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ABSTRACT 
We analyzed informal learning in Scratch Online – an 
online community with over 4.3 million users and 6.7 
million instances of user-generated content. Users develop 
projects, which are graphical interfaces consisting of 
interacting programming blocks. We investigated two 
fundamental questions of how we can model informal 
learning, and which patterns of informal learning emerge. 
We proceeded in two phases. First, we modeled learning as 
a trajectory of cumulative programming block usage by 
long-term users who created at least 50 projects. Second, 
we applied K-means++ clustering to uncover patterns of 
learning and corresponding subpopulations. We found four 
groups of users manifesting four different patterns of 
learning, ranging from the smallest to the largest 
improvement. At one end of the spectrum, users learned 
more and in a faster manner. At the opposite end, users did 
not show much learning progress, even after creating 
dozens of projects. The modeling and clustering of 
trajectory patterns that enabled us to quantitatively analyze 
informal learning may be applicable to other similar 
communities. The results can also support administrators of 
online communities in implementing customized 
interventions for specific subpopulations. 
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INTRODUCTION 
Thousands of massive open online courses (MOOCs) [17], 
Q&A forums [28], tutorial sites [31], and online 
communities of creators (OCOCs) [29] attract people 
interested in learning. MOOCs provide a formal learning 
environment with specific learning goals, rubrics to follow, 
and assessments on learner performance toward goals. 
Other online communities such as OCOCs offer platforms 
with tools and services to create content both individually 
and in collaboration with others. Although these settings do 
not provide formally structured instruction, they do provide 
participants the opportunity to learn important content and 
skills informally [5, 9, 14, 19].  

Within formal contexts, such as MOOCs, assessment of 
learning outcomes is relatively straightforward as student 
progress can be measured against educational aims of the 
course. Consequently, MOOCs incorporate automatic and 
formal assessments to measure learner progress in order to 
provide feedback [4, 30]. In contrast, online communities 
that support informal learning often lack appropriate means 
to assess progress of their members.  

In this paper, we aimed to analyze informal learning 
occurring in Scratch online [23, 24] by addressing the 
questions of how we can model informal learning, and 
which patterns of informal learning may emerge. 
Specifically, we focused on measuring and analyzing the 
three aspects of learning: 

• Amount of learning  

• Speed of learning 
• Potential prior knowledge 
Scratch users are mainly kids and teenagers who create and 
share their ‘projects,’ which are games, animations, arts, 
and other media content. Projects are constructed by 
importing multimedia files and editing/controlling them 
using a visual programming language called Scratch. The 
Scratch language consists of various programming 
‘blocks,’ which are the software version of Lego™ bricks. 
Once created, a project can be shared with other users. 
Remixing – creating a project based on another’s project – 
is also highly encouraged in the community. Although 
there may be exceptions (e.g., sophisticated arts project 
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may not require a large vocabulary), we believe that a 
wider spectrum of vocabulary block use identified from a 
user’s original projects (non-remix) may be an indicator of 
learning. We developed a two-phase approach to answer 
our questions: 

• Phase I: Model informal learning of a user as a trajectory 
of cumulative vocabulary block use, as s/he creates more 
projects over time. Visualize trajectories for all projects, 
as well as only the original projects.  

• Phase II: Find and compare patterns of trajectories using 
a clustering approach to uncover subpopulations that 
share similar learning patterns [11, 18]. Examine samples 
from each cluster for detail analysis. 

This study contributes to the learning community by 
exploring an approach to quantitatively measure informal 
learning from a large online community – which is difficult 
due to the nature of online communities (e.g., non-goal 
directed, less structured). It may also trigger administrators 
of online communities to implement targeted services for 
specific subpopulations.  

After introducing related studies, we plunge into modeling 
and clustering the trajectories of programming block use. 
Then, we present the clustering results and examples in 
each cluster, followed by the discussions regarding the 
meaning of our results and limitations. We provide 
implications of this study, and conclude with an overall 
summary and future work. 

