
Python Programming, 1/e 1

Coming up: The Software

Development Process

1

Python Programming:

An Introduction to

Computer Science

Chapter 2

Dan Fleck

Coming up: The Software Development ProcessComing up: The Software Development Process 22

The Software Development Process

• The process of creating a program is

often broken down into stages

according to the information that is

produced in each phase.

Coming up: The Software Development ProcessComing up: The Software Development Process 33

The Software Development Process

• Analyze the Problem

Figure out exactly the problem to be

solved. Try to understand it as much as

possible.

Coming up: The Software Development ProcessComing up: The Software Development Process 44

The Software Development Process

• Determine Specifications

Describe exactly what your program will

do.

– Don’t worry about how the program will

work, but what it will do.

– Includes describing the inputs, outputs, and

how they relate to one another.

Python Programming, 1/e 2

Coming up: The Software Development ProcessComing up: The Software Development Process 55

The Software Development Process

• Create a Design

– Formulate the overall structure of the

program.

– This is where the how of the program gets

worked out.

– You choose or develop your own algorithm

that meets the specifications.

Coming up: The Software Development ProcessComing up: The Software Development Process 66

The Software Development Process

• Implement the Design

– Translate the design into a computer

language.

– In this course we will use Python.

Coming up: Why is it called debugging?Coming up: Why is it called debugging? 77

The Software Development Process

• Test/Debug the Program

– Try out your program to see if it worked.

– If there are any errors (bugs), they need to

be located and fixed. This process is called

debugging.

– Your goal is to find errors, so try everything

that might “break” your program!

Coming up: The Software Development ProcessComing up: The Software Development Process 88

Why is it called debugging?

The First "Computer Bug”

Moth found trapped between points

at Relay # 70, Panel F, of the Mark

II Aiken Relay Calculator while it

was being tested at Harvard

University, 9 September 1945. The

operators affixed the moth to the

computer log, with the entry: "First

actual case of bug being found".

They put out the word that they had

"debugged" the machine, thus

introducing the term "debugging a

computer program".

Courtesy of the Naval Surface

Warfare Center, Dahlgren, VA.,

1988.U.S. Naval Historical Center

Photograph.

Python Programming, 1/e 3

Coming up: Example : Temperature Converter AnalysisComing up: Example : Temperature Converter Analysis 99

The Software Development Process

• Maintain the Program

– Continue developing the program in

response to the needs of your users.

– In the real world, most programs are never

completely finished – they evolve over

time.

Coming up: Example : Temperature Converter DesignComing up: Example : Temperature Converter Design 1010

Example : Temperature Converter

Analysis

• Analysis – the temperature is given in

Celsius, user wants it expressed in

degrees Fahrenheit.

• Specification

– Input – temperature in Celsius

– Output – temperature in Fahrenheit

– Output = 9/5(input) + 32

Coming up: Example : Temperature ConverterComing up: Example : Temperature Converter 1111

Example : Temperature Converter

Design

• Design

– Input, Process, Output (IPO)

– Prompt the user for input (Celsius

temperature)

– Process it to convert it to Fahrenheit using

F = 9/5(C) + 32

– Output the result by displaying it on the

screen

Coming up: Temperature Converter PseudocodeComing up: Temperature Converter Pseudocode 1212

Example : Temperature Converter

• Before we start coding, let’s write a rough
draft of the program in pseudocode

• Pseudocode is precise English that describes
what a program does, step by step. However,
There is no “official” syntax for pseudocode

• Using pseudocode, we can concentrate on
the algorithm rather than the programming
language.

Python Programming, 1/e 4

Coming up: Temperature Converter Python CodeComing up: Temperature Converter Python Code 1313

Temperature Converter Pseudocode

• Pseudocode:

– Input the temperature in degrees Celsius

(call it celsius)

– Calculate fahrenheit as (9/5)*celsius+32

– Output fahrenheit

• Now we need to convert this to Python!

Coming up: Temperature Converter TestingComing up: Temperature Converter Testing 1414

Temperature Converter Python Code

#convert.py

A program to convert Celsius temps to Fahrenheit

by: Susan Computewell

def main():

 celsius = input("What is the Celsius temperature? ")

 fahrenheit = (9.0/5.0) * celsius + 32

 print "The temperature is ",fahrenheit," degrees Fahrenheit."

main()

Coming up: Elements of Programs : IdentifiersComing up: Elements of Programs : Identifiers 1515

Temperature Converter Testing

• Once we write a program, we should
test it!

>>>

What is the Celsius temperature? 0

The temperature is 32.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? 100

The temperature is 212.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? -40

The temperature is -40.0 degrees Fahrenheit.

>>>

Coming up: Elements of Programs : IdentifiersComing up: Elements of Programs : Identifiers 1616

Elements of Programs : Identifiers

• Names of values: celsius, fahrenheit

• Names of functions: range, main, input

• Names of modules: convert

These names are called identifiers

• Every identifier must begin with a letter or

underscore (“_”), followed by any sequence of

letters, digits, or underscores.

