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Abstract

The nearest neighbor technique is a simple and appealing method
to address classification problems. It relies on the assumption of
locally constant class conditional probabilities. This assumption
becomes invalid in high dimensions with a finite number of ex-
amples due to the curse of dimensionality. Severe bias can be
introduced under these conditions when using the nearest neigh-
bor rule. The employment of a local adaptive metric becomes
crucial in order to keep class conditional probabilities close to
uniform, and therefore to minimize the bias of estimates. We
propose a technique that computes a locally flexible metric by
means of Support Vector Machines (SVMs). The maximum mar-
gin boundary found by the SVM is used to determine the most
discriminant direction over the query’s neighborhood. Such di-
rection provides a local weighting scheme for input features. We
present experimental evidence, together with a formal justifica-
tion, of classification performance improvement over the SVM
algorithm alone and over a variety of adaptive learning schemes,
by using both simulated and real data sets. Moreover, the pro-
posed method has the important advantage of superior efficiency
over the most competitive technique used in our experiments.

1 Introduction

In a classification problem, we are given J classes and [ training observations. The
training observations consist of n feature measurements x = (z1,---,2,)7 € R"
and the known class labels j = 1,...,J. The goal is to predict the class label of
a given query q.

The K nearest neighbor classification method [6, 13, 16, 17, 20, 21] is a simple
and appealing approach to this problem: it finds the K nearest neighbors of q in
the training set, and then predicts the class label of q as the most frequent one
occurring in the K neighbors. Such a method produces continuous and overlap-
ping, rather than fixed, neighborhoods and uses a different neighborhood for each



individual query so that all points in the neighborhood are close to the query, to
the extent possible. In addition, it has been shown [7, 10] that the one nearest
neighbor rule has asymptotic error rate that is at most twice the Bayes error rate,
independent of the distance metric used.

The nearest neighbor rule becomes less appealing with finite training samples,
however. This is due to the curse of dimensionality [4]. Severe bias can be in-
troduced in the nearest neighbor rule in a high dimensional input feature space
with finite samples. As such, the choice of a distance measure becomes crucial in
determining the outcome of nearest neighbor classification. The commonly used
Euclidean distance measure, while simple computationally, implies that the input
space is isotropic or homogeneous. However, the assumption for isotropy is often
invalid and generally undesirable in many practical applications. Figure 1 illus-
trates a case in point, where class boundaries are parallel to the coordinate axes.
For query a, dimension X is more relevant, because a slight move along the X
axis may change the class label, while for query b, dimension Y is more relevant.
For query c, however, both dimensions are equally relevant. This implies that dis-
tance computation does not vary with equal strength or in the same proportion
in all directions in the feature space emanating from the input query. Capturing
such information, therefore, is of great importance to any classification procedure
in high dimensional settings.

Several techniques [11, 12, 9] have been proposed to try to minimize bias in high
dimensions by using locally adaptive mechanisms. The “lazy learning” approach
used by these methods, while appealing in many ways, requires a considerable
amount of on-line computation, which makes it difficult for such techniques to
scale up to large data sets. The feature weighting scheme they introduce, in fact,
is query based and is applied on-line when the test point is presented to the “lazy
learner”.

In this paper we propose a locally adaptive metric classification method which, al-
though still founded on a query based weighting mechanism, computes off-line the
information relevant to define local weights. Preliminary results of this approach
appear in [8]; here we further motivate our technique, and provide a theoretical
justification that supports the experimental performance results.

Our technique uses support vector machines (SVMs) as a guidance for the pro-
cess of defining a local flexible metric. SVMs have been successfully used as
a classification tool in a variety of areas [14, 5, 18], and the maximum margin
boundary they provide has been proved to be optimal in a structural risk mini-
mization sense. The solid theoretical foundations that have inspired SVMs convey
desirable computational and learning theoretic properties to the SVM’s learning
algorithm, and therefore SVMs are a natural choice for seeking local discriminant
directions between classes.

