
1

Coming up: The String Data Type 1

Python Programming:

An Introduction to

Computer Science

Chapter 4

Computing with Strings

Coming up: ExamplesComing up: Examples 22

The String Data Type

• The most common use of personal
computers is word processing.

• Text is represented in programs by the
string data type.

• A string is a sequence of characters
enclosed within quotation marks (") or
apostrophes (') or (“””).

Coming up: Newline string examplesComing up: Newline string examples 33

Examples

>>> str1="Hello"

>>> str2='spam'

>>> print str1, str2

Hello spam

>>> type(str1)

<type 'str'>

>>> type(str2)

<type 'str'>

Coming up: Line continuation examplesComing up: Line continuation examples 44

Newline string examples

To create a string with a newline (“return”) in it,
you can add a newline character \n .You can
think of newline as the character produced
when you press the <Enter> key

>>>print “The newspaper is \n at the door”

The newspaper is

 at the door
>>> print “Mary: John? \nJohn: Yes \nMary: Your car is on fire”

Mary: John?

John: Yes

Mary: Your car is on fire

2

Coming up: Coming up: “””“”” triple-quotes examples triple-quotes examples 55

Line continuation examples

To create a very long string you may want to define it on
multiple lines, for this you can use the line
continuation character “\”

>>>hello = "This is a rather long string containing\n\

several lines of text just as you would do in C.\n\

 Note that whitespace at the beginning of the line is\

significant."

>>>print hello

This is a rather long string containing

several lines of text just as you would do in C.

 Note that whitespace at the beginning of the line is significant.

Coming up: Why input doesnComing up: Why input doesn’’t workt work 66

“”” triple-quotes examples

Triple-quotes “”” tells Python to include newline
characters and you do not need the line continuation
characters. This is useful if you have a large block of
formatted text, just type it as you want it to look.

>>> str1=“”"
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

"""

>>> print str1
 Usage: thingy [OPTIONS]

 -h Display this usage message

 -H hostname Hostname to connect to

Coming up: Why Input DoesnComing up: Why Input Doesn’’t Work (cont)t Work (cont) 77

Why input doesn’t work

>>> firstName = input("Please enter your name: ")

Please enter your name: John

Traceback (most recent call last):

 File "<pyshell#12>", line 1, in -toplevel-

 firstName = input("Please enter your name: ")

 File "<string>", line 0, in -toplevel-

NameError: name 'John' is not defined

• What happened?

Coming up: Using quotes to avoid the problemComing up: Using quotes to avoid the problem 88

Why Input Doesn’t Work (cont)

• The input statement is a delayed expression.

• When you enter a name, it’s doing the same
thing as:
firstName = John

• The way Python evaluates expressions is to
look up the value of the variable John and
store it in firstName.

• Since John didn’t have a value, we get a
NameError.

3

Coming up: Using raw_input to avoid the problemComing up: Using raw_input to avoid the problem 99

Using quotes to avoid the problem

• One way to fix this is to enter your string
input with quotes around it:
>>> firstName = input("Please enter your name: ")
Please enter your name: "John"
>>> print "Hello", firstName
Hello John

• Even though this works, this is
cumbersome!

Coming up: Accessing individual charactersComing up: Accessing individual characters 1010

Using raw_input to avoid the problem

• There is a better way to handle text – the
raw_input function.

• raw_input is like input, but it doesn’t evaluate
the expression that the user enters.

>>> firstName = raw_input("Please enter your name: ")

Please enter your name: John

>>> print "Hello", firstName

Hello John

Coming up: Indexing exampleComing up: Indexing example 1111

Accessing individual characters

• We can access the individual
characters in a string through indexing.

• The positions in a string are numbered
from the left, starting with 0.

• The general form is <string>[<expr>],
where the value of expr determines
which character is selected from the
string.

