
1

Coming up: Objectives 1

Python Programming:

An Introduction to

Computer Science

Chapter 3

Computing with Numbers

Updated by Dan Fleck

Coming up: Numeric Data TypesComing up: Numeric Data Types 22

Objectives

• To understand the concept of data

types.

• To be familiar with the basic numeric

data types in Python.

• To understand the fundamental

principles of how numbers are

represented on a computer.

• To be familiar with variable scope

Coming up: Numeric Data TypesComing up: Numeric Data Types 33

Numeric Data Types

• We’ve seen are two different kinds of

numbers!

– (5, 4, 3, 6) are whole numbers – they don’t

have a fractional part -- integers

– (.25, .10, .05, .01) are decimal fractions -

floating point

Coming up: Numeric Data Types: IntegersComing up: Numeric Data Types: Integers 44

Numeric Data Types

– Inside the computer, whole numbers and

decimal fractions are represented quite

differently!

– We say that decimal fractions and whole

numbers are two different data types.

• The data type of an object determines

what values it can have and what

operations can be performed on it.

2

Coming up: Numeric Data Types: Floating pointComing up: Numeric Data Types: Floating point 55

Numeric Data Types: Integers

• Whole numbers are represented using

the integer (int for short) data type.

• These values can be positive or

negative whole numbers.

Coming up: PythonComing up: Python’’s type functions type function 66

Numeric Data Types: Floating point

• Numbers that can have fractional parts
are represented as floating point (or
float) values.

• How can we tell which is which?

– A numeric literal without a decimal point
produces an int value

– A literal that has a decimal point is
represented by a float (even if the fractional
part is 0)

Coming up: Why two types?Coming up: Why two types? 77

Python’s type function

• Python has a special function to tell us the
data type of any value.

>>> type (3)

<type 'int'>

>>> type (3.1)

<type 'float'>

>>> type(3.0)

<type 'float'>

>>> myint = -32

>>> type(myint)

<type 'int'>

>>> myfloat = 32.0

>>> type(myfloat)

<type 'float'>

>>> mystery = myint * myfloat

>>> type(mystery)

<type 'float'>

Coming up: How operations workComing up: How operations work 88

Why two types?

• Why do we need two number types?

– Values that represent counts can’t be fractional

(you can’t have 3 ! quarters)

– Most mathematical algorithms are very efficient

with integers

– The float type stores only an approximation to

the real number being represented!

– Since floats aren’t exact, use an int whenever

possible!

– Lets check the speed with mathTimer.py!

3

Coming up: Accumulating Results: FactorialComing up: Accumulating Results: Factorial 99

How operations work

• Operations on ints produce ints, operations
on floats produce floats.

>>> 3.0+4.0

7.0

>>> 3+4

7

>>> 3.0*4.0

12.0

>>> 3*4

12

>>> 10.0/3.0

3.3333333333333335

>>> 10/3

3

>>> 10%3

1

>>> abs(5)

5

>>> abs(-3.5)

3.5

Coming up: Accumulating Results: FactorialComing up: Accumulating Results: Factorial 1010

Accumulating Results: Factorial

• Say you are waiting in a line with five
other people. How many ways are there
to arrange the six people?

• 720 -- 720 is the factorial of 6
(abbreviated 6!)

• Factorial is defined as:
n! = n(n-1)(n-2)…(1)

• So, 6! = 6*5*4*3*2*1 = 720

Coming up: Accumulating Results: FactorialComing up: Accumulating Results: Factorial 1111

Accumulating Results: Factorial

• How we could we write a program to do

this?

• Input number to take factorial of, n

Compute factorial of n, fact

Output fact

Coming up: Exercise: Writing FactorialComing up: Exercise: Writing Factorial 1212

Accumulating Results: Factorial

• How did we calculate 6!?