The solution provided by SVMs allows to determine locations in input space where
class conditional probabilities are likely to be not constant, and guides the extrac-
tion of local information in such areas. This process produces highly stretched
neighborhoods along boundary directions when the query is close to the boundary.
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Figure 1: Feature relevance varies with query locations.

As a result, the class conditional probabilities tend to be constant in the mod-
ified neighborhoods, whereby better classification performance can be achieved.
The amount of elongation-constriction decays as the query moves further from the
boundary vicinity. This phenomenon is exemplified in Figure 1 by queries a, a
and " . In this paper we present experimental evidence of the accuracy achieved
by means of this local weighting scheme.

The sparse solution given by SVMs also provides principled guidelines to effi-
ciently set the input parameters of our technique. This is a major advantage over
the ADAMENN technique [9], which has a competitive behavior but requires six
tunable input parameters.

Furthermore, the technique proposed here speeds up the classification process
since it computes off-line the information relevant to define local weights, and
applies the nearest neighbor rule only once, whereas ADAMENN applies it at
each point within a region centered at the query. Indeed, the major strength of
our technique is that it is capable of providing local feature weightings using a
global decision scheme, specifically the SVM boundary. This mechanism allows
an off-line computation of the relevant information to define weights, leaving only
local refinements to an on-line stage. This results in a method which is much more
efficient than current local adaptive techniques for nearest neighbor classification
[11, 12, 9], which act iteratively on the computation of neighborhoods.

We present theoretical and experimental results that show that using SVMs to
locally weight features results in improved performance over both adaptive nearest
neighbor techniques and the SVM classification method itself. Our approach is
related to [2]. In [2], Amari and Wu improve support vector machine classifiers by



modifying kernel functions. The resulting transformation depends on the distance
of data points from the support vectors, and it is therefore a local transformation,
but is independent of the boundary’s orientation in input space. Likewise, our
transformation metric is local; moreover, since we weight features, our metric is
also directional, and depends on the orientation of local boundaries in input space.

2 Adaptive Metric Nearest Neighbor Classification
Techniques

K nearest neighbor methods are based on the assumption of smoothness of the
target functions, which translates to locally constant class posterior probabilities
for a classification problem. This assumption, however, becomes invalid for any
fixed distance metric when the input observation approaches class boundaries. The
objective of locally adaptive metric techniques for nearest neighbor classification
is to produce a modified local neighborhood in which the posterior probabilities
are approximately constant.

The techniques proposed in the literature [11, 12, 9] are based on different prin-
ciples and assumptions for the purpose of estimating feature relevance locally at
query points, and therefore weighting accordingly distances in input space. The
idea common to these techniques is that the weight assigned to a feature, locally
at a given query point q, reflects its estimated relevance to predict the class label
of q: larger weights correspond to larger capabilities in predicting class posterior
probabilities. As a result, neighborhoods get constricted along the most relevant
dimensions and elongated along the less important ones. The class conditional
probabilities tend to be constant in the resulting neighborhoods, whereby better
classification performance can in general be obtained.

3 Learning with SVMs

We are given [ observations. Each observation consists of a pair: a vector x; € ™,
i =1,...,1, and the associated class label y; € {—1,1}. In the simple case of two
linearly separable classes, a support vector machine selects, among the infinite
number of linear classifiers that separate the data, the classifier that minimizes
an upper bound on the generalization error. The SVM achieves this goal by com-
puting the classifier that satifies the maximum margin property, i.e. the classifier
whose decision boundary has the maximum minimum distance from the closest
training point.

If the two classes are non-separable, the SVM looks for the hyperplane that max-
imizes the margin and that, at the same time, minimizes a quantity proportional
to the number of misclassification errors. The trade-off between margin and mis-
classification error is driven by a positive constant C' that has to be chosen before-
hand. The corresponding decision function is then obtained by considering the
sign(f(x)), where f(x) = Y, a;y;x} -x—b, and the coefficients a; are the solution
of a convex quadratic problem, defined over the hypercube [0, C]'. In general, the
solution will have a number of coefficients «; equal to zero, and since there is a



coefficient «; associated to each data point, only the data points corresponding
to non-zero «; will influence the solution. These points are the support vectors,
i.e. the points that lie closest to the separating hyperplane. Intuitively, the sup-
port vectors are the data points that lie at the border between the two classes,
and a small number of support vectors indicates that the two classes can be well
separated.