Coming up: Indexing example - from the rightComing up: Indexing example - from the right 1212

Indexing example

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print greet[0], greet[2], greet[4]

H l o

>>> x = 8

>>> print greet[x - 2]

B

H e l l o B o b

 0 1 2 3 4 5 6 7 8

4

Coming up: What about a substring?Coming up: What about a substring?
Slicing a stringSlicing a string

1313

Indexing example - from the right

• In a string of n characters, the last character
is at position n-1 since we start counting with
0.

• We can index from the right side using
negative indexes.

>>> greet[-1]

'b'

>>> greet[-3]

'B'

H e l l o B o b

 0 1 2 3 4 5 6 7 8

Coming up: Slicing ExampleComing up: Slicing Example 1414

What about a substring?

Slicing a string

• Slicing:
<string>[<start>:<end>]

• start and end should both be ints

• The slice contains the substring
beginning at position start and runs up
to but doesn’t include the position
end.

Coming up: String OperatorsComing up: String Operators 1515

Slicing Example

>>> greet[0:3]

'Hel'

>>> greet[5:9]

' Bob'

>>> greet[:5]

'Hello'

>>> greet[5:]

' Bob'

>>> greet[:]

'Hello Bob'

H e l l o B o b

 0 1 2 3 4 5 6 7 8 9

Hint: When slicing it helps
to think of the slide indexes

between the characters,
then 0:3 is very clear

Coming up: Concatenation (str + str)Coming up: Concatenation (str + str) 1616

String Operators

Iteration through

characters

for <var> in <string>

Lengthlen(<string>)

Slicing<string>[:]

Indexing<string>[]

Repetition*

Concatenation+

MeaningOperator

5

Coming up: Repetition (str * number)Coming up: Repetition (str * number) 1717

Concatenation (str + str)

• Concatenation adds two strings
together to for another string

>>> "spam" + "eggs"

'spameggs’

>>> x = “Dan”

>>> y = “WasHere”

>>> z = x+y

>>> print z

DanWasHere

Coming up: len(str) returns stringComing up: len(str) returns string’’s lengths length 1818

Repetition (str * number)

• Repetition creates a string by copying
the string X times

>>> "spam" * 3

'spamspamspam’

>>> x = 10

>>> print “o” * x

oooooooooo

>>> myStr = 4 * “abc”

>>> print myStr

abcabcabc

Coming up: Iterating through charactersComing up: Iterating through characters 1919

len(str) returns string’s length

• len(str) returns the number of
characters in the string (its “length”)

>>> len("spam")

4

>>> y = len(“spam” * 3)

WHAT IS Y?

Coming up: Example: Reversing a StringComing up: Example: Reversing a String 2020

Iterating through characters

• For <var> in <string> this loops through
each character in the string, assigning the
value to <var>

>>> for ch in "Spam!":

print ch,

S p a m !

6

Coming up: Simple String ProcessingComing up: Simple String Processing 2121

Example: Reversing a String

• Using these functions how would you
reverse a string (spam --> maps)?

Pseudocode
Create an empty string

Loop through string

Add chars to the front of
the empty str

Python Code
def reverse(str):
 tstr = ""
 for ch in str:
 tstr = ch + tstr
 print tstr

What is it? What is it?

Coming up: Simple String ProcessingComing up: Simple String Processing 2222

Simple String Processing

• Usernames on a computer system

– First initial, first seven characters of last
name

get user’s first and last names

first = raw_input(“Please enter your first name (all lowercase): ”)

last = raw_input(“Please enter your last name (all lowercase): ”)

concatenate first initial with 7 chars of last name

uname = first[0] + last[:7]

How?

Coming up: Simple String ProcessingComing up: Simple String Processing 2323

Simple String Processing

>>>

Please enter your first name (all lowercase): john

Please enter your last name (all lowercase): doe

uname = jdoe

>>>

Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski

uname = drostenk

Coming up: Simple String ProcessingComing up: Simple String Processing 2424

Simple String Processing

• Another use – converting an int that
stands for the month into the three letter
abbreviation for that month.

• Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

• Use the month number as an index for
slicing this string:
monthAbbrev = months[pos:pos+3]

7

Coming up: Simple String ProcessingComing up: Simple String Processing 2525

Simple String Processing

94Apr

63Mar

32Feb

01Jan

PositionNumberMonth

! To get the correct position, subtract one
from the month number and multiply by
three

Coming up: Simple String ProcessingComing up: Simple String Processing 2626

Simple String Processing

month.py - A program to print the abbreviation of a month, given its number

def main():

 # months is used as a lookup table

 months = "JanFebMarAprMayJunJulAugSepOctNovDec"

 n = input("Enter a month number (1-12): ")

 # compute starting position of month n in months

 pos = (n-1) * 3

 # Grab the appropriate slice from months

 monthAbbrev = months[pos:pos+3]

 # print the result

 print "The month abbreviation is", monthAbbrev + "."

main()

Coming up: Strings, Lists, and SequencesComing up: Strings, Lists, and Sequences 2727

Simple String Processing

>>> main()

Enter a month number (1-12): 1

The month abbreviation is Jan.

>>> main()

Enter a month number (1-12): 12

The month abbreviation is Dec.

• One weakness – this method only works
where the potential outputs all have the same
length.

• How could you handle spelling out the
months?

Coming up: Intro to ListsComing up: Intro to Lists 2828

Strings, Lists, and Sequences

• It turns out that strings are really a special
kind of sequence, so these operations also
apply to sequences!

>>> [1,2] + [3,4]

[1, 2, 3, 4]

>>> [1,2]*3

[1, 2, 1, 2, 1, 2]

>>> grades = ['A', 'B', 'C', 'D', 'F']

>>> grades[0]

'A'

>>> grades[2:4]

['C', 'D']

>>> len(grades)

5

8

Coming up: Lists as a lookup tableComing up: Lists as a lookup table 2929

Intro to Lists

• Strings are always sequences of
characters, but lists can be sequences
of arbitrary values.

• Lists can have numbers, strings, or
both!

myList = [1, "Spam ", 4, "U"]

Coming up: Lists as a lookup tableComing up: Lists as a lookup table 3030

Lists as a lookup table

• We can use the idea of a list to make
our previous month program even
simpler!

• We change the lookup table for months
to a list:

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

Coming up: Strings, Lists, and SequencesComing up: Strings, Lists, and Sequences 3131

Lists as a lookup table

• To get the months out of the sequence,
do this:
monthAbbrev = months[n-1]

Rather than this:
monthAbbrev = months[pos:pos+3]

Coming up: Strings, Lists, and SequencesComing up: Strings, Lists, and Sequences 3232

Strings, Lists, and Sequences

month2.py

A program to print the month name, given it's
number.

This version uses a list as a lookup table.

def main():

 # months is a list used as a lookup table

 months = ["Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

 n = input("Enter a month number (1-12): ")

 print "The month abbreviation is", months[n-1] +
"."

main()

Note that the months
line overlaps a line.
Python knows that
the expression isn’t
complete until the
closing] is
encountered.

9

Coming up: Strings, Lists, and SequencesComing up: Strings, Lists, and Sequences 3333

Strings, Lists, and Sequences

month2.py

A program to print the month name, given it's
number.

This version uses a list as a lookup table.

def main():

 # months is a list used as a lookup table

 months = ["Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

 n = input("Enter a month number (1-12): ")

 print "The month abbreviation is", months[n-1] +
"."

main()

Since the list is
indexed starting from
0, the n-1 calculation
is straight-forward
enough to put in the
print statement
without needing a
separate step.

Coming up: Strings, Lists, and SequencesComing up: Strings, Lists, and Sequences 3434

Strings, Lists, and Sequences

• This version of the program is easy to
extend to print out the whole month
name rather than an abbreviation!

 months = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"]

Coming up: List methodsComing up: List methods 3535

Strings, Lists, and Sequences

• Lists are mutable, meaning they can be
changed. Strings can not be changed.

