarity matrix

Cn×n, node and label association matrix Mn×K , total number of classes K,
probability threshold θ, number of iterations T , training percentage η for sampling
the data into training set L and test set U

Output: Set of label vectors of nodes in test set U i.e. ŶU

1: for t = 1 to T do
2: Sample training set L and test set U based on training percentage η
3: Compute ranks of labels ∀k ∈ K according to Equation (1)
4: for each node l in L do
5: Compute the rank of node l according to Equation (2)
6: Set threshold δ as median of the rank values
7: end for
8: for each node u in U do
9: Compute prior probability Π̂u from Equation (3)

10: Find all influential neighbors Ni
u (of node u) s.t. ∀j ∈ Ni

u, rankj ≥ δ
11: for k = 1 to K do
12: Compute likelihood Pr

[
Zu = k|yuk = 1

]
from Equation (4)

13: Calculate the posterior probability of yuk = 1 from Equation (5)
14: end for
15: end for
16: for each node u in U do
17: Normalize the posterior probabilities of yu across all K
18: if Pr

[
yuk = 1|Zu = k

]
> θ then

19: Set ŷuk = 1
20: else
21: Set ŷuk = 0
22: end if
23: end for
24: end for

reputed conferences, which are not related to the research
area (label) we are investigating, then the second term will be
under weighted. The rank of the conference in an unrelated
research area will be globally low, as determined by Equation
(1). On the other hand, if an author has published few papers
in highly ranked conferences, and has collaborated with
too many researchers, then the first term will decrease the
author’s rank compared to the rank of other researchers who
have many co-authors and have published in highly ranked
conferences.
Next, we compute the prior probabilities Π̂u for each

unlabeled test node u from the information contained in
the local neighborhood. Π̂u = (π̂u1, π̂u2, · · · , π̂uK) is a K
dimensional vector of probabilities, where each element of
the vector corresponds to the probability of a label. Let Nu
be the set of labeled neighbors of an unlabeled node u. Let
Lj be the set of labels of the labeled neighbor j ∈ Nu. Let
Nuk be the set of labeled neighbors of node u that has label
k. Then the prior probability of label k for node u is given
by (line 9 in Algorithm 1):

π̂uk = Pr [yuk = 1] =
|Nuk|

| ∪j∈Nu Lj |
(3)

However, if the unlabeled node u does not have labeled
neighbors, then we assign equal probability 1

K to all the
labels of that node. This is dependent on the percentage of
available labeled data, i.e., if we have very few labeled nodes
then there is a high chance that an unlabeled test node will
not have any labeled neighbors. We assess the performance
of our algorithms by varying the sampling ratios.
Algorithm RankNN estimates the posterior probability of

each label for each test node. Let N i
u be the set of influential

neighbors (of a test node u) having rank values above a
threshold δ (set dynamically as median of the calculated rank

values, although other values of δ are also possible). Let
Zu be a random variable defined over the distribution of all
possible data labels, and defined as follows: Zu = k if k is
the most frequent label within the neighborhood of u. Let
Lij be the set of labels of the labeled influential neighbor
j ∈ N i

u, where N i
u is the set of influential neighbors of node

u. Let N i
uk be the set of influential nodes in the neighborhood

of node u that have label k (includes node u based on the
assumption that node u has label k), then the probability that
u will also have label k depends on the following likelihood
(line 12 in Algorithm 1):

Pr
[
Zu = k|yuk = 1

]
=

|Ni
uk|

| ∪j∈Ni
u
Li

j |
(4)

The posterior probability used for determining whether node
u has label k, i.e., yuk (line 13 in Algorithm 1) is:

Pr
[
yuk = 1|Zu = k

]
∝ Pr [yuk = 1]× Pr

[
Zu = k|yuk = 1

]
(5)

Algorithm 1 describes the pseudo-code for RankNN. The
computational complexity of RankNN is O(|U |KT) where
|U | is the number of unlabeled nodes, K is the number of
labels and T is the number of iterations (|L| ≤ |U |).The two
input parameters for RankNN are: (i) rank threshold δ and
(ii) the probability threshold θ. The rank threshold δ, controls
the number of influential neighbors that should be selected
while determining the labels for a test node. The RankNN
algorithm produces a probabilistic output for the different
class labels. As such, to convert the probability scores into
hard label assignments (0/1) we use the probability threshold
parameter (θ).