• 6*5 = 30

• Take that 30, and 30 * 4 = 120

• Take that 120, and 120 * 3 = 360

• Take that 360, and 360 * 2 = 720

• Take that 720, and 720 * 1 = 720

4

Coming up: Completed Factorial ProgramComing up: Completed Factorial Program 1313

Exercise: Writing Factorial

• Okay, lets try it. To solve this problem

we need to

– Write the pseudocode

– Test it (manually walk through it)

– Write the python code

– Let’s do it!

Coming up: The Limits of IntComing up: The Limits of Int 1414

Completed Factorial Program

factorial.py

Program to compute the factorial of a number

Illustrates for loop with an accumulator

def main():

 n = input("Please enter a whole number: ")

 fact = 1

 for factor in range(n,1,-1):

 fact = fact * factor

 print "The factorial of", n, "is", fact

main()

Coming up: How computers see Coming up: How computers see ““intint””ss 1515

The Limits of Int

• What is 100! ?
>>> main()

Please enter a whole number: 100

The factorial of 100 is

933262154439441526816992388562667004907159682643816

214685929638952175999932299156089414639761565182862

536979208272237582511852109168640000000000000000000

00000

• Wow! That’s a pretty big number!

• An int in Python has a limit of 232-1 or 2147483647

• After that newer versions of Python will automatically convert to

a Long Int (which can hold larger values)

Coming up: Handling Large Numbers: Long IntsComing up: Handling Large Numbers: Long Ints 1616

How computers see “int”s

• What’s going on?

– While there are an infinite number of

integers, there is a finite range of ints that

can be represented.

– This range depends on the number of bits

a particular CPU uses to represent an

integer value. Typical PCs use 32 bits.

5

Coming up: Handling Large Numbers: Long IntsComing up: Handling Large Numbers: Long Ints 1717

Handling Large Numbers: Long Ints

• Floats are approximations

• Floats allow us to represent a larger
range of values, but with lower
precision.

• Python has a solution, the long int!

• Long Ints are not a fixed size and
expand to handle whatever value it
holds.

Coming up: Handling Large Numbers: Long IntsComing up: Handling Large Numbers: Long Ints 1818

Handling Large Numbers: Long Ints

• To get a long int, put “L” on the end of a

numeric literal.

• 5 is an int representation of five

• 5L is a long int representation of five
>>> 2L

2L

>>> 2L**31

2147483648L

>>> type(2L)

<type 'long'>

>>> 100000000000000000000000000000000000L + 25

100000000000000000000000000000000025L

Coming up: Handling Large Numbers: Long IntsComing up: Handling Large Numbers: Long Ints 1919

Handling Large Numbers: Long Ints

• Calculations involving long int produce long
int results.

• Newer versions of Python automatically
convert your ints to long ints when they grow
so large as to overflow.

>>> x = 2147483647

>>> x = x + 1

>>> x

2147483648L

>>> type (x)

<type 'long'>

>>> print x

2147483648

Coming up: Type ConversionsComing up: Type Conversions 2020

Handling Large Numbers: Long Ints

• We started out with x assigned the
largest integer value, and then added 1.

• x was automatically changed to type
long int.

• When we print long ints, the ‘L’ is
dropped

• Why not use long ints all the time? –
Less efficient, slow computations

6

Coming up: Type ConversionsComing up: Type Conversions 2121

Type Conversions

• We know that combining an int with an

int produces an int, and combining a

float with a float produces a float.

• What happens when you mix an int and

float in an expression?

x = 5.0 / 2

• What do you think should happen?

Coming up: Type ConversionComing up: Type Conversion 2222

Type Conversions

• For Python to evaluate this expression,
it must either convert 5.0 to 5 and do an
integer division, or convert 2 to 2.0 and
do a floating point division.

• Converting a float to an int will lose
information

• Ints can be converted to floats by
adding “.0”

Coming up: Type ConversionsComing up: Type Conversions 2323

Type Conversion

• In mixed-typed expressions Python will
convert ints to floats.

• Sometimes we want to control the type
conversion. This is called explicit typing.