>>> myList = [34, 26, 15, 10]

>>> myList[2]

15

>>> myList[2] = 0

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"

>>> myString[2]

'l'

>>> myString[2] = "p"

Traceback (most recent call last):

 File "<pyshell#16>", line 1, in -toplevel-

 myString[2] = "p"

TypeError: object doesn't support item assignment

What do you
mean no mutations

for Strings?

Coming up: List exampleComing up: List example 3636

List methods

• Lists have some other methods you can
use

• Why type what you can reference… lets
just go here:
http://docs.python.org/tut/node7.html

10

Coming up: List exampleComing up: List example 3737

List example

• Lets say you were trying to store the
state of a tic-tac-toe board in a list. How
would you represent this board:

Thoughts? What would you say to
someone over the phone to describe
the board?

X

X

O O

Coming up: String LibraryComing up: String Library 3838

List example

• Label each “spot” with a number, then
create a list with those numbers.

boardState = [‘_‘,’O’,’O’,’_‘,’X’,’_‘,’_‘,’X’,’_‘]

X

X

O O0 1 2

3 4 5

6 7 8

Coming up: Split exampleComing up: Split example 3939

String Library

• Just like there is a math library,
there is a string library with many
handy functions.

• One of these functions is called split.
This function will split a string into
substrings based on spaces.

>>> import string

>>> string.split("Hello string library!")

['Hello', 'string', 'library!']

Coming up: Converting Strings to NumbersComing up: Converting Strings to Numbers 4040

Split example

• Split can be used on characters other
than space, by supplying that character
as a second parameter.

>>> string.split("32,24,25,57", ",")

['32', '24', '25', '57']

>>>

11

Coming up: A String Formatting ExampleComing up: A String Formatting Example 4141

Converting Strings to Numbers

• How can we convert a string containing digits
into a number?

• Python has a function called eval that takes
any strings and evaluates it as if it were an
expression.

>>> numStr = "500"

>>> eval(numStr)

500

>>> x = eval(raw_input("Enter a number "))

Enter a number 3.14

>>> print x

3.14

>>> type (x)

<type 'float'>

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4242

A String Formatting Example

Let’s see if we can make a hang man
game using strings.

How would you do it?

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4343

Input/Output as String Manipulation

• Often we will need to do some string
operations to prepare our string data for
output (“pretty it up”)

• Let’s say we want to enter a date in the
format “05/24/2003” and output “May
24, 2003.” How could we do that?

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4444

Input/Output as String Manipulation

• Input the date in mm/dd/yyyy format (dateStr)

• Split dateStr into month, day, and year strings

• Convert the month string into a month number

• Use the month number to lookup the month
name

• Create a new date string in the form “Month Day,
Year”

• Output the new date string

12

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4545

Input/Output as String Manipulation

• The first two lines are easily
implemented!
dateStr = raw_input(“Enter a date (mm/dd/yyyy): ”)
monthStr, dayStr, yearStr = string.split(dateStr, “/”)

• The date is input as a string, and then
“unpacked” into the three variables by
splitting it at the slashes using
simultaneous assignment.

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4646

Input/Output as String Manipulation

• Next step: Convert monthStr into a
number

• We can use the eval function on
monthStr to convert “05”, for example,
into the integer 5. (eval(“05”) = 5)

• Another conversion technique would be
to use the int function. (int(“05”) = 5)

Coming up: Eval and Octal NumbersComing up: Eval and Octal Numbers 4747

Input/Output as String Manipulation

• There’s one “gotcha” – leading zeros.

• >>> int("05")
5
>>> eval("05")
5

• >>> int("023")
23
>>> eval("023")
19

• What’s going on??? Int seems to ignore
leading zeroes, but what about eval?

