Proposal of a Darwin-Neural Network for a Robot Implementation


Carlotta Domeniconi


Università degli Studi di Milano


Ospedale di Desio-Servizio Universitario di Patologia Clinica


Piazza Benefattori, 1 20033 DESIO (Milano) Italy


email: domenico@dsi.unimi.it





Abstract


The objective of this work is the proposal of a Darwin-neural network that simulates an automaton with an adaptive behavior. We describe the environmental framework within the automaton can move, the areas the automaton is made of, the network dynamic, the transfer function that characterizes the state transition of neurons, the learning algorithm and the overall behavior of the network.





Introduction


A Darwin-neural network is a neural network model based on structural paradigms and learning processes introduced by the neural-Darwinism theory [1,2]. A Darwin-neural network learns specific tasks through interaction with an unknown environment; the behavior the network develops depends on the experience acquired through interaction with the environment [3]. 





2. Definition of the Problem and Automaton Presentation


The environmental framework is a bi-dimensional plane, within the automaton can move towards right or left. We suppose that objects of different shapes (rounds and squares) descend perpendicularly to the automaton movement direction (fig. 1).
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                      Fig. 1: Bi-dimensional environment for automaton operation





The squared objects represent a danger for the automaton; the rounded objects can be thought as energy or food sources. The automaton has to learn to come closer to rounded objects (energy sources) and to go away from squared ones (hot objects, for example) [4,5,6].


The automaton we define is made of five areas (fig. 2), each area corresponding to a neural net. 
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                                          Fig. 2: Automata scheme











2.1. The Object Recognizer


Block 1 (fig.2) has the  task to supply an internal description of the object-stimulus. This area is structured as a classification couple [1] that performs a parallel sampling of the external environment. Block 1 has to be able to detect the characteristics that allow the network to classify the object-stimulus as a member of a specific category. The classification couple realizes this task correlating the object properties through the reentrant connections between the maps of abstractions of the sampling logic modalities. Actually, block 1 receives in input numerical values, which represent the object distinctive characteristics. These features will be invariant respect to the object location in space and time.








2.2. The Visual Angle


The visual angle objective is to send  a stimulus which shows the movement to perform to the motor area, once the automaton has acquired enough experience. The configurations the neuronal groups of this area assume have to discriminate the automaton relative position with respect to the object-stimulus. The input for block 2 is  represented by a numerical list. This input is a function of the automaton initial position and it evolves as the automaton moves in the environment. It is reasonable to build an input list as a function of the ratio between the automaton distance from the intersection point of the perpendicular to the automaton direction of movement, passing through the object-stimulus, and the distance of the object from this intersection point. The object moves at discrete times with an established velocity, whereas the automaton moves at discrete times of a certain distance which is function of the motor area output value.


2.3. The Pain Area


The pain area produces the memory of the object that caused pain so that the automaton can learn to go away from the situation classified as dangerous [7]. At the beginning the automaton, having no experience of the external environment, will establish contact with dangerous objects. The pain area will receive from the environment a signal with high value which will allow the activation of its neuronal groups. Connections between blocks 1 and 3 will organize in order to produce, next time a dangerous object will be presented as stimulus, the memory of the pain that kind of object causes. The organization of connections between blocks 3 and 4 will cause the inhibition of the behavior that brings the automaton closer to objects (inhibition of genetic curiosity). Connections between blocks 3 and 5 will develop a motor answer that allows the automaton to go away from dangerous objects.





2.4. The Motor Control


The motor control realizes a simplification of feedback mechanisms which allow the individual to control his movements, in relation with himself and with the surrounding environment [8]. Since the organization of the several mechanisms that contribute to the development of this consciousness is very complex, we suppose the automaton knows when it is coming closer or going away from a specific object. This awareness is implemented as an error signal given by the environment as an input to the motor control area. The network will organize the connections between blocks 4 and 5 to give the proper motor answer to the perceived error.  





2.5. The Motor Area


The motor area elaborates its inputs to give in output a signal that represents the movement the automaton decided to perform.  The motor area is formed by two sub-areas:
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                                   Fig. 3: Internal structure of the motor area





They correspond, depending on which one is active, to a movement towards left or towards right.  The two sub-areas have inhibiting lateral connections, to avoid a situation in which both are active. In general, however, there will be groups active in both areas:  we consider active the area with the greater concentration of groups of active neurons. Therefore, the motor answer will be a weighted average of the two outputs coming from these areas, and it will give both the direction and the length of the movement [9].





3. The Network Dynamic


The Cartesian axis of the plane representing the environment are given by the lines passing respectively through the automaton and the object, along the correspondent directions of movement. The dynamic of the network that formalizes the automaton evolves according to the following sequence:


The object starts from a given position and moves at regular intervals.


