
1

Python Programming:

An Introduction to

Computer Science

Chapter 1

Computers and

Programs

Modified by Dan Fleck

Coming up: What weComing up: What we’’ll learn in this classll learn in this class 22

Objectives

• Introduction to the class

• Why we program and what that means

• Introduction to the Python programming

language

Coming up: Lab 01Coming up: Lab 01 33

What we’ll learn in this class

• How to solve problems using computers

• How computer programs work

• How to write computer programs in

Python

• How to debug (fix problems with)

computer programs

• How to test your programs

Coming up: The Universal MachineComing up: The Universal Machine 44

Lab 01

• Logon to Blackboard: courses.gmu.edu

• Go to CS112

• Click on assignments

• View the assignment and complete it

• Also, activate your GMU Email! You can

easily forward it to Yahoo or Gmail.

Make sure you check the account daily!

https://mail.gmu.edu

2

Coming up: What is a computer programComing up: What is a computer program 55

The Universal Machine

• A modern computer can be defined as
“a machine that stores and manipulates
information under the control of a
changeable program.”

• Two key elements:

– Computers are devices for manipulating
information.

– Computers operate under the control of a
changeable program.

Coming up: ExerciseComing up: Exercise 66

What is a computer program

– A detailed, step-by-step set of instructions

telling a computer what to do.

– If we change the program, the computer

performs a different set of actions or a

different task.

– The machine stays the same, but the

program changes!

– The program is executed or carried out by

the machine

Coming up: ExerciseComing up: Exercise 77

Exercise

• Write the step-by-step instructions for

creating a peanut butter and jelly

sandwich

Coming up: ExerciseComing up: Exercise 88

Exercise

• Write the step-by-step instructions for

creating a peanut butter and jelly

sandwich

• Did you write:

– Spread peanut-butter on bread

– Spread jelly on bread

– Put pieces of bread together

3

Coming up: ExerciseComing up: Exercise 99

Exercise

• A computer cannot understand anything more than

you tell it. Computer programming is the art of

knowing what you want to do, and being able to

specify it in enough detail that the computer

understands.

• Get the jelly from the refrigerator

• Get the peanut-butter from the cupboard

• Open the jelly and the peanut-butter

• Open the knife-drawer and retrieve the knife

• …

You will spend half of the semester trying to break the

problem into small enough steps for the computer to

understand
Coming up: Program PowerComing up: Program Power 1010

Exercise

• Why can’t we just say “make me a sandwich”?

• English is MUCH to ambiguous for a computer to

understand.

– Did you mean, create a sandwich or turn the user into a

sandwich? How does the computer know the difference

between that and “make me a millionaire?”

– You must use a computer language which is a very

structured and specific language. We’ll use Python.

You will spend the other half of the semester trying to

find the right words (syntax) to get the computer to

understand you.

Coming up: Program PowerComing up: Program Power 1111

Program Power

• Software (programs) rule the hardware

(the physical machine).

• The process of creating this software is

called programming.

• Why learn to program?

– Fundamental part of computer science

– Having an understanding of programming

helps you have an understanding of the

strengths and limitations of computers.

Coming up: What is Computer Science?Coming up: What is Computer Science? 1212

Program Power

– Helps you become a more intelligent user
of computers

– It can be fun!

– Form of expression

– Helps the development of problem solving
skills, especially in analyzing complex
systems by reducing them to interactions
between simpler systems.

– Programmers are in great demand!

4

Coming up: Answering: What can be computed?Coming up: Answering: What can be computed? 1313

What is Computer Science?

• It is not the study of computers!
– “Computers are to computer science what

telescopes are to astronomy.” –
E. Dijkstra

• The question becomes

– What processes can be described [by a
computer program]?

• Or more simply

– What can be computed?”

Coming up: Answering: What can be computed?Coming up: Answering: What can be computed? 1414

Answering: What can be computed?

• Design

– One way to show a particular problem can

be solved is to actually design a solution.

– This is done by developing an algorithm, a

step-by-step process for achieving the

desired result.

– One problem – it can only answer in the

positive. You can’t prove a negative!

Coming up: Answering: What can be computed?Coming up: Answering: What can be computed? 1515

Answering: What can be computed?

• Analysis

– Analysis is the process of examining

algorithms and problems mathematically.

– Some seemingly simple problems are not

solvable by any algorithm. These problems

are said to be unsolvable. (See 13.4.2 for

example)

– Problems can be intractable if they would

take too long or take too much memory to

be of practical value. Example: chess

Coming up: But what will I do?Coming up: But what will I do? 1616

Answering: What can be computed?