Coming up: The Rule: Use int to convert numbersComing up: The Rule: Use int to convert numbers 4848

Eval and Octal Numbers

• Python allows int literals to be
expressed in other number systems
than base 10! If an int starts with a 0,
Python treats it as a base 8 (octal)
number.

• 0238 = 2*8 + 3*1 = 1910

• OK, that’s interesting, but why support
other number systems?

13

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 4949

The Rule: Use int to convert numbers

• Computers use base 2 (binary). Octal is
a convenient way to represent binary
numbers.

• If this makes your brain hurt, just
remember to use int rather than eval
when converting strings to numbers
when there might be leading zeros.

Coming up: Input/Output as String ManipulationComing up: Input/Output as String Manipulation 5050

Input/Output as String Manipulation

months = [“January”, “February”, …, “December”]

monthStr = months[int(monthStr) – 1]

• Remember that since we start counting
at 0, we need to subtract one from the
month.

• Now let’s concatenate the output string
together!

Coming up: Converting a number to a stringComing up: Converting a number to a string 5151

Input/Output as String Manipulation

print “The converted date is:”, monthStr, dayStr+”,”, yearStr

• Notice how the comma is appended to
dayStr with concatenation!

• >>> main()
Enter a date (mm/dd/yyyy): 01/23/2004
The converted date is: January 23, 2004

Coming up: Converting a number to a stringComing up: Converting a number to a string 5252

Converting a number to a string

• Sometimes we want to convert a number into
a string.

• We can use the str function!
>>> str(500)

'500'

>>> value = 3.14

>>> str(value)

'3.14'

>>> print "The value is", str(value) + "."

The value is 3.14.

14

Coming up: Converting a number to a stringComing up: Converting a number to a string 5353

Converting a number to a string

• If value is a string, we can concatenate
a period onto the end of it.

• If value is an int, what happens?
>>> value = 3.14

>>> print "The value is", value + "."

The value is

Traceback (most recent call last):

 File "<pyshell#10>", line 1, in -toplevel-

 print "The value is", value + "."

TypeError: unsupported operand type(s) for +: 'float' and 'str'

Coming up: Conversion OperationsComing up: Conversion Operations 5454

Converting a number to a string

• If value is an int, Python thinks the + is
a mathematical operation, not
concatenation, and “.” is not a number!

Coming up: String Formatting using templatesComing up: String Formatting using templates 5555

Conversion Operations

• We now have a complete set of type
conversion operations:

Evaluate string as an expressioneval(<string>)

Return a string representation of exprstr(<expr>)

Convert expr to a long integer valuelong(<expr>)

Convert expr to an integer valueint(<expr>)

Convert expr to a floating point valuefloat(<expr>)

MeaningFunction

Coming up: String FormattingComing up: String Formatting 5656

String Formatting using templates

• <template-string> % (<values>)

• % within the template-string mark “slots”
into which the values are inserted.

• There must be one slot per value.

• Each slot has a format specifier that
tells Python how the value for the slot
should appear.

15

Coming up: String FormattingComing up: String Formatting 5757

String Formatting

print "The total value of your change is $%0.2f “ % (total)

• The template contains a single
specifier: %0.2f

• The value of total will be inserted into
the template in place of the specifier.

• The specifier tells us this is a floating
point number (f) with two decimal
places (.2)

Coming up: String FormattingComing up: String Formatting 5858

String Formatting

• The formatting specifier has the form:
%<width>.<precision><type-char>

• Type-char can be decimal, float, string
(decimal is base-10 ints)

• <width> and <precision> are optional.

• <width> tells us how many spaces to
use to display the value. 0 means to
use as much space as necessary.

Coming up: String FormattingComing up: String Formatting 5959

String Formatting

• If you don’t give it enough space using
<width>, Python will expand the space until
the result fits.

• <precision> is used with floating point
numbers to indicate the number of places to
display after the decimal.

• %0.2f means to use as much space as
necessary and two decimal places to display
a floating point number.