RELATED STUDIES 

Scratch Online 
A core goal of Scratch is to make the creation and sharing 
of interactive content easy for users [20]. Within the 
Scratch programming environment as shown in Figure 1, 
users program with blocks, which map to programming 
constructs and allow users to manipulate data including 
media content (e.g., sounds, videos, images). Users can 
then share these interactive creations on the Scratch website 
[23]. The website is an online community where users may 

run and build on others’ ideas and projects. Members can 
import the source code of any project into their own 
workspace and remix it.  

In addition to the Scratch project’s goal of creating and 
sharing programs, a fundamental element behind its 
creation has been to provide an alternate model for how the 
Web can be used for learning. The Scratch team envisioned 
learning outcomes related to programming and math skills 
as well as skills in design, creativity, communication, and 
so on. Learning is inherently a collaborative process that 
occurs across communities of practice. The Scratch 
community was created with the goal to foster learning 
among users through interaction and sharing of ideas and 
projects [15, 16]. 

Resnick et al. wrote about the Scratch in ‘Programming for 
all’ and their goal has always been to develop an approach 
to programming that would appeal to people who had not 
considered themselves programmers [20]. In May 2007, a 
website was launched to allow for more sharing of projects 
on the Web.  Maloney et al. studied the use of Scratch at a 
Computer Clubhouse where urban youth between the age 
of 8-18 used Scratch [13]. The findings from this research 
indicated that users learned key programming concepts 
even in the absence of instructional interventions or 
experienced mentors. The ease of use for the Scratch 
platform and its interactivity made it attractive for users.  

Informal Learning and Assessment 
One of the alternate mechanisms that is accepted as central 
to revising the current model of education is emphasizing 
and improving learning that occurs in informal settings [2, 
6]. Even when in formal learning environments, people 
gain from participation in informal learning activities [2, 8]. 
Consequently, informal settings and activities represent an 
important opportunity for engineering students to develop 
technical capabilities, social skills, strengthen their 
engineering identities, and cultivate habits necessary for 
life-long learning [3]. The lack of research on informal 
learning within engineering education was highlighted in 
the Educating the Engineers of 2020 report, which raised 

Figure 1. Scratch interface: (a) a project window, (b) blocks, (c) scripts, and (d) a script constructed with blocks. 

(a)$ (b)$ (c)$ (d)$



the question, ‘How can formal education be better 
integrated with informal and lifelong learning by 
engineering graduates?’ [6].  

The topic of assessment for online learning (e.g., MOOCs) 
has already found significant traction within the Learning at 
Scale community. For instance, Kulkarni et al. investigated 
ways to scale up peer assessment [12]. Peer assessment is a 
useful tool in the learning process, but it suffers from 
quality issues. The authors use machine learning techniques 
to scale this process whereby the quality is maintained and 
the burden of grading is not high. Brooks et al. propose a 
cluster-based interface that allows teachers to read, grade, 
and provide feedback on large groups of answers at once 
[4].  Wilkowski et al. looked at grading in MOOCs where 
the solutions are complex and qualitative items require 
subjective judgment [30]. They incorporated meta-
evaluation, which evaluates the self-evaluation of students, 
and found that the assessments were accurate.  These 
studies are interesting in that they investigated assessment 
issues occurring in large online courses. However, the 
primary setting for these studies was not on informal 
learning, but on MOOCs that provide formal learning.  

Studies do exist for assessing informal learning. For 
example, Naturalistic Assessments [14] focuses on STEM 
learning taking place outside institutions. Naturalistic 
Assessment is focused on people’s awareness of who 
knows how to do what. Carliner [5] proposes self-
assessments, process portfolios, and certifications for 
measuring informal learning occurring in a professional 
environment. However, these approaches may not scale to 
large communities, are obtrusive to online community 
members, or require longitudinal studies to capture the 
cumulative nature of learning [19]. 

TRAJECTORIES OF VOCABULARY PROGRESS 

Modeling Vocabulary Progress 

The Scratch Dataset 
The Lifelong Kindergarten Group at the MIT Media Lab 
created the Scratch dataset from the Scratch Online 
Community [24, 25].  It contains five years of data between 
2007 and 2012, including 1 million users and their 1.9 
million projects, grouped in five categories (Table 1). 
Demographics of users have not been published due to 
privacy concerns considering that the majority of Scratch 
users are kids and teens. Data files in each category 
accompanied their documentation, which describe variable 
fields, summary statistics, and omitted observations. 