• Good programmers use meaningful names

• Identifiers are case sensitive.

Python Programming, 1/e 5

Coming up: Reserved WordsComing up: Reserved Words 1717

Elements of Programs : Identifiers

Identifiers are case sensitive.

• In Python, identifiers:

– myVar

– MYVAR

– myvar

• Are all DIFFERENT because Python is case-

sensitive

Coming up: Using identifiers in expressionsComing up: Using identifiers in expressions 1818

Reserved Words

Some identifiers are part of Python itself. These

identifiers are known as reserved words. This

means they are not available for you to use as a

name for a variable, etc. in your program.

Coming up: Math OperatorsComing up: Math Operators 1919

Using identifiers in expressions

>>> x = 5

>>> x

5

>>> print x

5

>>> print spam

Traceback (most recent call last):

 File "<pyshell#15>", line 1, in -toplevel-

 print spam

NameError: name 'spam' is not defined

>>>

• NameError is the error when you try to use a

variable without a value assigned to it.

Coming up: Elements of ProgramsComing up: Elements of Programs 2020

Math Operators

– Simpler expressions can be

combined using operators.

– +, -, *, /, **, %

– Spaces are irrelevant within

an expression.

– The normal mathematical

precedence applies.

– ((x1 – x2) / 2*n) + (spam /

k**3)

Precedence is:
PEMDAS - (), **, *, /, +, -

Python Programming, 1/e 6

Coming up: Elements of ProgramsComing up: Elements of Programs 2121

Elements of Programs

• Output Statements

– A print statement can print any number of

expressions.

– Successive print statements will display on

separate lines.

– A bare print will print a blank line.

– If a print statement ends with a “,”, the

cursor is not advanced to the next line.

Coming up: Assignment StatementsComing up: Assignment Statements 2222

Elements of Programs

print 3+4

print 3, 4, 3+4

print

print 3, 4,

print 3+ 4

print “The answer is”,

3+4

7

3 4 7

3 4 7

The answer is 7

Coming up: Assignment StatementsComing up: Assignment Statements 2323

Assignment Statements

• <variable> = <expr>
variable is an identifier, expr is an
expression

• The expression on the RHS is
evaluated to produce a value which is
then associated with the variable
named on the LHS.

• x = 3.9 * x * (1-x)

• fahrenheit = 9.0/5.0 * celsius + 32

• x = 5

Coming up: Assigning InputComing up: Assigning Input 2424

Assignment Statements

• Variables can be reassigned as many
times as you want!
>>> myVar = 0

>>> myVar

0

>>> myVar = 7

>>> myVar

7

>>> myVar = myVar + 1

>>> myVar

8

>>>

Python Programming, 1/e 7

Coming up: Assigning InputComing up: Assigning Input 2525

Assigning Input

• Input: gets input from the user and

stores it into a variable.

• <variable> = input(<prompt>)

Coming up: Definite LoopsComing up: Definite Loops 2626

Assigning Input

• First the prompt is evaluated

• The program waits for the user to enter a
value and press <enter>

• The expression that was entered is evaluated
and assigned to the input variable.

Coming up: Definite Loops: Example 1Coming up: Definite Loops: Example 1 2727

Definite Loops

• A definite loop executes a definite
number of times, i.e., at the time Python
starts the loop it knows exactly how
many iterations to do.

• for <var> in <sequence>:
<body>

• The beginning and end of the body are
indicated by indentation.

Loop Index

Coming up: Definite Loops: Example 2Coming up: Definite Loops: Example 2 2828

Definite Loops: Example 1

What prints

What prints

What prints

Code courtesy of Ric Heishman

Python Programming, 1/e 8

Coming up: Definite Loops: Example 3Coming up: Definite Loops: Example 3 2929

Definite Loops: Example 2

What prints

What prints

Code courtesy of Ric Heishman

Coming up: Built-In Function: RangeComing up: Built-In Function: Range 3030

Definite Loops: Example 3

What prints

What prints

Code courtesy of Ric Heishman

What prints

Coming up: How to exit a loop earlyComing up: How to exit a loop early 3131

Built-In Function: Range

range([start], stop [,step])
This is a versatile function to create lists containing arithmetic progressions. It is

most often used in for loops. The arguments must be plain integers. If the step

argument is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0.

The full form returns a list of plain integers [start, start + step, start + 2 * step, ...]. If

step is positive, the last element is the largest start + i * step less than stop; if step is

negative, the last element is the smallest start + i * step greater than stop. step must

not be zero (or else ValueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

Hint: things in []
are optional!

Coming up: How to skip a loop if neededComing up: How to skip a loop if needed 3232

How to exit a loop early

• break statement - terminates the

nearest enclosing loop.