This technique can be extended to allow for non-linear decision surfaces. This
is done by mapping the input vectors into a higher dimensional feature space:
¢ : R — RN, and by formulating the linear classification problem in the feature
space. Therefore, f(x) can be expressed as f(x) = >, a;y;¢” (x;) - p(x) — b.

If one were given a function K(x,y) = ¢ (x) - ¢(y), one could learn and use
the maximum margin hyperplane in feature space without having to compute
explicitly the image of points in V. It has been proved (Mercer’s Theorem) that
for each continuous positive definite function K (x,y) there exists a mapping ¢
such that K (x,y) = ¢7(x) - ¢(y), ¥x,y € R". By making use of such function K
(kernel function), the equation for f(x) can be rewritten as

f(x) = ZaiyiK(Xiax) —b. (1)

4 Feature Weighting

The maximum margin boundary found by the SVM is used here to determine
local discriminant directions over query’s neighborhoods. The normal direction
to local decision boundaries identifies the orientation along which data points
between classes are well separated. The gradient vector computed at points on
the boundary allows us to capture such information, and to use it for measuring
local feature relevance and weighting features accordingly. Formally, the definition
of our weighting scheme proceeds as follows.

SVMs classify patterns according to the sign(f(x)). Clearly, in the general case
of a non-linear feature mapping ¢, the SVM classifier gives a non-linear boundary
f(x) = 0 in input space. The gradient vector ng = Vqf, computed at any point
d of the level curve f(x) = 0, gives the perpendicular direction to the decision
boundary in input space at d. As such, the vector ng identifies the orientation in
input space on which the projected training data are well separated, locally over
d’s neighborhood. Therefore, the orientation given by ng4, and any orientation
close to it, is highly informative for the classification task at hand, and we can
use such information to define a local measure of feature relevance.

Let g be a query point whose class label we want to predict. Suppose q is close to
the boundary, which is where class conditional probabilities become locally non
uniform, and therefore estimation of local feature relevance becomes crucial. Let
d be the closest point to q on the boundary f(x) = 0: d = argminy, ||q — p||,
subject to the constraint f(p) = 0. Then we know that the gradient ng identifies
a direction along which data points between classes are well separated.

As a consequence, the subspace spanned by the orientation ng intersects the



decision boundary and contains changes in class labels. Therefore, when applying
a nearest neighbor rule at q, we desire to stay close to q along the ng direction,
because that is where it is likely to find points similar to q in terms of the class
conditional probabilities. Distances should be constricted (large weight) along
ng and along directions close to it, thus excluding from q’s neighborhood points
along nq that are far from q. The farther we move from the ng direction, the
less discriminant the correspondent orientation becomes. This means that class
labels are likely not to change along those orientations, and distances should be
elongated (small weight), thus including in q’s neighborhood points which are
likely to be similar to q in terms of the class conditional probabilities.

This principle is in analogy with a local linear discriminant analysis approach. In
fact, the orientation of the gradient vector identifies the direction, locally at the
query point, on which the projected training data are well separated. This prop-
erty guides the process of generating modified neighborhoods with homogeneous
class conditional probabilities.

Formally, we can measure how close a direction t is to ng by considering the dot
product n} - t. In particular, by denoting with u; the unit vector along input

feature j, for j = 1,...,n, we can define a measure of relevance for feature j,
locally at q (and therefore at d), as
— T
Rj(q) = |uj -na| = |nq,j (2)
where ng = (na,1,.--,na.n)’.