In this study, we selected 3,852 long-term users each with 
at least 50 original projects. In total, there were 618,721 
projects of which 145,916 were original and 472,805 were 
remixed.  Each project consists of sprites (characters in a 
project), imported media files, and programming blocks. 
Users can stack up blocks and specify variables (e.g., ‘10 
steps’, ‘0.25 beats’) embedded in blocks to control sprites 
and media (Figure 1 (c) and (d)). In total, 170 different 
types of blocks are available. 

Category Description Count* 

Core 

Data files describing the 
major objects and 
relationships captured by the 
Scratch website 

18 (1) 

Text & 
Code 

User submitted texts useful 
for text and natural language 
processing analysis 

8 (3) 

Project 
Analytics 

Detail data of blocks, drums, 
media, midi instruments, 
save history, and sprites of 
projects 

6 

Other 
Scratch 
Website 

Scratch Media wiki dump, 
forum posts, and Text-based 
Games forum posts 

3(3) 

Code 
Code used to generate the 
datasets from the MySQL 
database used by Scratch 

1 

Table 1. The Scratch dataset. *The numbers inside 
parentheses denote the number of data files in preparation 

(not available). 

Assigning Block Weights 
Some blocks are commonly used while others appear only 
rarely in the projects.  The question then arises: should the 
different block types be equally considered when modeling 
users’ progress? We assumed that users create simple 
projects at the beginning using a set of common blocks.  As 
users create more projects and become familiar with the 
Scratch editor, they may explore blocks that they have not 
used before, gradually expanding their vocabulary set.  
Based on this assumption, we considered the presence of 
rarely used blocks in a project as a sign of a more advanced 
progress in learning about blocks, as compared to the 
presence of common blocks.   

To account for this difference of the blocks, we assigned a 
weight to each block using Inverse Document Frequency 
(IDF) [27], which was computed from the entire set of 
original projects of all users in our selected data set:  

!!! = ! log!"
!!!
!!!!!

!                          (1) 

where P is the total number of original projects, and !!! is 
the number of original projects containing a vocabulary 
block bj 1 ≤ !! ≤ 170 . We added ‘1’ to both numerator 
and denominator in (1) as a smoothing term to avoid 
negative weights and division by zero. Thus, our IDF 
weight vector W has 170 elements, one for each 
corresponding vocabulary block: 

!! = ! !!! … !!! … !!!"#               (2) 

The highest weight value is 5.17, and is assigned to the 
blocks used most rarely, e.g., changebrightnessshift; very 
common blocks, such as eventhatmorph_startclicked, 



receive a weight value that is close to zero (Figure 2). The 
total sum of weights is 402.94. 

 
Figure 2. Vocabulary weights computed from IDF. 

Modeling Learning Trajectories 
We modeled the informal learning of a user as a trajectory 
of cumulative vocabulary block use. Procedures shown 
below are based on the analysis of the user’s first 50 
projects – including original and remix. Since our main 
focus was to examine the use of blocks as a user creates 
projects one by one, we used the project sequence, instead 
of actual time stamps, as the unit of trajectories. 

For each user u, we proceed as follows (the user ID ranges 
from 1 to 3852). 

1. Align all projects of a user u including original and 
remix in sequence from the earliest to the latest.  

2. Construct a 50 x 170 matrix Pu using the first 50 
projects and frequencies of their 170 blocks: 

!! = !

!!,! ⋯ !!,! ⋯ !!,!"#
⋮ ⋮ ⋮
!!,!

⋱
⋯
⋱

!!,!
⋱
⋯
⋱

!!,!"#
!!!⋮ ⋮ ⋮
!!!",! ⋯ !!",! ⋯ !!",!"#

              (3) 

where !!,! is the frequency of block bj 1 ≤ !! ≤ 170  in  
project i 1! ≤ !! ≤ 50 .  
 
3. Create a matrix Pc by cumulatively summing rows in Pu 

(e.g., the ith row of Pc is the element-wise sum of the 
first i rows in Pu). 