B. ICML Rank Algorithm
Multi-label Collective Classification methods [10] couple

the attribute level information with two types of relational
information: (i) dependencies that exist between the multiple
labels assigned to a node (referred to as intra-instance cross-
label dependencies) and (ii) the dependencies between the
labels of neighboring node and the node in consideration.
The ICML algorithm [10], as termed by the authors, is
based on iterative classifications of multiple labels while
treating each label individually. We improve this approach
by incorporating our node ranking function within the multi-
label collective classification framework. Instead of blindly
considering all the neighbors, we prune the neighborhood
of a test node based on the ranks of its neighbors while
computing the relational features for that node (line 7 in
Algorithm 2). We set the threshold δ dynamically as the
median of the obtained rank values. We use LIBSVM [16]
with a linear kernel for learning classifiers for each of the
K labels. In ICML Rank, a model is learned with training
samples for each of the labels k = 1, 2, · · ·K. An initial
set of labels for test nodes is predicted after feeding the
test instances to the trained models. This initial label set for
test nodes is used to recompute the ranks of all the nodes
in the network. Inference of the labels for the test nodes is
carried out through an iterative process. Relational features

Algorithm 2 ICML Rank
Input: A graph G = (V, E), weighted adjacency matrix An×n, similarity matrix

Cn×n, node and label association matrix Mn×K , total number of classes K,
number of iterations T , training percentage η for sampling the data into training
set L and test set U

Output: Set of label vectors of nodes in test set U i.e. ŶU

1: for t = 1 to T do
2: Training:
3: Sample the dataset into training L and test U based on training percentage η
4: for k = 1 to K do
5: Compute the rank of label k from Equation (1)
6: Compute the ranks of each node l ∈ L from Equation (2)
7: Set the threshold δ, such that nodes with ranks above δ are influential
8: Find the relational features of each node l ∈ L considering only influential

neighbors
9: Construct an extended training set Dk

L = (Xk
L,Y

k
L) by combining attribute

xl of each node l with its relational features, to give xk
l

10: Train a local classifier using Dk
L

11: Let fk = A(Dk
L) be the learned local model for label k

12: end for
13: Bootstrapping:
14: for each node u ∈ U do
15: Estimate the label ŷu = (ŷu1, ŷu2, · · · , ŷuK) such that, ŷuk =

fk(xu, 0) using only node attributes and no relational features
16: end for
17: Iterative Inference:
18: Compute the initial ranks of test nodes by averaging the ranks of labels predicted

in the bootstrapping phase
19: repeat
20: Construct an extended test set Dk

U = (Xk
U , Ŷ

k
U) (same method as in

training) using the ranked influential neighbors
21: Update the estimated values of ŷu for yu on each test node u ∈ U as,

ŷuk = fk(Dk
U)

22: Update the ranks of the labels (equation (1)) and ranks of all the nodes
(equation (2)), based on this new label assignment ŷu of each node u ∈ U

23: until convergence criteria OR maximum number of iterations
24: Return the label vector ŷu for each test instance u ∈ U
25: end for

Table I
DESCRIPTION OF DATASETS.

Dataset #Nodes #Classes #Degree/node #Classes/node
DBLP A 10334 7 7.1608 1.6205
DBLP B 6379 6 5.6247 1.1130

are computed for the test nodes, and along with attribute
features, are fed to the learned models to get a new set
of predicted labels. This step is repeated until a maximum
number of iterations is reached, or until a given accuracy
value is achieved. Algorithm 2 gives the pseudo-code of
ICML Rank.