The movement of the object produces an input for each area of the network (except for the motor area).


Each area has a given time interval to elaborate the external input signal and give an answer as output. The activation state of the motor area represents the last movement of the automaton.


During the next time interval the areas interact between themselves. The connections weights will be strengthened or weakened, depending on the pre- and post-synaptic groups activities and on the learning rules established between areas.


The system produces a motor output.


The object moves again and the sequence goes back to point 2. 


           


4. The State Transfer Function


The state transfer function we consider is the following.


Given
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where � INCORPORA Equation.2  ��� is the Heavyside function:
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we have,
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In Eq. 1 and Eq. 3 � INCORPORA Equation.2  ��� represents the state of group i at time t; � INCORPORA Equation.2  ��� is the connection weight of input j to group i; � INCORPORA Equation.2  ��� is the state of group j, in other words of the group connected to the j-th input of group i; � INCORPORA Equation.2  ��� is the threshold of the exciting inputs: only inputs � INCORPORA Equation.2  ��� are considered; � INCORPORA Equation.2  ��� is a given coefficient of inhibition; � INCORPORA Equation.2  ��� is the state of group k that belongs to an inhibiting neighborhood of  group i; � INCORPORA Equation.2  ��� is the threshold of inhibiting inputs: only inputs � INCORPORA Equation.2  ��� are considered; N is a normally distributed noise; � INCORPORA Equation.2  ��� is a persistence parameter, with � INCORPORA Equation.2  ���� INCORPORA Equation.2  ���a characteristic time constant. � INCORPORA Equation.2  ��� denotes time decadence, according to an exponential law, of groups activities when global inputs range between � INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���. In other words, when the input weighted sum belongs to an interval of 0 (exciting and inhibiting inputs cancel one another), it does not affect the activation state of post-synaptic groups. When  � INCORPORA Equation.2  ���, the global input is excitatory and it causes the post-synaptic group activation. When  � INCORPORA Equation.2  ���, the global input effect is inhibiting and it causes the annulment of post-synaptic activity. The transfer function thresholds (especially � INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���) are averaged on values the inputs can have.





5. The Learning Algorithm


The learning rule of connections weights between blocks is
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where � INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ��� are respectively the post-synaptic and the pre-synaptic groups activation states. � INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ��� represent the post-synaptic and the pre-synaptic groups amplifying thresholds. � INCORPORA Equation.2  ��� � INCORPORA Equation.2  ��� is an amplifying parameter, and NOR is a normalization factor (it keeps the weights absolute values below the unity). The kind of learning the automaton is submitted to depends on values of the thresholds � INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���, and on the sign of � INCORPORA Equation.2  ���.





5.1. The Learning Process Between the Visual Angle and the Motor Area (2-5)


The connections between the visual angle and the motor area organize in order to bring the automaton closer to objects. Specifically, connections between active groups in both areas (� INCORPORA Equation.2  ���and � INCORPORA Equation.2  ���) are strengthened, whereas connections between active groups in the visual angle and inactive groups in the motor area (� INCORPORA Equation.2  ���and � INCORPORA Equation.2  ���) are weakened. In these two cases, � INCORPORA Equation.2  ��� is set to a positive value; in the others two no learning takes place, and � INCORPORA Equation.2  ��� is set to 0. 


The active area within the motor area represents the “right” direction of movement. It follows the strengthening of connections between active groups that correspond to an internal representation of the input received by block 2 and active groups within the motor area. The motor control reverses the current direction of movement when it receives an error input from the environment. Typically at the beginning the environmental input will cause wrong movements in regard to the given task (due to random initial weights values). The motor control error perception allows, through organization of connections 4-5, the correction of movement’s direction. As a consequence, connections 2-5 can organize in order to strengthen the correct action. As the automaton interacts with the environment, the motor control becomes active less often (the automaton is learning to move correctly), and the visual angle learns the correct direction for coming closer to objects to show the motor area. 





5.2. The Learning Process Between the Motor Control and the Motor Area (4-5)


The connections between the motor control and the motor area have the task to correct the automaton movement in presence of error perception. If the environmental input for the motor control is 0, also the motor control activation state is 0 (except for the residual activity which has a fast decadence). In this case block 4 won’t affect the activation state of block 5. Connections weights 4-5 are subject to changes only when the motor control is active (� INCORPORA Equation.2  ���). Specifically, connections between active groups in both areas (� INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���)    are weakened; connections between active groups in the motor control and inactive groups in the motor area  (� INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���) are strengthened. In these two cases, � INCORPORA Equation.2  ��� is set to a negative value; in the others two no learning takes place, and � INCORPORA Equation.2  ��� is set to 0. 