4. Create a binary matrix Pb from Pc (‘1’ if frequency of an 
element > 0, ‘0’ otherwise).  

5. Compute a trajectory by applying weights on the 
elements of Pb and summing values in each row: Vu = 
(PbWT)T. The final result is a 50-dimensional vector: 

!! = [!!,!!!!!!!,! !… !!!,! !… !!!,!"]                 (4) 

where !!,! is a cumulative sum of weighted vocabulary 
blocks for a user u, computed using the first i projects. It is 
a weighted binary count considering whether a block was 
ever used (frequency is ignored). We compute Vu for all 

3,852 users to construct a matrix Tall that has 3,852 x 50 
dimensions: 

!!"" != !

!!
⋮
!!
⋮

!!,!"#

                                  (5) 

6. Create a vector Ou, corresponding to a trajectory that 
uses only original projects, simply by adding another 
step after step 2 above: Replace the rows of remix 
projects in matrix Pu with vectors of zeros: 

!! = [!!,!!!!!!!,! !… !!!,! !… !!!,!"]                (6) 

where !!,! is the analogous to !!,! except that it is based 
only on the original projects. We compute Ou for all 3,852 
users to construct a matrix Tori that has 3,852 x 50 
dimensions: 

!!"# != !

!!
⋮
!!
⋮

!!,!"#

                                 (7) 

The trajectory of vocabulary progress – Original & remix 
or Original only – of a user u can be plotted using the 
corresponding rows in Tall and Tori (Figures 8-11). 

Identifying Trajectory Patterns 
After inspecting many trajectory graphs, which represent 
informal learning of blocks over the first 50 projects, we 
recognized their shapes vary significantly. In order to 
determine a small number of canonical trajectory patterns, 
we applied a clustering algorithm on Tori since we were 
initially interested in the trajectory patterns from original 
projects. Using the trajectories in each cluster, we also 
collected corresponding trajectories from Tall. 

The trajectory graphs increase monotonically, and the 
maximum value they reach in the first 50 projects is 402.94 
(most trajectories reached a value under 150). Since we 
were not concerned with outliers, we decided to use the K-
means++ algorithm [1] as opposed to the more robust 
variant, K-medoids [26], which works well in the presence 
of outliers. Regular K-means is sensitive to initial cluster 
centroid seeds, which are randomly selected. K-means++ 
does a bit more intelligent selection by choosing the first 
centroid seed randomly, the second seed to be the farthest 
from the first, the third seed to be the farthest from the first 
and second, and so on. Therefore, the only source of 
randomness is the first choice of the first seed. 

K-means-based algorithms require the number of clusters 
(k) as an input.  To find an appropriate k, we plotted the 
total Within-Group Sum of Squared Error (SSE) [21] for 
increasing k values, as shown in Figure 3. A red rectangle 
box encloses the meaningful portion of the graph. 
Increasing the value of k from 3 to 4 reduces considerably 
the value of the total Within-Group SSE. However, further 
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increasing k  affects the SSE values only minimally.  Thus 
we chose k = 4. 

 
Figure 3. The total Within-Group SSE values by 

different number of clusters (k). k = 4 was selected. 

We ran K-means++ 50 times on our matrix Tori, and then 
selected the model that had the least total Within-Group 
SSE. Figure 4 illustrates the SSE values achieved at each 
run of K-means++. Although the first seed centroid of K-
means++ is randomly selected at each run, we observed 
that only a handful of different SSE values were reached. 
All the multiple runs, which gave the same smallest SSE 
value at convergence, corresponded to the same partition. 

 
Figure 4. Total Within-Group SSE values for the 50 

runs of K-means++. 

Table 2 gives the sizes (number of users) of the resulting 
clusters. 

Cluster A Cluster B  Cluster C Cluster D  
1,304 1,250 941 357 

Table 2. Size of clusters. 

 

RESULTS 
Figure 5 illustrates average trajectory patterns of users from 
clusters A-D.  For each cluster, we first plotted an Original 
only graph (solid line) using the centroid vector of that 
cluster since a centroid in K-means++ clustering represents 
an average of all the members in that cluster. We then 
plotted the corresponding Original & remix graph (dotted 
line). We recognized interesting differences between 
graphs in each cluster and across clusters. Since the first 10 
projects and the second 10 projects in the graph showed 
prominent characteristics, we attached regression lines and 
their slopes for those learning segments.    