• Experimentation

– Some problems are too complex for

analysis.

– Implement a system and then study its

behaviour.

5

Coming up: Hardware Basics : CPUComing up: Hardware Basics : CPU 1717

But what will I do?

• Generally, as a Computer Science

graduate you will

Write computer programs

Work with user/clients to design programs

Test computer programs

Lead other computer scientists

Drink soda and eat pizza… a lot

H
a
v
e
 fu

n
!

Solve problems!

Get paid… well!

Coming up: Hardware Basics : MemoryComing up: Hardware Basics : Memory 1818

Hardware Basics : CPU

• The central processing unit (CPU) is the

“brain” of a computer.

– The CPU carries out all the basic

operations on the data.

– Examples: simple arithmetic operations,

testing to see if two numbers are equal.

Coming up: Hardware Basics: I/OComing up: Hardware Basics: I/O 1919

Hardware Basics : Memory

• Memory stores programs and data.

– CPU can only directly access information
stored in main memory (RAM or Random
Access Memory).

– Main memory is fast, but volatile, i.e. when
the power is interrupted, the contents of
memory are lost.

– Secondary memory provides more
permanent storage: magnetic (hard drive,
floppy), optical (CD, DVD)

Coming up: Programming LanguagesComing up: Programming Languages 2020

Hardware Basics: I/O

• Input devices

– Information is passed to the computer

through keyboards, mice, etc.

• Output devices

– Processed information is presented to the

user through the monitor, printer, etc.

6

Coming up: Programming LanguagesComing up: Programming Languages 2121

Programming Languages

• High-level computer languages

– Designed to be used and understood by

humans (C, Ada, Python, Java, .Net, etc…)

• Low-level language

– Computer hardware can only understand a

very low level language known as machine

language (binary, assembly which directly

converts to binary)

Coming up: Conversion from high level to low levelComing up: Conversion from high level to low level 2222

Programming Languages

• Low level version of “add two numbers”:

– Load the number from memory location

2001 into the CPU

– Load the number from memory location

2002 into the CPU

– Add the two numbers in the CPU

– Store the result into location 2003

• In reality, these low-level instructions

are represented in binary (1’s and 0’s)

Coming up: Compilers and InterpretersComing up: Compilers and Interpreters 2323

Conversion from high level to low level

• High-level language
c = a + b

• This needs to be translated into
machine language that the computer
can execute.

• Compilers and Interpreters convert
programs written in a high-level
language into the machine language of
some computer.

Coming up: InterpretersComing up: Interpreters 2424

Compilers and Interpreters

Interpreted Language

Compiled Language

7

Coming up: The Magic of PythonComing up: The Magic of Python 2525

Interpreters

• Interpreters simulate a computer that

understands a high-level language.

• The source program is not translated

into machine language all at once.

• An interpreter analyzes and translates

the source code instruction by

instruction.

Python has both options, but we’ll use it in an

interpreted way in CS112!

Coming up: Python PromptComing up: Python Prompt 2626

The Magic of Python

IDLE is a programming environment for
Python. Starting it you will see
something like:

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

 **

 Personal firewall software may warn about the connection IDLE

 makes to its subprocess using this computer's internal loopback

 interface. This connection is not visible on any external

 interface and no data is sent to or received from the Internet.

 **

IDLE 1.0.2

>>>

Coming up: Defining a Python FunctionComing up: Defining a Python Function 2727

Python Prompt

• The “>>>” is a Python prompt indicating that
Python is ready for us to give it a command.
These commands are called statements.

• >>> print "Hello, world"

Hello, world

>>> print 2+3

5

>>> print "2+3=", 2+3

2+3= 5

>>>

Coming up: Defining a Python FunctionComing up: Defining a Python Function 2828

Defining a Python Function

• Usually we want to execute several

statements together that solve a

common problem. One way to do this is

to use a function.
• >>> def hello():

print "Hello"

print "Computers are Fun"

>>>

8

Coming up: Invoking a FunctionComing up: Invoking a Function 2929

Defining a Python Function

• >>> def hello():

print "Hello"

print "Computers are Fun"

>>>

• The first line tells Python we are defining a

new function called hello.

• The following lines are indented to show that

they are part of the hello function.

• The blank line (hit enter twice) lets Python

know the definition is finished.