The measure of feature relevance, as a weighting scheme, can then be given by
wj(a) = (R;(@)"/ Y _(Ri(a)’ (3)
i=1

where t = 1,2, giving rise to linear and quadratic weightings, respectively. We
propose the following exponential weighting scheme

wj(q) = exp(AR;(q))/ Z exp(AR;(q)) (4)

where A is a parameter that can be chosen to maximize (minimize) the influence of
Rj onw;. When A = 0 we have w; = 1/n, thereby ignoring any difference between
the R;’s. On the other hand, when A is large a change in R; will be exponentially
reflected in w;. The exponential weighting is more sensitive to changes in local
feature relevance (2), and in general gives rise to better performance improvement.
In fact, the exponential weighting scheme conveys stability to the method by
preventing neighborhoods to extend infinitely in any direction. This is achieved
by avoiding zero weights, which is instead allowed by the linear and quadratic
weightings.

Thus, (4) can be used as weights associated with features for weighted distance
computation




These weights enable the neighborhood to elongate less important feature dimen-
sions, and, at the same time, to constrict the most influential ones. Note that the
technique is query-based because weightings depend on the query [1, 3].

One may be tempted to use the weights w;(q) directly in the SVM classification,
by applying the weighted distance measure (5) in (1). By doing so, we would
compute the weighted distances of the query point q from all support vectors,
and therefore we would employ the weights w;(q) for global distance computation
over the whole input space. On the other hand, the weights w;(q) are based
on the local (to q) orientation of the decision boundary, and therefore they are
meaningful for local distance computation of q from its neighbors. The weights
w;(q), in fact, convey information on how distances should be constricted or
elongated locally at q: we desire to achieve constricted distances along directions
close to the gradient direction, and elongated distances along directions far from
the gradient direction. Accordingly, a locally adaptive nearest neighbor technique
allows us to take into consideration only the closest neighbors (according to the
learned weighted metric) in the classification process.

5 Local Flexible Metric Classification based on SVMs

To estimate the orientation of local boundaries, we move from the query point
along the input axes at distances proportional to a given small step (whose initial
value can be arbitrarily small, and doubled at each iteration till the boundary is
crossed). We stop as soon as the boundary is crossed along an input axis i, i.e.
when a point p; is reached that satisfies the condition sign(f(q)) x sign(f(p:)) =
—1. Given p;, we can get arbitrarily close to the boundary by moving at (arbi-
trarily) small steps along the segment that joins p; to q.

Let us denote with d; the intercepted point on the boundary along direction i.
We then approximate ng with the gradient vector ng, = Vg4, f, computed at d;.

We desire that the parameter A in the exponential weighting scheme (4) increases
as the distance of q from the boundary decreases. By using the knowledge that
support vectors are mostly located around the boundary surface, we can estimate
how close a query point q is to the boundary by computing its distance from the
closest non bounded support vector: Bgq = ming, ||q — s;||, where the minimum
is taken over the non bounded (0 < «a; < C) support vectors s;. Following the
same principle, in [2] the spatial resolution around the boundary is increased by
enlarging volume elements locally in neighborhoods of support vectors.

Then, we can achieve our goal by setting A = D — Bg, where D is a constant
input parameter of the algorithm. In our experiments we set D equal to the
approximated average distance between the training points x; and the boundary:

1 .
D =3 > {minlxe — sill} (6)

If A becomes negative it is set to zero.

By doing so the value of A nicely adapts to each query point according to its



location with respect to the boundary. The closer q is to the decision boundary,
the higher the effect of the R;’s values will be on distances computation.

Input: Decision boundary f(x) = 0 produced by a SVM; query
point q and parameter K.

1. Compute the approximated closest point d; to q on the

boundary;
2. Compute the gradient vector ng; = Vg, f;
3. Set feature relevance values R;(q) = |na, ;| for j =1,...,n;

4. Estimate the distance of q from the boundary as: Bq =
ming, [|q — sil;

5. Set A = D — Bg, where D is defined as in equation (6);

Set w according to (4);

7. Use the resulting w for K-nearest neighbor classification at
the query point q.

>

Figure 2: The LFM-SVM algorithm

We observe that this principled guideline for setting the parameters of our tech-
nique takes advantage of the sparseness representation of the solution provided by
the SVM. In fact, for each query point q, in order to compute By we only need
to consider the support vectors, whose number is typically small compared to the
total number of training examples. Furthermore, the computation of D’s value is
carried out once and off-line.