 
Figure 5. Average trajectory graphs for clusters A-D. 
Regression lines and slopes are shown for the first 10 

and the following 10 projects (p-value << 2.2e-16). 

Differences in Amount and Speed of Learning 
Based on the value of the graphs at the 49th project, which 
is the index of the last project, we can measure the average 
‘amount’ of learning of blocks in each cluster (Figure 5). 
The amount of learning in clusters A-D was proportionally 
related to the ‘speed’ of learning occurring in the 
corresponding clusters, as evidenced by the increasing 
slopes (from A to D) for the first 10 projects and the 
following 10. However, the amount and speed of learning 
were inversely related to the size of clusters in Table 2, 
which reflects the general trend in groups of learners. 

The gap between the upper (Original & remix) and lower 
(Original only) graphs at a specific project index represents 
the corresponding cumulative vocabulary difference up to 
that point. This gap is smaller in D than in A.  Also, the 
differences in slope between the two curves, measured 
within the first 10 projects and the following 10 projects, 
are smaller in D than in A.  One reason for this might be 
that users in cluster D used diverse vocabulary even in their 
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early original projects. This interpretation is supported by 
the fact that the cumulative sum in the Original only graph 
(cluster D graph in Figure 5) reached 70 at the project 
index of 10, when the second-most-progressed group of 
users (cluster C graph in Figure 5) reached the same value 
at the project sequence of 35. Therefore, it might have been 
hard to find remix projects with previously unused 
vocabulary. Another possible explanation for the 
discrepancy might be that users in cluster D typically 
remixed projects similar to their original projects, leading 
to only a small difference between the graphs. 

Differences in Initial Vocabulary 
Another observation from Figure 5 is that the ‘starting 
value’ of the trajectory (Original only) at project sequence 
0 is higher in cluster D (mean=17.0) than in A (mean=2.5).  

 
Figure 6. Boxplots summarizing the starting value for 
the first original projects in each cluster (count is 0 if a 

trajectory starts with a remix project). 

The boxplots in Figure 6 illustrate this further. The median 
starting values of the trajectories from A to D are 1.4, 3.7, 
7.3, and 15.4, showing an exponential increase. Even the 
outliers of A have lower values than those of D. This may 
be due to the differences in users’ background knowledge. 
For example, users with prior programming experience 
already know how to use various vocabulary blocks. Thus, 
these users can apply a variety of blocks when creating 
complex Scratch projects.  Other factors such as age and 
gender of users may contribute to this phenomenon as well. 
We further discuss on this in Discussion and Limitations 
section. 

Characteristics of Block Use by Different Clusters 
We computed the percentage of blocks used in the original 
projects for each cluster to understand the block usage 
trend among clusters (Figure 7). A total of 145,916 projects 
(A: 47,097; B: 48,270; C: 36,421; and D: 14,128) were 
analyzed and the percentages of block use were visualized 
along with the block names, which were organized in 
decreasing order of their IDF weights from left (higher 
weight, rare blocks) to right (lower weight, common 
blocks). 25 blocks with the highest weights were removed 
from the computation because they were not used at all.  

As we may expect from the definition of IDF weighting, 
blocks with lower weights were more popular in general 
than those with higher weights.  An interesting tendency 

was that the D graph (black solid line) was higher than the 
A graph (red dotted line) until they reached the ‘doif’ 
block, where the two lines crossed. After the ‘doif’ block, 
the A graph became higher than the D graph, indicating 
that the users of cluster D used rare blocks more often 
compared to the users of A.  The B and C graphs were 
located in between the A and D graphs. 

 
Figure 7. Block use (%) for different clusters. The A 

graph and the D graph cross at (a) ‘doif’ block. 

Text Analysis of Project Descriptions and Comments 
To get a glimpse of how the users in different clusters 
describe their projects and what kind of comments are 
posted for those projects, we extracted the 100 most 
frequent words from the project descriptions and 
comments.  We then compared these 100 words across 
clusters to uncover unique words (Table 3).  