• average = sum / n

• If the numbers to be averaged are 4, 5,
6, 7, then sum is 22 and n is 4, so
sum/n is 5, not 5.5!

Coming up: Type ConversionsComing up: Type Conversions 2424

Type Conversions

• To fix this problem, tell Python to

change one of the values to floating

point:

average = float(sum)/n

• We only need to convert the numerator

because now Python will automatically

convert the denominator.

7

Coming up: Type ConversionsComing up: Type Conversions 2525

Type Conversions

• Why doesn’t this work?

average = float(sum/n)

• sum = 22, n = 5, sum/n = 4, float(sum/n)

= 4.0!

• Python also provides int(), and long()

functions to convert numbers into ints

and longs.

Coming up: Type ConversionsComing up: Type Conversions 2626

Type Conversions

>>> float(22/5)

4.0

>>> int(4.5)

4

>>> int(3.9)

3

>>> long(3.9)

3L

>>> float(int(3.9))

3.0

>>> int(float(3.9))

3

>>> int(float(3))

3

Coming up: If Statements (ch 7)Coming up: If Statements (ch 7) 2727

Type Conversions

• The round function returns a float,

rounded to the nearest whole number.

>>> round(3.9)

4.0

>>> round(3)

3.0

>>> int(round(3.9))

4

Coming up: If Statements (ch 7)Coming up: If Statements (ch 7) 2828

If Statements (ch 7)

Most programs need to do different things depending on

conditions. Decision structures solve this problem by

allowing the program to “choose” different paths in

different circumstances.

if <boolean statement> is true:

run this code

elif <boolean statement> is true:

run this code

Else:

run this code

A boolean statement is one
that evaluates

to True or False (logical statement)

else and elif are
Optional. Have none,

either, or both

8

Coming up: Forms of if statementsComing up: Forms of if statements 2929

If Statements (ch 7)

if A is True:

run codeA

elif B is True:

run codeB

elif C is True:

run codeC

else:

run codeD

A B C Code
T T T A
T T F A
T F T A
T F F A
F T T B
F T F B
F F T C
F F F D

Truth Table

Coming up: Forms of if statementsComing up: Forms of if statements 3030

Forms of if statements

What prints

What prints

What prints

What prints

Coming up: Boolean LogicComing up: Boolean Logic 3131

Forms of if statements

What prints

What prints

What prints

What prints

Uh oh… how to fix that?

Coming up: Boolean logic examplesComing up: Boolean logic examples 3232

Boolean Logic

if (True):

do something

and -- do a logical and

both conditions must be true for

the statement to be true

or -- do a logical or

if either condition is true the

statement is true

not -- logical not (negate the statement)

if it is True, make it false

if it is False, make it true

9

Coming up: Lets talk about functionsComing up: Lets talk about functions 3333

Boolean logic examples

if temp > 90 or temp < 30:

print “It is uncomfortable!”

if cmp(userChoice, “Y”) == 0 or

cmp(userChoice,”y”) == 0 or

cmp(userChoice,”yes”) == 0 :

print “User said yes”

else:

print “User said No”

This is just an example
but there are much

better ways to do this.
How?

Coming up: Variable ScopeComing up: Variable Scope 3434

Lets talk about functions

• Coming up:

– Variable Scope

– Function parameters

– Why use functions?

Coming up: Scope ExamplesComing up: Scope Examples 3535

Variable Scope

• Every variable has a “scope”.

• The scope of a variable refers to the

places in a program a given variable

can be referenced.

• Variables defined in a function are local

variables and can only be referenced

directly in that function

• Variables defined in the module

(outside a function) can be access

anywhere in that module. “global”
Coming up: Global KeywordComing up: Global Keyword 3636

Scope Examples

See scopeExamples.py

10

Coming up: ParametersComing up: Parameters 3737

Global Keyword

• The global keyword is used to tell Python NOT to

overwrite the global variable with a local one. Instead,

use the global value.

myVar = ‘test’

def myFunction():

global myVar

myVar = ‘not test’

print ‘Step one: ‘,myVar

myFunction()

print ‘Step two:’, myVar

>>> Step one: test

>>> Step two: not test

Coming up: Parameter CopiesComing up: Parameter Copies 3838

Parameters

Now we can understand parameters better.