IV. EXPERIMENTAL SETUP

A. Datasets
For our experiments, we filtered the DBLP citation net-

work data1 and created two datasets which are denoted
as: DBLP A and DBLP B. The authors in DBLP A have
published two or more papers from year 2000 to year 2010
in seven research areas identified by the conference names:
Databases (SIGMOD, VLDB, EDBT, ICDE, PODS), Data
Mining (KDD, SDM, ICDM), Artificial Intelligence (AAAI,
IJCAI, AAMAS, UAI), Software Engineering (ICSOFT),
Computer Vision (CVPR), Information Retrieval (SIGIR,
ECIR), Machine Learning (ICML, ECML). The DBLP B
dataset consists of authors who have published papers in
six different research areas: Algorithms & Theory (FOCS,
STOC, SODA, COLT), Natural Language Processing (ACL,

1downloaded from http://arnetminer.org/

ANLP, COLING), Bioinformatics (ISMB, RECOMB), Net-
working (SIGCOMM, MOBICOM, INFOCOM), Operating
Systems (SOSP, OSDI), Distributed & Parallel Computing
(PODC, ICDCS). Table I provides key statistics for both
the datasets. A graph G represents the DBLP network data
containing labeled and unlabeled nodes. Each node in the
graph represents an author; node attributes correspond to the
titles of the papers that an author has published (attributes
are obtained as tf-idf measure and are collectively treated as
a document vector for the author node; relational features
are computed following Kong et. al [10]). Labels of each
node (or author) correspond to the research areas the author
has been working on. Since each author may be interested
in more than one research area, authors can have multiple
labels. A link between a pair of nodes exists if the corre-
sponding authors have co-authored at least one paper. The
weights on the edges of the adjacency matrix represent the
number of papers they have co-authored. We also have a
weight matrix that captures the pairwise cosine similarity
between the titles of the papers that a given pair of authors
have co-authored. Using the structure of the collaboration
network, given the titles of the published papers and multiple
labels of authors in the training set, the goal is to predict the
multiple labels for authors in the test set.

B. Validation Protocol
To create an unbiased validation set, we remove all papers

(titles) from the training set that are published by authors
within the test set. As such, the authors in the training set
do not have details about some of the papers that they have
published. This leads to a modification in the individual
labels for nodes within the training set. The test nodes do
not possess any information that is shared with the training
nodes. Most of our empirical evaluations are performed on
this set, referred to as the “filtered” dataset. In previous
work, this filtering process was not done [17], [7], [10], [3].
As such, the test and train instances would share the co-
authored publications. To understand the nature of biased
evaluation, we compare the performance of our algorithms
on the original dataset, referred to as “unfiltered”.

C. Evaluation Metrics
We use the following multi-label classification metrics [10]

for evaluation. (i) Hamming Loss (HL): measures the
fraction of incorrectly predicted labels, averaged across the
set U of test nodes. (ii) Subset Loss (SL): evaluates if
the predicted label vector is exactly identical to the true
label vector (macro-label). (iii) Micro-F1 score (MI–F1):
measures the harmonic mean of precision and recall across
individual micro-labels, averaged across set U of test nodes.
and (iv) Macro-F1 score (MA–F1): computes the average
of the F1 measure on the predictions of the macro-labels.

V. RESULTS

We assess the performance of ICML Rank and RankNN
with varying parameters across the four multi-label evalua-
tion metrics. Unless otherwise stated, the default parameter

Figure 1. Performance vs training percentage (η) for DBLP A data.