Cluster Unique Words Count 

A 
poor, story, kirby, movie, sad, 
cookie, anime, car, baby, wolf, 

shadow, drawing 
12 

B king, head, views, meow, dragon, 
nice 6 

C 
nyan, spam, watch, astro, 

darkraiworld, hill, battle, pizza, 
stick 

9 

D 

color, bros, radas, player, tagger, 
darkb, mouse, liam, long, version, 
online, turbo, adventure, survived, 
scripts, ninja, projects, great, mhm, 
magic, level, geometry, button, bob, 

view, erk 

26 

Table 3. Unique words extracted from the project descriptions 
and comments in each cluster. 

Table 3 shows that the cluster D has the largest number of 
unique words (26) by a considerable margin.  In addition, 
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the unique words from cluster D may have come from 
games (e.g., player, mouse, adventure, survived, ninja, 
level, button) and programming (e.g., version, scripts, 
geometry). Users in cluster B and C create a large number 
of projects that are related to cats (See the unique words 
‘meow’ in cluster B and ‘nyan’ in cluster C in Table 3). In 
fact, ‘cat’ was a popular topic in Scratch considering that 
searching with ‘cat’ returned over 7 million results. The 
popularity of ‘dragon’ in cluster B was probably due to 
over 2.26 million projects about a famous animation 
“Dragon Ball.”  ‘battle’ in cluster C was usually associated 
with games (e.g., RPG battle, Tank battle, battle training 
game). The word ‘poor’ in cluster A was often used in titles 
along with the name of animation characters (e.g., ‘poor 
foxy’, ‘poor Pinkie Pie’, ‘poor snow man’). ‘poor’ was also 
used to comment on the quality of projects (e.g., ‘poor 
translation’).  The frequent use of word ‘poor’ may indicate 
that the users in cluster A are novices who frequently 
acknowledge the low quality of their projects in relation to 
those in other clusters. 

 Emotion Project Type Other 

A
cr

os
s A

-D
 

crazy, 
awesome, 
love, best, 
funny, yay, 

happy, good, 
evil, cool, 

rock(s), bad, 
stupid, fun, 

weird 

art, cat, 
pokemon, 

click, contest, 
music, sonic, 
super, mario, 

press, game(s), 
remix, space, 

sprites 

wuz, random, 
pie, cant, tag(s), 

blue, song, 
waffles, add, 
stuff, scratch, 

green, epic, red, 
real, life, star, 
big, time, day, 

eat, man 

Table 4. Common words extracted from clusters A-D (a total 
of 56 words). 

Table 4 shows common words across all clusters.  They 
might be divided into three groups: emotion, project type, 
and other. Combined together, these word groups illustrate 
a simplified snapshot of the Scratch community, where 
people create arts, games, animations, and express their 
emotions towards those content. 

Example Trajectory Graphs 
Cluster analysis provides us a macroscopic examination of 
the patterns in the trajectory graphs. For microscopic 
details of graph variations, we present two examples which 
are randomly selected from each cluster.   

Figure 8 depicts typical patterns of trajectories from the 
least progress group in cluster A. In Figure 8 (a), the 
Original only graph stayed under 25 cumulative sum of 
vocabulary even though the user remixed many projects 
over time. The user in Figure 8 (b) remixed only one 
project later in the sequence.  His/her cumulative sum of 
vocabulary increased gradually during the first 10 projects, 
then stabilized for another 30 or so. There was a small 
vocabulary jump around the 43rd project, but overall 
progress is slow.    

 
Figure 8. Examples from cluster A (the least progress 

group). Graphs in (a) and (b) stay under the cumulative 
sum value of 50. 

Figures 9 and 10 illustrate example trajectories from cluster 
B and C respectively. In the first 10 projects, the two 
figures show noticeable differences: corresponding portions 
in Figure 9 (a) and (b) are rather flat; but those in Figures 
10 (a) and (b) are increasing. The Original & remix graph 
(dotted line) in Figure 9 (a) has a slight jump at the 21st 
project due to new vocabulary in a remix project. However, 
the last two remix projects at 36th and 37th do not contribute 
to the vocabulary progress very much. Figure 9 (b) shows a 
sharp jump at the 8th project caused by the vocabulary 
increase in the original project, but then the progress slows 
down even after multiple remixes.   