When we call a function a copy of the

parameter’s value is passed in and assigned to

a local variable

def myFunction(input1):

input1 = input1 + 25

print input1

tempVar = 5

myFunction(tempVar)

myFunction(20)

myFunction(tempVar+10)

Coming up: Parameter and Return ExamplesComing up: Parameter and Return Examples 3939

Parameter Copies

When we change a value of a parameter

inside the function, does the new value

remain outside the function?

Answer: No, it is a copy… so the original

remains the same.

Then how do I get a value out of a

function?

Answer: The return statement!

Coming up: Parameter and Return Examples 2Coming up: Parameter and Return Examples 2 4040

Parameter and Return Examples

def parameterTest(in1, in2, myVar):

in1 = in2 * 2

myVar = ‘some other value’

in1 = 5

in2 = 10

name = ‘Dan’

parameterTest(in1, in2, name)

print ‘Name=%s In1=%d In2=%d”, name, in1, in2)

>>> Name=Dan In1=5 In2=10 # NO CHANGES!

11

Coming up: Parameter and Return Examples 3Coming up: Parameter and Return Examples 3 4141

Parameter and Return Examples 2

def parameterTest(in1, in2, myVar):

in1 = in2 * 2

myVar = ‘some other value’

return in1

in1 = 5

in2 = 10

name = ‘Dan’

in1 = parameterTest(in1, in2, name)

print ‘Name=%s In1=%d In2=%d”, name, in1, in2)

>>> Name=Dan In1=20 In2=10 # in1 changed!

Coming up: Why use FunctionsComing up: Why use Functions 4242

Parameter and Return Examples 3

def parameterTest(in1, in2, myVar):

in1 = in2 * 2

myVar = ‘some other value’

return in1, in2, myVar

in1 = 5

in2 = 10

name = ‘Dan’

in1, in2, name = parameterTest(in1, in2, name)

print ‘Name=%s In1=%d In2=%d”, name, in1, in2)

>>> Name=some other value In1=20 In2=10

You can return multiple values
using Python’s multiple assignment

Coming up: Functions InformallyComing up: Functions Informally 4343

Why use Functions

• Having similar or identical code in more

than one place has some drawbacks.

– Issue one: writing the same code twice or

more.

– Issue two: This same code must be

maintained in two separate places.

• Functions can be used to reduce code

duplication and make programs more

easily understood and maintained.

Coming up: Function ExampleComing up: Function Example 4444

Functions Informally

• A function is like a subprogram, a small

program inside of a program.

• The basic idea – we write a sequence

of statements and then give that

sequence a name. We can then

execute this sequence at any time by

referring to the name.

12

Coming up: Function Example (cont)Coming up: Function Example (cont) 4545

Function Example

We’ve seen many examples of functions:

Calling a function

X = math.sqrt(36)

This calls the square root function and

sets X equal to the return value.

Defining a function

def square(x):

val = x * x

return val
Coming up: Functions as a design toolComing up: Functions as a design tool 4646

Function Example (cont)

Defining a function

def square(x):

val = x * x

return val

Z = square(10)

X is a parameter
x is created when the function is
called and initialized to the value
passed into the function

Square is the name of the function

Val is a local variable
Local variables only exist in the
function. After the function
returns you cannot use val
anymore.

Coming up: PseudocodeComing up: Pseudocode 4747

Functions as a design tool

• When writing code you first write

pseudocode, then the real code.

• Using functions you can “design” the

code and then fill in the details.

• For example: If you want to write a

program to calculate interest on a home

loan and display a bar graph.