20 30 40 50 60 70 80 90
0.05

0.1

0.15

0.2

Training percentage

H
a
m

m
in

g
 L

o
s
s

ICML Rank

ICML

ML ICA Rank

ML ICA

RankNN

(a) Hamming Loss

20 30 40 50 60 70 80 90

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training percentage

S
u
b
s
e
t
L
o
s
s

ICML Rank

ICML

ML ICA Rank

ML ICA

RankNN

(b) Subset Loss

for ICML Rank is a pruning threshold (δ = 50%), and
for RankNN (to convert the posterior probabilities into hard
0/1 label assignments) is θ = 0.25. The performance of
our algorithm is compared against two previously developed
approaches (discussed in [10]): (i) Iterative Classification
of Multiple Labels (ICML): Our ICML Rank algorithm is
inspired by this approach. ICML does not prune the neigh-
borhood of a node while computing its relational features.
(ii) Multi Label Iterative Classification (ML ICA): This
algorithm is similar to ICML except that it does not use the
intra-instance cross label dependencies. Following a similar
approach as in ICML Rank, we incorporated our neighbor-
hood pruning technique within the ML ICA framework; we
call the resulting approach ML ICA Rank.

Table II
PREDICTION PERFORMANCE (↑ MEANS HIGHER THE BETTER, ↓ MEANS
LOWER THE BETTER) WITH FILTERED & UNFILTERED LABEL SETS FOR

DBLP A & DBLP B DATASETS (θ = 0.25 FOR RANKNN).

Labels Method HL ↓ SL ↓ MI-F1 ↑ MA-F1 ↑

Filtered

RankNN 0.1543 0.5946 0.5698 0.4851
ML ICA 0.1012 0.4023 0.7465 0.6278
ML ICA Rank 0.1001 0.3847 0.7529 0.6377
ICML 0.1040 0.3963 0.7451 0.6345
ICML Rank 0.1023 0.3826 0.7518 0.6399

Unfiltered

RankNN 0.1503 0.5672 0.5905 0.5083
ML ICA 0.0957 0.3266 0.7788 0.6596
ML ICA Rank 0.0966 0.3182 0.7785 0.6638
ICML 0.0960 0.3169 0.7809 0.6617
ICML Rank 0.0965 0.3107 0.7810 0.6661

DBLP B

Filtered

RankNN 0.1096 0.4199 0.7074 0.6859
ML ICA 0.07951 0.2630 0.8037 0.7474
ML ICA Rank 0.0806 0.2543 0.8028 0.7475
ICML 0.1213 0.3598 0.7025 0.6212
ICML Rank 0.1170 0.3451 0.7148 0.6409

Unfiltered

RankNN 0.1102 0.4287 0.7034 0.6797
ML ICA 0.0571 0.1657 0.8397 0.7598
ML ICA Rank 0.0584 0.1609 0.8377 0.7605
ICML 0.0570 0.1608 0.8411 0.7608
ICML Rank 0.0588 0.1560 0.8479 0.7618

A. Filtered Validation Set
Table II reports the average of 10 runs for HL, SL, MI–

F1 and MA–F1 for DBLP A “filtered” and “unfiltered” sets.
The results for DBLP B will be available as a supplementary
file. For all the algorithms, we observe that the “unfiltered”
set produces lower loss and higher F1 scores in comparison
to the “filtered” set. This was expected, because the “un-
filtered” set is biased and uses information available from
the training nodes directly in the test nodes. Henceforth, we
report and discuss results only for the unbiased “filtered”
validation set.

Table III
PERFORMANCE WITH DIFFERENT RANK THRESHOLDS (δ).

DBLP A
δ Method HL ↓ SL ↓ MI-F1 ↑ MA-F1 ↑

0%
RankNN 0.1539 0.6044 0.5663 0.4699
ICML Rank 0.0968 0.3727 0.7548 0.6449
ML ICA Rank 0.0972 0.3780 0.7612 0.6428

10%
RankNN 0.1545 0.5999 0.5664 0.4900
ICML Rank 0.0948 0.3588 0.7619 0.6399
ML ICA Rank 0.0989 0.3615 0.7609 0.6378

25%
RankNN 0.1543 0.5971 0.5676 0.4890
ICML Rank 0.1094 0.3921 0.7366 0.6369
ML ICA Rank 0.0971 0.3706 0.7619 0.6414

50%
RankNN 0.1543 0.5946 0.5698 0.4851
ICML Rank 0.1023 0.3826 0.7518 0.6399
ML ICA Rank 0.1001 0.3847 0.7529 0.6377