 
Figure 9. Examples from cluster B. (a) and (b) reach 
slightly over 50 cumulative sum of vocabulary in the 

end. 
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Figure 10. Examples from cluster C. (a) and (b) reach 
near 70-80 cumulative sum of vocabulary in the end. 

The final cumulative values at project index 49 in Figures 9 
(a) and (b) reach between 60 and 70. Figures 10 (a) and (b) 
have similar patterns, but Figure 10 (b) has many more 
remix projects which do not contribute much to the 
vocabulary increase. The final cumulative values in Figure 
10 (a) and (b) reach between 80 and 90. 

 
Figure 11. Examples from cluster D (the most progress 

group). (a) and (b) reach 110-140 cumulative sum of 
vocabulary in the end. 

Figure 11 shows example trajectories from the most 
progressed group in cluster D. These trajectory graphs start 
increasing from the beginning and reach over the 
cumulative value of 50 before the 5th projects. This is a 
steep increase compared to the corresponding portions in 
Figures 5, 6, and 7. The graphs in Figure 11 (a) keep 
increasing until they reach close to 140.  Graphs in Figure 

11 (b) show a slight jump at the 27th project due to 
vocabulary increase in the original project.  Another 
observation to note is that four remix projects occur 
consecutively right before this jump. They do not directly 
contribute to the vocabulary increase; however, it’s 
possible that those remix projects indirectly helped learning 
new blocks and contributed to the vocabulary increase in 
the Original only graph.  

DISCUSSION AND LIMITATIONS 
We found that our approach – modeling and clustering of 
learning trajectories – was effective in answering our 
research questions. We could quantitatively measure and 
analyze the three aspects listed below, both at macroscopic 
(Figure 5) and microscopic levels (Figures 8-11): 

1. The amount of learning using the cumulative sum at the 
end of a trajectory 

2. The speed of learning using the slopes of regression lines 
of a trajectory 

3. Potential prior programming knowledge using the first 
value of a trajectory 

The clustering analysis unveiled four patterns of 
trajectories and corresponding subpopulations in our 
dataset – from the least progress (cluster A) to the most 
progress (cluster D). We observed that the quantities listed 
above in 1, 2, and 3 were positively correlated with each 
other. Users in cluster A (least progress) had the smallest 
amount of vocabulary learning, their learning speed was the 
slowest, and their starting vocabulary sum was only 2.5 on 
average (Figure 5 and 6). Referring to vocabulary weights 
in Figure 2, the vocabulary sum of 2.5 means the projects 
of users in A contained only one type of vocabulary (e.g., 
list_contains (IDF=2.5)), or two (e.g., set_xpos (1.5) and 
keypressed (1)). The trajectory of learning in cluster A 
shows slow increase in the first 10 (slope = 0.6) and the 
following 10 projects (slope = 0.4), and then stabilizes after 
the 20th project for the Original only graph.  The larger gap 
between the two trajectory graphs may indicate that the 
users in A incorporated only a small number of new 
vocabulary blocks from the remix projects into their 
original projects. 

Users in D showed characteristics of ‘expert’ learners – 
fastest learning, largest amount of vocabulary use, and a 
highest starting vocabulary sum of 17 (Figure 5-6). A 
vocabulary sum of 17, for example, means that their first 
projects contained several types of blocks: 
‘changecostumeindexb (3.8)’, ‘allmotorson (3.2)’, 
‘sensorpressed (2.8)’, ‘mousey (2)’, ‘hidevariable (1.8)’, 
‘add_operator (1.4)’, ‘not_operator (1.2)’, and 
‘changegraphiceffectby (0.8).’ If a vocabulary of smaller 
weights were used, many more different types of blocks 
might have been included in a project. The trajectory of 
their vocabulary growth shows a steep increase in the first 
10 projects, where the slope of 4.9 indicates fast learning. 
At the 10th project, the trajectory reaches 70, and then it 
keeps increasing even after the 20th project.  
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Figure 7 and Table 3 also support that the users in D 
showed characteristics of expert learners.   In Figure 7, 
users in D tend to use blocks with higher weight for their 
projects compared to the users in A.  It might be interpreted 
in three ways: (1) users in D use blocks with higher weight 
in general compared to those in A, (2) the proportion of 
advanced users using blocks with higher weight was larger 
in D than in A, or (3) a combination of these two cases.  
From the unique words of users in D in Table 3, we can 
also postulate that these users create unique and 
sophisticated games which require advanced programming 
skills. 