The resulting local flexible metric technique based on SVMs (LFM-SVM) is sum-
marized in Figure 2. The algorithm has only one adjustable tuning parameter,
namely the number K of neighbors in the final nearest neighbor rule. This pa-
rameter is common to all nearest neighbor classification techniques.

6 Weighting Features Increases the Margin

In this section we formally show that our weighting scheme increases the margin
of the solution provided by the SVM. Our discussion holds for Gaussian kernels.
This property explains the performance improvements achieved by our method
over the SVM alone, as shown in our experiments. The same argument holds for
polynomial kernels with an odd exponent also. The flow of the reasoning for a
polynomial kernel is similar to the Gaussian one, and we omit, it.

Consider the Gaussian radial basis function kernel (which we use in our experi-
ments): K(s;,x) = e—llsi=xII” The expression of the decision boundary in equa-
tion (1) becomes: f(x) = >  cqy azyze=Is=<I> _ b = 0. Consider now the j
component of the gradient vector ng = Vaf = (32 fa, - - -, 5= fa) computed with



respect to x at point d:
0 e a2
na; =5 —fa=2y Y ailsy —dj)e sl (7)
J s; €SV

where d is the closest point to the query q on the boundary. Our local measure
of relevance (2) for feature j is then given by

L 2
Rj(q) =|naj| =12y D awi(sij —dj)e "Il (8)
s; €SV
We partition SV in SV~ and SV1,i.e. SV =SV~ USVT, where SV~ is the set
of support vectors with label y = —1, and SV is the set of support vectors with

label y = +1. We can rewrite equation (8) as follows:

Rj(q) = |2y( Z (s — dj)ef'y\lsl-fdn2 _ Z i (si; _dj)efvllszvfdllaﬂ' 9)
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Figure 3: Tllustration of a case in which conditions (10) are satisfied. Negative
support, vectors are represented as “x” and positive support vectors are denoted
with “0”. Along feature j, d; separates the positive support vectors from the
negative ones. Along feature k support vectors with opposite sign shuffle. A large

weight is assigned to feature j and a small weight to feature k.

We want to identify the conditions that make R;(q) large. We observe that v,
«;, and the exponentials in (9) are all positive terms. A large value for R;(q) is



obtained when the terms (s;; — d;) are all positive for s; € SV and all negative
for s; € SV, or vice versa. These conditions are satisfied when

dj < Sij Vs; € SvV+ and dj > Sij Vs; € SV~ (10)
or

dj > s;5 Vs; € SVt and d; <siy; Vs; € SV (11)
Figure 3 illustrates a case in which conditions (10) are satisfied. Along the orien-
tation identified by feature j, d; separates the positive support vectors from the
negative ones. As a consequence, the value of R;(q) is large, and a large weight
is assigned to feature j. On the other hand, along the orientation identified by
feature k, the negative support vectors mix with the positive support vectors.
Therefore, the terms (s;; — di) becomes positive and negative for different s;
within either SV* or SV, and cancel each other in equation (9). As a result,
the value of Ri(q) is small, and a small weight is assigned to feature k.

By assigning a large weight to feature j in Figure 3, and in general to input
features close to the gradient direction, locally in neighborhood of support vec-
tors, we increase the distance between the support vectors in SV~ and SV+.
This corresponds to improve the separability of classes along those orientations,
and therefore the margin. As a consequence, better classification results can be
achieved as also demonstrated in our experiments.