75%
RankNN 0.1572 0.5961 0.5631 0.4657
ICML Rank 0.1024 0.3859 0.7508 0.6295
ML ICA Rank 0.1013 0.3935 0.7486 0.6288

DBLP B

0%
RankNN 0.1086 0.4198 0.7077 0.6895
ICML Rank 0.1143 0.3335 0.7225 0.6641
ML ICA Rank 0.0762 0.2386 0.8145 0.7612

10%
RankNN 0.1104 0.4269 0.7030 0.6842
ICML Rank 0.1082 0.3231 0.7361 0.6740
ML ICA Rank 0.0803 0.2509 0.8046 0.7516

25%
RankNN 0.1103 0.4237 0.7056 0.6797
ICML Rank 0.1052 0.3181 0.7447 0.6920
ML ICA Rank 0.0756 0.2336 0.8147 0.7637

50%
RankNN 0.1096 0.4199 0.7074 0.6859
ICML Rank 0.1170 0.3451 0.7148 0.6409
ML ICA Rank 0.0806 0.2543 0.8028 0.7475

75%
RankNN 0.1104 0.4134 0.7075 0.6820
ICML Rank 0.1282 0.3704 0.6870 0.6046
ML ICA Rank 0.0835 0.2745 0.7929 0.7248

B. Rank Threshold (δ)
RankNN and ICML Rank use a dynamically selected

threshold for the rank value, which determines the influential
neighbors to be trusted while determining the label of a
test node through collective classification. Table III shows
the multi-label classification performance with varying δ pa-
rameter values for RankNN and ICML Rank across the two
DBLP datasets. A threshold (δ) of 25% signifies that 25% of
the labeled nodes within the neighborhood of the unlabeled
test node are pruned or removed. The ICML Rank algorithm
with a δ value of 0% does not prune any neighboring nodes
and is identical to the ICML algorithm.

C. Comparative Performance
From Tables II and III we observe that ICML Rank

(ML ICA Rank) outperforms ICML (ML ICA) across
the DBLP datasets. For DBLP A, ICML Rank and
ML ICA Rank shows the best performance. However, for
DBLP B, ML ICA shows better performance in comparison
to the ICML Rank algorithm. We performed pairwise t-
test on the results of ICML and ICML Rank for DBLP A
(ML ICA and ML ICA Rank for DBLP B) and noted (at
confidence level of 90%) p-values of 0.02 and 0.03, respec-
tively. The ML ICA algorithm does not use the dependency
information across multiple assigned labels. Since the re-
search areas (or labels) in DBLP B are highly uncorrelated,
discarding this dependency information in the relational
features boosts ML ICA’s performance.

D. Sampling Ratio
To evaluate the sensitivity of our algorithms with regards

to the training set size, we performed experiments that vary

Figure 2. Varying θ for RankNN.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Probability Threshold

L
o
s
s

Hamming Loss

Subset Loss

(a) Loss vs θ for DBLP A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Probability Threshold

L
o
s
s

Hamming Loss

Subset Loss

(b) Loss vs θ for DBLP B

the training percentage from 20% to 90%. Figure 1 shows
the variation for different evaluation metrics with respect to
the training percentage (η) using the filtered DBLP A set.
The ICML Rank algorithm performs better than the other
methods even when the training percentage is very low, i.e.,
20%. This shows the robustness of the algorithm, especially
when the training data size is small.

E. RankNN Probability Threshold (θ)
The RankNN algorithm produces a probabilistic output for

the different class labels. We use the probability threshold
(θ) to convert the probability scores into a hard label assign-
ments. In Figure 2 we show the hamming loss and subset
loss for varying θ values. When we set θ to small values, we
assign several more labels per node; this results in a higher
hamming loss. However, setting θ to a larger value will result
in fewer assignments of labels, thereby leading to a higher
subset loss. From Figure 2 we observe that setting the value
of θ between 0.2 and 0.45 seems to be optimal.