Coming up: Pseudocode --> Real CodeComing up: Pseudocode --> Real Code 4848

Pseudocode

For example: If you want to write a

program to calculate interest on a home

loan and display a bar graph.

- Ask user for loan terms

- Calculate interest

- Draw bar chart

13

Coming up: Example: Formatting a paragraphComing up: Example: Formatting a paragraph 4949

Pseudocode --> Real Code

def main():

 #Ask user for loan terms

 (years, principal, intRate) = getLoanTerms()

 # Calculate interest

Interest = calculateInterest(years, principal, intRate)

Draw bar chart

drawBarChart(interest, principal)

Now you need to fill in the details of the functions, but your “main”

program is very clear and easy to understand. You have also

broken down your problem into smaller chunks.

Coming up: Step 1: Formatting a paragraphComing up: Step 1: Formatting a paragraph 5050

Example: Formatting a paragraph

• Lets say we’re given a long string of text

(maybe an entire newspaper article). We

want to format this for reading on a small

device, so we want to format it into 40

columns wide

• For example:
Sen. McCain still has some official competition from former Arkansas Gov. Mike Huckabee,

but his more pressing problem is the disdain that many conservatives feel toward him. To

woo some on the right, the Arizona senator delivered a speech yesterday to the

Conservative Political Action Committee in Washington, in which he drew distinctions

between himself and the Democrats, the Washington Post says. On foreign policy, Sen.

McCain criticized Sens. Hillary Clinton and Barack Obama for not recognizing the threat

posed by Iran's nuclear ambitions. "I intend to defeat that threat by staying on offense," the

Post quotes him as saying.

Coming up: Step 2: Write that in pseudocodeComing up: Step 2: Write that in pseudocode 5151

Step 1: Formatting a paragraph

• Step 1: Write out (in english) how would you

do this on paper?

• If that’s not clear, go ahead and start doing it

for the paragraph below… what are you

doing?

• Sen. McCain still has some official competition from former Arkansas Gov. Mike Huckabee,

but his more pressing problem is the disdain that many conservatives feel toward him. To

woo some on the right, the Arizona senator delivered a speech yesterday to the

Conservative Political Action Committee in Washington, in which he drew distinctions

between himself and the Democrats, the Washington Post says. On foreign policy, Sen.

McCain criticized Sens. Hillary Clinton and Barack Obama for not recognizing the threat

posed by Iran's nuclear ambitions. "I intend to defeat that threat by staying on offense," the

Post quotes him as saying.

Coming up: Step 2: ExampleComing up: Step 2: Example 5252

Step 2: Write that in pseudocode

English

Count 40 characters

Backup up until we find the

beginning of a word

Add in newline

Repeat from the next newline

Pseudocode

strIndex = 0

Loop forever

 strIndex = Count 40 characters

end loop if not 40 chars left

strIndex = backup, until first

space character

insertNewlineAt (strIndex)

14

Coming up: Step 3: The code we knowComing up: Step 3: The code we know 5353

Step 2: Example

Example
Personal firewall software may warn about the connection IDLE makes…

Personal firewall software may warn

about the connection IDLE makes…

Pseudocode

strIndex = 0

Loop forever

 strIndex = Count 40 characters

end loop if not 40 chars left

strIndex = backup, until first

space character

insertNewlineAt (strIndex)
Char #40

Backup and find this space

Add a newline and you get this

Coming up: Up nextComing up: Up next…… 5454

Step 3: The code we know

def reformatString(inputStr, cols):

 strIndex = 0 # Character number we’re currently at in the String

 # this isn’t great ---> for i in range(10000):

 while(True):

 strIndex += 40

 # Exit loop if there aren’t 40 chars left

 if strIndex > len(inputStr):

break

 # Backup and find the first space before strIndex

 firstSpace = How??

 # Insert a newline character (line break) there

 how?

 return inputStr

Coming up: Up nextComing up: Up next…… 5555

Up next…

• Find and understand the

functions/syntax to finish solving this

problem

• Questions?