7 Experimental Results

In the following we compare several classification methods using both simulated
and real data. We compare the following classification approaches: LFM-SVM
algorithm described in Figure 2. SV M9t [15] with radial basis kernels is used to
build the SVM classifier. RBF-SVM classifier with radial basis kernels. We used
SV M'isht [15], and set the value of v in K (x;,x) = e~ I*=*I" equal to the opti-
mal one determined via cross-validation. Also the value of C' for the soft-margin
classifier is optimized via cross-validation. The output of this classifier is the input
of LFM-SVM. ADAMENN-adaptive metric nearest neighbor technique [9]. It
uses the Chi-squared distance in order to estimate to which extent each dimension
can be relied on to predict class posterior probabilities. Machete [11]. It is a
recursive partitioning procedure, in which the input variable used for splitting
at each step is the one that maximizes the estimated local relevance. Such rele-
vance is measured in terms of the improvement in squared prediction error each
feature is capable to provide. Scythe [11]. It is a generalization of the machete
algorithm, in which the input variables influence each split in proportion to their
estimated local relevance, rather than applying the winner-take-all strategy of the
machete. DANN-discriminant adaptive nearest neighbor classification [12]. It is
an adaptive nearest neighbor classification method based on linear discriminant
analysis. It computes a distance metric as a product of properly weighted within
and between sum of squares matrices. Simple K-NIN method using the Euclidean
distance measure. C4.5 decision tree method [19].

In all the experiments, the features are first normalized over the training data to
have zero mean and unit variance, and the test data features are normalized using



the corresponding training mean and variance. Procedural parameters for each
method were determined empirically through cross-validation.

7.1 Experiments on Simulated Data

For all simulated data, 10 independent training samples of size 200 were generated.
For each of these, an additional independent test sample consisting of 200 obser-
vations was generated. These test data were classified by each competing method
using the respective training data set. Error rates computed over all 2,000 such
classifications are reported in Table 1.

7.1.1 The Problems

Multi-Gaussians. The data set consists of n = 2 input features, | = 200 train-
ing data, and J = 2 classes. Each class contains two spherical bivariate nor-
mal subclasses, having standard deviation 1. The mean vectors for one class are
(—=3/4,-3) and (3/4, 3); whereas for the other class are (3,—3) and (—3,3). For
each class, data are evenly drawn from each of the two normal subclasses. The
first column of Table 1 shows the results for this problem. The standard devia-
tions are: 0.17, 0.01, 0.01, 0.01, 0.01 0.01, 0.01 and 1.50, respectively.
Noisy-Gaussians. The data set consists of n = 6 input features, [ = 200 train-
ing data, and J = 2 classes. The data for this problem are generated as in the
previous example, but augmented with four predictors having independent stan-
dard Gaussian distributions. They serve as noise. For each class, data are evenly
drawn from each of the two normal subclasses. Results are shown in the second
column of Table 1. The standard deviations are: 0.18, 0.01, 0.02, 0.01, 0.01, 0.01,
0.01 and 1.60, respectively.

Table 1: Average classification error rates for simulated data.

MultiGauss NoisyGauss
LFM-SVM 3.3 3.4
RBF-SVM 3.3 5.3
ADAMENN 34 4.1
Machete 3.4 4.3
Scythe 3.4 4.8
DANN 3.7 4.7
K-NN 3.3 7.0
C4.5 5.0 5.1

7.1.2 Results

Table 1 shows that all methods have similar performances for the MultiGaussians
problem, with C4.5 being the worst performer. When the noisy predictors are
added to the problem (NoisyGaussians), we observe different levels of deterioration



in performance among the eight methods. LFM-SVM shows the most robust
behavior in presence of noise. K-NN is instead the worst performer. We also
observe that C4.5 has similar error rates in both cases; we noticed, in fact, that
for the majority of the 10 independent trials we run it uses only the first two
input features to build the decision tree. In Figure 4 we plot the performances of
LFM-SVM and RBF-SVM as a function of an increasing number of noisy features
(for the same MultiGaussians problem). The standard deviations for RBF-SVM
(in order of increasing number of noisy features) are: 0.01, 0.01, 0.03, 0.03, 0.03
and 0.03. The standard deviations for LFM-SVM are: 0.17, 0.18, 0.2, 0.3, 0.3 and
0.3. The LFM-SVM technique shows a considerable improvement over RBF-SVM
as the amount of noise increases.
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Figure 4: Average Error Rates of LFM-SVM and RBF-SVM as a function of an
increasing number of noisy predictors.