F. Computation Time
Table IV reports the computation time of different algo-

rithms on 30% training/70% testing data for the DBLP
datasets, and shows the advantage of the RankNN approach.
Experiments were performed on a Intel Core 2 Duo, 3GHz,
4GB RAM desktop.

Table IV
COMPUTATION TIME FOR ALGORITHMS.

DBLP A DBLP B
Method Time (seconds) Method Time (seconds)
RankNN 46.97 RankNN 37.54
ML ICA 2054.46 ML ICA 802.52

ML ICA Rank 2159.58 ML ICA Rank 912.88
ICML 2319.07 ICML 953.81

ICML Rank 2693.40 ICML Rank 1193.72

VI. CONCLUSION.
We have developed a novel and simple algorithm for

computing the ranks of nodes within a relational network.
We have incorporated our ranking technique within a multi-
label collective classification framework to select the influ-
ential neighbors in an adaptive manner. We have tested our
methods on a real world dataset, and reported promising
results in comparison to state-of-the-art multi-label collective
classification algorithms. We have shown that our methods
ICML Rank and ML ICA Rank perform well compared to
the baseline algorithms ICML and ML ICA, respectively.
We also provided a useful insight towards creating an unbi-
ased validation set for collective classification algorithms.

REFERENCES

[1] M. Zhang, “Lift: Multi-label learning with label-specific fea-
tures,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[2] M. Zhang and Z. Zhou, “Ml-knn: A lazy learning approach
to multi-label learning,” Pattern Recognition, vol. 40, 2007.

[3] M. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” in ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2010, pp.
999–1008.

[4] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and
T. Eliassi-Rad, “Collective classification in network data,” AI
magazine, vol. 29, no. 3, p. 93, 2008.

[5] D. Jensen, J. Neville, and B. Gallagher, “Why collective
inference improves relational classification,” in ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2004, pp. 593–598.

[6] L. Getoor, “Link-based classification,” Advanced methods for
knowledge discovery from complex data, pp. 189–207, 2005.

[7] J. Neville and D. Jensen, “Iterative classification in relational
data,” in Proc. AAAI-2000 Workshop on Learning Statistical
Models from Relational Data, 2000, pp. 13–20.

[8] S. Macskassy and F. Provost, “Classification in networked
data: A toolkit and a univariate case study,” The Journal of
Machine Learning Research, vol. 8, pp. 935–983, 2007.

[9] L. McDowell, K. Gupta, and D. Aha, “Cautious inference
in collective classification,” in National CONFERENCE ON
ARTIFICIAL INTELLIGENCE, vol. 22, no. 1, 2007, p. 596.

[10] X. Kong, X. Shi, and S. Philip, “Multi-label collective classi-
fication,” in SIAM International Conference on Data Mining
(SDM). SIAM, 2011, pp. 618–629.

[11] B. Taskar, P. Abbeel, and D. Koller, “Discriminative proba-
bilistic models for relational data,” in Eighteenth Conference
on Uncertainty in Artificial Intelligence (UAI02), 2002.

[12] B. Gallagher and T. Eliassi-Rad, “Leveraging label-
independent features for classification in sparsely labeled
networks: An empirical study,” Advances in Social Network
Mining and Analysis, pp. 1–19, 2010.

[13] G. Tsoumakas and I. Katakis, “Multi-label classification,”
International Journal of Data Warehousing & Mining, vol. 3,
no. 3, pp. 1–13, 2007.

[14] M. Ji, J. Han, and M. Danilevsky, “Ranking-based classifica-
tion of heterogeneous information networks,” in 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 2011, pp. 1298–1306.

[15] A. Goyal, F. Bonchi, and L. Lakshmanan, “A data-based
approach to social influence maximization,” vol. 5, no. 1.
VLDB Endowment, 2011, pp. 73–84.

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, pp. 27:1–27:27, 2011.

[17] Q. Lu and L. Getoor, “Link-based classification,” in Pro-
ceedings of the 20th International Conference on Machine
Learning (ICML-03), vol. 20, no. 2, 2003, pp. 496–503.