>>>

>>> for myVar in range(10):

print myVar

if myVar == 3:

break

0

1

2

3

>>>
Lets see another example in breaktest.py

Python Programming, 1/e 9

Coming up: Else in a for loopComing up: Else in a for loop 3333

How to skip a loop if needed

• continue - continues with the next

iteration of the loop.

 def continueEx1():

 for i in range(10):

 if i > 5:

 continue

 print i,

>>> 0 1 2 3 4 5

Lets see example in continueExamples.py

Coming up: For loop else exampleComing up: For loop else example 3434

Else in a for loop

Loop statements may have an else

clause; it is executed when the loop

terminates through exhaustion of the list

(with for) or when the condition

becomes false (with while), but not

when the loop is terminated by a break

statement. [Python Docs]

Coming up: How to find information yourselfComing up: How to find information yourself 3535

For loop else example

def elseExample2(input):

 for i in range(input):

 if i > 10:

 print 'i was greater than 10 in the loop'

 break

 else:

 print 'i was never greater than 10 in the loop!’

>>> elseExample2(9)

i was never greater than 10 in the loop

>>> elseExample(12)

i was greater than 10 in the loop

Coming up: Using PythonComing up: Using Python’’s Moduless Modules 3636

How to find information yourself

• To the Python docs!

– http://docs.python.org/

– Library Reference

– Index

– range

Python Programming, 1/e 10

Coming up: What modules are available?Coming up: What modules are available? 3737

Using Python’s Modules

• Python has a lot of code available in

modules for you to use

• Using modules, you must “import” them.

Coming up: Another way to printComing up: Another way to print 3838

What modules are available?

• Many! Find info in the module index

Coming up: String formatsComing up: String formats 3939

Another way to print

>>> numCats=5

>>> numDogs=7

>>> print "There were %d cats and %d dogs" %(numCats, numDogs)

There were 5 cats and 7 dogs

>>>

Printing is the SAME. You are formatting the String. This also works:

>>> myString = "There were %d cats and %d dogs" %(numCats,

numDogs)

>>> print myString

There were 5 cats and 7 dogs

Inside the String you can put placeholders for other values. The

placeholders specify a type.

%d = Signed integer decimal

%f = Floating point (decimal format)

%s = String

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4040

String formats

You can also specify a minimum field

width like this: “%20d” . This will force

the number to take up 20 spaces.
>>> print “Num 1 = %10f” %(123.456)

Num 1 = 123.456000

To print in columns:

print “Col1 Col2”

print “%10f %10f” %(12.23, 222.45)

print “%10f %10f” %(444.55, 777)

Col1 Col2

 12.230000 222.450000

444.550000 777.000000

Python Programming, 1/e 11

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4141

Example Program: Future Value

• Analysis

– Money deposited in a bank account earns

interest.

– How much will the account be worth 10

years from now?

– Inputs: principal, interest rate

– Output: value of the investment in 10 years

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4242

Example Program: Future Value

• Specification

– User enters the initial amount to invest, the

principal

– User enters an annual percentage rate, the

interest

– The specifications can be represent like

this …

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4343

Example Program: Future Value

• Program Future Value

• Inputs
principal The amount of money being

invested, in dollars
apr The annual percentage rate

expressed as a decimal number.

• Output The value of the investment 10 years
in the future

• Relatonship Value after one year is given by
principal * (1 + apr). This needs to be done 10
times.

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4444

Example Program: Future Value

• Design

Print an introduction

Input the amount of the principal (principal)

Input the annual percentage rate (apr)

Repeat 10 times:

principal = principal * (1 + apr)

Output the value of principal

Python Programming, 1/e 12

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4545

Example Program: Future Value

• Implementation

– Each line translates to one line of Python

(in this case)

– Print an introduction
print “This program calculates the future”

print “value of a 10-year investment.”

– Input the amount of the principal
principal = input(“Enter the initial principal: ”)

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4646

Example Program: Future Value

– Input the annual percentage rate
apr = input(“Enter the annual interest rate: ”)

– Repeat 10 times:
for i in range(10):

– Calculate principal = principal * (1 + apr)

principal = principal * (1 + apr)

– Output the value of the principal at the end

of 10 years
print “The value in 10 years is:”, principal

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4747

Example Program: Future Value

futval.py

A program to compute the value of an investment

carried 10 years into the future

def main():

 print "This program calculates the future value of a 10-year investment."

 principal = input("Enter the initial principal: ")

 apr = input("Enter the annual interest rate: ")

 for i in range(10):

 principal = principal * (1 + apr)

 print "The value in 10 years is:", principal

main()

Coming up: Example Program: Future ValueComing up: Example Program: Future Value 4848

Example Program: Future Value

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .03

The value in 10 years is: 134.391637934

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .10

The value in 10 years is: 259.37424601