Coming up: String FormattingComing up: String Formatting 6060

String Formatting

>>> "Hello %s %s, you may have already won $%d" % ("Mr.", "Smith",
10000)

'Hello Mr. Smith, you may have already won $10000’

>>> 'This int, %5d, was placed in a field of width 5' % (7)

'This int, 7, was placed in a field of width 5'

>>> 'This int, %10d, was placed in a field of witdh 10' % (10)

'This int, 10, was placed in a field of witdh 10'

>>> 'This int, %10d, was placed in a field of width 10' % (7)

'This int, 7, was placed in a field of width 10'

16

Coming up: String FormattingComing up: String Formatting 6161

String Formatting

>>> 'This float, %10.5f, has width 10 and precision 5.' % (3.1415926)

'This float, 3.14159, has width 10 and precision 5.'

>>> 'This float, %0.5f, has width 0 and precision 5.' % (3.1415926)

'This float, 3.14159, has width 0 and precision 5.'

>>> 'Compare %f and %0.20f' % (3.14, 3.14)

'Compare 3.140000 and 3.14000000000000010000'

Coming up: Another way to format..Coming up: Another way to format.. 6262

String Formatting

• If the width is wider than needed, the value is
right-justified by default. You can left-justify
using a negative width (%-10.5f)

Coming up: Example: Making ChangeComing up: Example: Making Change…… 6363

Another way to format..

import string

x = “Joe”

x.ljust(10) # Left justify this string in a 10 char field

x.rjust(10) # Right justify this string in a 10 char field

x.center(10) # Center this string in a 10 char field

>>> x = "Joe"

>>> x.ljust(10)

'Joe '

>>> x.rjust(10)

' Joe'

>>> x.center(10)

' Joe '

>>>
Coming up: Example: Making ChangeComing up: Example: Making Change…… 6464

Example: Making Change…

• Assume you are working at cash
register and you need a program to
calculate the number of coins to give
out for a given number. For example, if
the price is $17.23 and someone give
you a $20, you should return:

• 2 dollars

• 3 quarters

• 2 pennies

17

Coming up: Example: Making ChangeComing up: Example: Making Change…… 6565

Example: Making Change…

• Ask for cost

• Ask for payment amount

• Compute number of dollars

• Compute number of quarters, dimes,
nickels, pennies

• Output (nicely) to the user

Coming up: Detailed Pseudocode: dollarsComing up: Detailed Pseudocode: dollars 6666

Example: Making Change…

• Ask for cost

• Ask for amount input

cost, payment = input(“What is the cost
and payment ->”)

Coming up: Detailed Pseudocode: coinsComing up: Detailed Pseudocode: coins 6767

Detailed Pseudocode: dollars

Determine number of dollars

determine change (payment - cost)

remove decimal value

return that as the number of dollars

Coming up: Example: Making changeComing up: Example: Making change…… 6868

Detailed Pseudocode: coins

Determine number of coins

determine change (payment - cost - dollars)

figure out how many quarters you can use

remove that value from the change

figure out how many dimes you can use

subtract that value from the change…

18

Coming up: Example: Verifying inputComing up: Example: Verifying input…… 6969

Example: Making change…

• On to computechangeSkeleton.py

Coming up: Pseudocode: Verifying inputComing up: Pseudocode: Verifying input…… 7070

Example: Verifying input…

• If we provide a menu to the user with
numbers, how can we validate that they
enter a valid number? Let’s try…

• First, to the string documentation…

• Next up: Pseudocode

Coming up: Example: Verifying inputComing up: Example: Verifying input…… 7171

Pseudocode: Verifying input…

1. ask user the question

2. check if answer is all digits

3. if so

- convert the answer to an int

- return the int to the user

4. else

- print an error

- go back to step 2

Coming up: Example: Verifying inputComing up: Example: Verifying input…… 7272

Example: Verifying input…

On to inputverification.py…