7.2 Experiments on Real Data

We used six different real data sets. They are all taken from UCI Machine Learn-
ing Repository at http://www.cs.uci.edu/~mlearn/MLRepository.html. For the
Iris, Sonar and Vote data we perform leave-one-out cross-validation to measure
performance, since the number of available data is limited for these data sets. For
the Breast, OQ-letter and Pima data we randomly generated five independent
training sets of size 200. For each of these, an additional independent test sample
consisting of 200 observations was generated. Table 2 shows the cross-validated
error rates for the eight methods under consideration on the six real data.

7.2.1 The Problems

1. Iris data. This data set consists of n = 4 measurements made on each of
[ = 100 iris plants of J = 2 species. The two species are iris versicolor and iris
virginica. The problem is to classify each test point to its correct species based



on the four measurements. The results on this data set are shown in the first
column of Table 2. 2. Sonar data. This data set consists of n = 60 frequency
measurements made on each of [ = 208 data of J = 2 classes (“mines” and
“rocks”). The problem is to classify each test point in the 60-dimensional feature
space to its correct class. The results on this data set are shown in the second
column of Table 2. 3. Vote data. This data set includes votes for each of the
U.S. House of Representatives Congressmen on the 16 key votes identified by the
CQA. The data set consists of [ = 232 instances after removing missing values,
and J = 2 classes (democrat and republican). The instances are represented by
n = 16 boolean valued features. The average leave-one-out cross-validation error
rates are shown in the third column of Table 2. 4. Wisconsin breast cancer
data. The data set consists of n = 9 medical input features that are used to make
a binary decision on the medical condition: determining whether the cancer is
malignant or benign. The data set contains 683 examples after removing missing
values. Average error rates for this problem are shown in the fourth column of
Table 2. The standard deviations are: 0.2, 0.2, 0.2, 0.2, 0.2, 0.9, 0.9 and 0.9,
respectively. 5. OQ data. This data set consists of n = 16 numerical attributes
and J = 2 classes. The objective is to identify black-and-white rectangular pixel
displays as one of the two capital letters “O” and “Q” in the English alphabet.
There are [ = 1536 instances in this data set. The character images were based
on 20 different fonts, and each letter within these 20 fonts was randomly distorted
to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes (statistical moments and edge counts) which were
then scaled to fit into a range of integer values from 0 through 15. The average
error rates over five independent runs are shown in the fifth column of Table 2.
The standard deviations are: 0.2, 0.2, 0.2, 0.3, 0.2, 1.1, 1.5 and 2.1, respectively.
6. Pima Indians Diabete data. This data set consists of n = 8 numerical
medical attributes and J = 2 classes (tested positive or negative for diabetes).
There are [ = 768 instances. Average error rates over five independent runs are
shown in the sixth column of Table 2. The standard deviations are: 0.4, 0.4, 0.4,
0.4, 0.4, 2.4, 2.1 and 0.7, respectively.

7.2.2 Results

Table 2: Average classification error rates for real data.

Iris | Sonar | Vote | Breast | OQ | Pima
LFM-SVM | 4.0 | 11.0 2.6 3.0 3.5 | 19.3
RBF-SVM | 4.0 | 12.0 3.0 3.1 34 | 21.3

ADAMENN | 3.0 9.1 3.0 3.2 3.1 | 204

Machete 5.0 21.2 3.4 3.5 74 | 204
Scythe 40 | 16.3 34 2.7 5.0 | 20.0
DANN 6.0 7.7 3.0 2.2 4.0 | 22.2
K-NN 6.0 | 12.5 7.8 2.7 54 | 24.2

C4.5 8.0 | 23.1 34 4.1 9.2 | 238




Table 2 shows that LFM-SVM achieves the best performance in 2/6 of the real
data sets; in the remaining four its error rate is still quite close to the best one.