Coming up: ParametersComing up: Parameters 3030

Invoking a Function

• >>> def hello():
print "Hello"
print "Computers are Fun"

>>>

• Notice that nothing has happened yet! We’ve
defined the function, but we haven’t told
Python to perform the function!

• A function is invoked by typing its name.
• >>> hello()

Hello
Computers are Fun
>>>

Coming up: Parameters ExampleComing up: Parameters Example 3131

Parameters

• What’s the deal with the ()’s?

• Commands can have changeable parts

called parameters that are placed

between the ()’s.
• >>> def greet(person):

print "Hello",person

print "How are you?“

>>>

Coming up: Python NotesComing up: Python Notes 3232

Parameters Example

• >>> greet("Terry")

Hello Terry

How are you?

>>> greet("Paula")

Hello Paula

How are you?

>>>

• When we use parameters, we can

customize the output of our function.

9

Coming up: Complete Python ProgramComing up: Complete Python Program 3333

Python Notes

• When we exit the Python prompt, the
functions we’ve defined cease to exist!

• Programs are usually composed of functions,
modules, or scripts that are saved on disk so
that they can be used again and again.

• A module file is a text file created in text
editing software (saved as “plain text”) that
contains function definitions.

• A programming environment is designed to
help programmers write programs and usually
includes automatic indenting, highlighting,
etc.

Coming up: Chaos outputComing up: Chaos output 3434

Complete Python Program
File: chaos.py

A simple program illustrating chaotic behavior

def main():

 print "This program illustrates a chaotic function"

 x = input("Enter a number between 0 and 1: ")

 for i in range(10):

 x = 3.9 * x * (1 - x)

 print x

main()

• We’ll use filename.py when we save our work
to indicate it’s a Python program.

• In this code we’re defining a new function
called main.

• The main() at the end tells Python to run the
code.

Coming up: CommentsComing up: Comments 3535

Chaos output

>>>

This program illustrates a chaotic function

Enter a number between 0 and 1: .5

0.975

0.0950625

0.335499922266

0.869464925259

0.442633109113

0.962165255337

0.141972779362

0.4750843862

0.972578927537

0.104009713267

>>>

Coming up: Inside a Python ProgramComing up: Inside a Python Program 3636

Comments

File: chaos.py

A simple program illustrating chaotic behavior

• Lines that start with # are called

comments

• Intended for human readers and

ignored by Python

• Python skips text from # to end of line

10

Coming up: Python PrintComing up: Python Print 3737

Inside a Python Program

def main():

• Beginning of the definition of a function

called main

• Since our program has only this one

module, it could have been written

without the main function.

• The use of main is customary, however.

Coming up: Python VariableComing up: Python Variable 3838

Python Print

print "This program illustrates a chaotic function"

• This line causes Python to print a
message introducing the program.

Coming up: Python for loopComing up: Python for loop 3939

Python Variable

x = input("Enter a number between 0 and 1: ")

• x is an example of a variable

• A variable is used to assign a name to a
value so that we can refer to it later.

• The quoted information is displayed,
and whatever the user types in
response is stored in x.

Coming up: Python Loop (cont.)Coming up: Python Loop (cont.) 4040

Python for loop

for i in range(10):

• For is a loop construct

• A loop tells Python to repeat the same

thing over and over.

• In this example, the following code will

be repeated 10 times.

11

Coming up: Python loop (cont.)Coming up: Python loop (cont.) 4141

Python Loop (cont.)

x = 3.9 * x * (1 - x)

print x

• These lines are the body of the loop.

• The body of the loop is what gets repeated
each time through the loop.

• The body of the loop is identified through
indentation.

• The effect of the loop is the same as
repeating this two lines 10 times!

Coming up: Python AssignmentComing up: Python Assignment 4242

Python loop (cont.)

 for i in range(10):

 x = 3.9 * x * (1 - x)

 print x

• These are

equivalent!

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

x = 3.9 * x * (1 - x)

print x

Coming up: Python MainComing up: Python Main 4343

Python Assignment

 x = 3.9 * x * (1 - x)

• This is called an assignment statement

• The part on the right-hand side (RHS) of the
“=“ is a mathematical expression.

• * is used to indicate multiplication

• Once the value on the RHS is computed, it is
stored back into (assigned) into x

Coming up: Any questions?Coming up: Any questions? 4444

Python Main

main()

• This last line tells Python to execute the

code in the function main

12

Coming up: ReferencesComing up: References 4545

Any questions?

Coming up: ReferencesComing up: References 4646

References

• http://openbookproject.net//thinkCSpy/c

hap01.html