At the beginning the motor control will be frequently active. There will be an intensive learning activity on connections 4-5. The absolute value of  � INCORPORA Equation.2  ��� is initially high so that the learning process on connections 4-5 can be as fast as possible allowing a proper organization of connections 2-5 depending on the motor area activation state. As learning proceeds, the absolute value of � INCORPORA Equation.2  ��� rapidly decreases; it can again be set to a high value when a new error perception occurs.





5.3. The Learning Process Between the Object Recognizer and the Pain Area (1-3)


Connections between blocks 1 and 3 organize in order to remind the automaton the pain a dangerous object produces. In this way the automaton can learn to go away from objects classified as dangerous. Connections between active groups within the object recognizer (� INCORPORA Equation.2  ���) and currently active groups within the pain area (� INCORPORA Equation.2  ���) are strengthened. To obtain this � INCORPORA Equation.2  ��� is set to a positive value; otherwise � INCORPORA Equation.2  ��� is set to 0. 


This learning process performs an association between the internal representation of an object-stimulus and the currently active groups within the pain area. This association allows to classify an object as dangerous. In fact, when a dangerous object is presented more than once as stimulus to the automaton, its internal representation within the object recognizer becomes connected to the pain area via connections with high valued weights. The signals traveling on these connections are amplified causing the activation of post-synaptic groups within the pain area. This activation realizes the reminding of the pain caused by the present object-stimulus, without establishing contact with it. The threshold values of the excitatory inputs of neurons of block 3 are high. It is therefore necessary at the beginning an external input to make active neuronal groups within the pain area. It follows that initially only the visual angle and the motor control organize the automaton movement. At this stage the automaton develops a curiosity that brings it closer to objects. Once the automaton has made contact with dangerous objects, it develops a “mistrust” regard these objects and it learns to go away from them. The amplification threshold of groups of block 3 has a low value to allow a fast recognition of dangerous objects. 








5.4. The Learning Process Between the Pain Area and the Motor Control (3-4)


The connections 3-4 organize to inhibit the contingent activity within the motor control, in case the pain area is active. In this way, the pain area becomes able, through connections 3-5, to show the motor area the withdrawal direction from dangerous objects. Specifically, connections between active groups in both areas (� INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���) and connections between active groups in the pain area (� INCORPORA Equation.2  ���) and inactive groups in the motor control (� INCORPORA Equation.2  ���) are weakened. To obtain this, in the first case � INCORPORA Equation.2  ���  is set to a negative value, whereas in the second case it’s set to a positive value; otherwise � INCORPORA Equation.2  ��� is set to 0. 


The task pursued applying this rule is to establish inhibiting connections between the pain area and the motor control. The value of � INCORPORA Equation.2  ���  decreases with time, reaching a 0 value when connections 3-4 have weights adequately inhibiting. At this stage of learning process, the activity within the pain area is due only to the interaction with the object recognizer (no more contacts take place with dangerous objects). The groups activity within the pain area will cause the inhibition of the motor control contingent activity. 





5.5. The Learning Process Between the Pain Area and the Motor Area (3-5)


The connections 3-5 have to show the motor area the withdrawal direction from dangerous objects. This direction can be thought as fixed: in presence of danger the automaton moves always towards the same direction. Under this hypothesis, connections 3-5 are fixed. In alternative, the withdrawal direction can be interpreted as the direction opposite to the ones of movement when the automaton perceives the danger. Under this second hypothesis the connections 3-5 undergoes the same learning process applied to connections 4-5. Specifically, connections between active groups in both areas are weakened  (� INCORPORA Equation.2  ��� and � INCORPORA Equation.2  ���), whereas connections between active groups within the pain area (� INCORPORA Equation.2  ���) and inactive groups within the motor area (� INCORPORA Equation.2  ���) are strengthened. In both cases � INCORPORA Equation.2  ��� is set to a negative value. Also for this learning process, the absolute value of � INCORPORA Equation.2  ��� rapidly decreases with time; it can again be set to a high value if the automaton gets in contact with a misclassified dangerous object.


6. Conclusions


The work presented is based on the idea that the use of a neural-Darwin network is an interesting and useful approach to solve robotics problems. The neural network defined represents a coherent and stable model. The automaton develops an adaptive behavior which depends on the experience acquired through interaction with the environment. If the automaton has experience of many non-dangerous objects it develops a strong curiosity and a tendency to come closer to all objects, including the dangerous ones. If the automaton has experience of many dangerous objects it develops a tendency to go away from all objects, on account of strengthening of connections between the visual angle and the motor sub-area that represents the withdrawal movement direction (frequently active under the hypothesis made). 
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