It seems natural to quantify this notion of robustness; that is, how well a particular
method m performs on average across the problems taken into consideration.
Following Friedman [11], we capture robustness by computing the ratio b, of
the error rate e,, of method m and the smallest error rate over all methods being
compared in a particular example: by, = e,/ min;<y<g €. Thus, the best method
m™* for that example has b,,- = 1, and all other methods have larger values
bm > 1, for m # m*. The larger the value of b,,, the worse the performance of the
mth method is in relation to the best one for that example, among the methods
being compared. The distribution of the b,, values for each method m over all
the examples, therefore, seems to be a good indicator concerning its robustness.
For example, if a particular method has an error rate close to the best in every
problem, its b,, values should be densely distributed around the value 1. Any
method whose b value distribution deviates from this ideal distribution reflect its
lack of robustness.
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Figure 5: Performance distributions for real data.

Figure 5 plots the distribution of b, for each method over the seven real data sets.
The dark area represents the lower and upper quartiles of the distribution that
are separated by the median. The outer vertical lines show the entire range of
values for the distribution. The outer vertical lines for the LEM-SVM method are
not visible because they coincide with the limits of the lower and upper quartiles.
The spread of the error distribution for LFM-SVM is narrow and close to one.
The spread for ADAMENN has a similar behavior, with the outer bar reaching
a slightly higher value. The results clearly demonstrate that LFM-SVM (and
ADAMENN) obtained the most robust performance over the data sets.

The poor performance of the machete and C4.5 methods might be due to the
greedy strategy they employ. Such recursive peeling strategy removes at each
step a subset of data points permanently from further consideration. As a result,
changes in an early split, due to any variability in parameter estimates, can have
a significant impact on later splits, thereby producing different terminal regions.



This makes predictions highly sensitive to the sampling fluctuations associated
with the random nature of the process that produces the traning data, thus leading
to high variance predictions. The scythe algorithm, by relaxing the winner-take-
all splitting strategy of the machete algorithm, mitigates the greedy nature of the
approach, and thereby achieves better performance.

In [12], the authors show that the metric employed by the DANN algorithm ap-
proximates the weighted Chi-squared distance, given that class densities are Gaus-
sian and have the same covariance matrix. As a consequence, we may expect a
degradation in performance when the data do not follow Gaussian distributions
and are corrupted by noise, which is likely the case in real scenarios like the ones
tested here.

We observe that the sparse solution given by SVMs provides LFM-SVM with
principled guidelines to efficiently set the input parameters. This is an important
advantage over ADAMENN, which has six tunable input parameters. Further-
more, LFM-SVM speeds up the classification process since it applies the nearest
neighbor rule only once, whereas ADAMENN applies it at each point within a re-
gion centered at the query. We also observe that the construction of the SVM for
LFM-SVM is carried out off-line only once, and there exist algorithmic and com-
putational results which make SVM training practical also for large-scale problems
[15].

The LFM-SVM offers performance improvements over the RBF-SVM algorithm
alone, for both the (noisy) simulated and real data sets. The reason for such
performance gain may rely on the effect of our local weighting scheme on the
separability of classes, and therefore on the margin, as shown in section 6. As-
signing large weights to input features close to the gradient direction, locally in
neighborhoods of support vectors, corresponds to increase the spatial resolution
along those orientations, and therefore to improve the separability of classes. As a
consequence, better classification results can be achieved as demonstrated in our
experiments.

8 Conclusions

We have described a locally adaptive metric classification method, formally moti-
vated the approach, and demonstrated its efficacy through experimental results.
The proposed technique offers performance improvements over the SVM alone,
and has the potential of scaling up to large data sets. It speeds up, in fact, the
classification process by computing off-line the information relevant to define local
weights. It also applies the nearest neighbor rule only once, whereas ADAMENN
applies it at each point within a region centered at the query.
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