Limitations 
Although we identified patterns of learning trajectories, we 
may not know the reasons behind the different levels of 
learning outcomes for users with certainty. For example, 
there can be several reasons for the use of only a small 
number of vocabulary blocks by the users in cluster A: the 
characteristics of their projects may not require a large list 
of vocabulary. This might be the case in art projects, since 
visualizing pictures only requires a single keystroke to 
advance to the next picture. Another possibility is that of 
very inexperienced or very young users who do not 
understand the usage of more sophisticated blocks (e.g., 
blocks with high IDF values in Figure 2).  We also do not 
know the reasons for differences in starting values of the 
first original projects (Figure 6). We were limited by the 
lack of demographics and user profile data. In addition, the 
nature of the Scratch platform is flexible and not goal-
directed; therefore, users are free to develop the projects 
they wish over time without concern for vocabulary 
acquisition.   

In our dataset, we included only the long-term users who 
created at least 50 original projects, and analyzed their first 
50 projects. This selection criterion may have limited our 
scope of analysis to focus on a phenomenon occurring only 
in a small sub-community of Scratch online. Thus, 
lowering the user selection/analysis criteria (e.g., original 
projects < 50, analyzing all projects of a user) may have led 
to more meaningful and generalizable results. 

IMPLICATIONS 
Uncovering patterns in trajectories of learning implies that 
there exist subpopulations in the community, each of which 
shares similar learning characteristics (i.e., amount, speed, 
and, potentially, prior programming knowledge). It may 
allow administrators and designers of online communities 
to apply interventions and implement services to better 
support underperforming subpopulations. More 
importantly, our approach is based on automated modeling 
and clustering, thus it is scalable and applicable to much 
larger online communities than Scratch. Since it was 
successful in quantifying learning in an informal setting, 
applying this approach to formal settings (e.g., MOOCs) 
may lead to more robust results and enable deeper analyses. 
In addition, the patterns of learning trajectories might be 
connected with the learner engagement patterns [11] to 

acquire richer information about the users and 
subpopulations. 

CONCLUSION AND FUTURE WORK 
In this study, we presented an approach to model informal 
learning, which takes place in the Scratch online 
community. We modeled a trajectory of learning by 
analyzing the cumulative vocabulary block use over the 
first 50 projects.  The K-means++ algorithm was applied to 
a total of 3,852 users and their learning trajectories to 
uncover four canonical patterns and corresponding 
subpopulations. Average trajectory graphs from each 
cluster indicated the existence of ‘elite’ users, who learn 
more vocabulary terms more quickly, and potentially have 
more prior programming knowledge; whereas the least 
progress users learn only a small number of vocabulary 
terms at a slower pace than other groups, and they have 
almost no prior programming knowledge. The text analysis 
of the project descriptions and comments, as well as the 
analysis of block usage by users from each cluster, further 
evidenced the different characteristics of user groups in the 
Scratch community. A few examples from each cluster 
were also analyzed to account for the chance that average 
graphs might oversimplify patterns of learning trajectories.   

Our approach is meaningful in that the modeling and 
clustering of trajectory patterns enabled us to quantitatively 
analyze informal learning both at a single-user level 
(microscopic) as well as at a cluster level (macroscopic). It 
may also be applicable to much larger communities 
regardless of whether they are structured (e.g., MOOCs) or 
less structured (e.g., Q&A).  A potential implication of our 
work is the opportunity for targeted intervention and 
support for a specific subpopulation, which may lead to an 
improved experience for the community members.  

We aim to extend our study in two ways. First, we will 
apply our approach to other types of online communities 
for learning (e.g., Q&A forums) and compare the results 
with the one presented in this paper. Second, we plan to 
design a recommender system based on a detailed analysis 
of blocks and project themes in each cluster, in addition to 
our approach in this paper.  This system will promote 
learning of users by suggesting programming blocks and 
projects so that the learning trajectory of users can be 
aligned with the trajectory pattern of more advanced users 
within his/her own cluster, as well as from the most 
advanced cluster. 
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