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The String Data Type

• The most common use of personal
computers is word processing.

• Text is represented in programs by the
string data type.

• A string is a sequence of characters
enclosed within quotation marks (") or
apostrophes (') or (“””).
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Examples

>>> str1="Hello"

>>> str2='spam'

>>> print str1, str2

Hello spam

>>> type(str1)

<type 'str'>

>>> type(str2)

<type 'str'>
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Newline string examples

To create a string with a newline (“return”) in it,
you can add a newline character \n .You can
think of newline as the character produced
when you press the <Enter> key

>>>print “The newspaper is \n at the door”

The newspaper is

 at the door
>>> print “Mary: John? \nJohn: Yes \nMary: Your car is on fire”

Mary: John?

John: Yes

Mary: Your car is on fire



2

Coming up: Coming up: “””“”” triple-quotes examples triple-quotes examples 55

Line continuation examples

To create a very long string you may want to define it on
multiple lines, for this you can use the line
continuation character “\”

>>>hello = "This is a rather long string containing\n\

several lines of text just as you would do in C.\n\

    Note that whitespace at the beginning of the line is\

significant."

>>>print hello

This is a rather long string containing

several lines of text just as you would do in C.

    Note that whitespace at the beginning of the line is significant.
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“”” triple-quotes examples

Triple-quotes “”” tells Python to include newline
characters and you do not need the line continuation
characters. This is useful if you have a large block of
formatted text, just type it as you want it to look.

>>> str1=“”"
Usage: thingy [OPTIONS]
     -h                        Display this usage message
     -H hostname         Hostname to connect to

"""

>>> print str1
   Usage: thingy [OPTIONS]

        -h                        Display this usage message

        -H hostname       Hostname to connect to
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Why input doesn’t work

>>> firstName = input("Please enter your name: ")

Please enter your name: John

Traceback (most recent call last):

  File "<pyshell#12>", line 1, in -toplevel-

    firstName = input("Please enter your name: ")

  File "<string>", line 0, in -toplevel-

NameError: name 'John' is not defined

• What happened?
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Why Input Doesn’t Work (cont)

• The input statement is a delayed expression.

• When you enter a name, it’s doing the same
thing as:
firstName = John

• The way Python evaluates expressions is to
look up the value of the variable John and
store it in firstName.

• Since John didn’t have a value, we get a
NameError.
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Using quotes to avoid the problem

• One way to fix this is to enter your string
input with quotes around it:
>>> firstName = input("Please enter your name: ")
Please enter your name: "John"
>>> print "Hello", firstName
Hello John

• Even though this works, this is
cumbersome!
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Using raw_input to avoid the problem

• There is a better way to handle text – the
raw_input function.

• raw_input is like input, but it doesn’t evaluate
the expression that the user enters.

>>> firstName = raw_input("Please enter your name: ")

Please enter your name: John

>>> print "Hello", firstName

Hello John
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Accessing individual characters

• We can access the individual
characters in a string through indexing.

• The positions in a string are numbered
from the left, starting with 0.

• The general form is <string>[<expr>],
where the value of expr determines
which character is selected from the
string.
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Indexing example

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print greet[0], greet[2], greet[4]

H l o

>>> x = 8

>>> print greet[x - 2]

B

H e l l o B o b

  0    1     2    3     4    5     6     7     8
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Indexing example - from the right

• In a string of n characters, the last character
is at position n-1 since we start counting with
0.

• We can index from the right side using
negative indexes.

>>> greet[-1]

'b'

>>> greet[-3]

'B'

H e l l o B o b

  0    1     2    3     4    5     6     7     8
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What about a substring?

Slicing a string

• Slicing:
<string>[<start>:<end>]

• start and end should both be ints

• The slice contains the substring
beginning at position start and runs up
to but doesn’t include the position
end.
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Slicing Example

>>> greet[0:3]

'Hel'

>>> greet[5:9]

' Bob'

>>> greet[:5]

'Hello'

>>> greet[5:]

' Bob'

>>> greet[:]

'Hello Bob'

H e l l o B o b

  0    1     2    3     4    5     6     7     8    9

Hint: When slicing it helps 
to think of the slide indexes 

between the characters, 
then 0:3 is very clear
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String Operators

Iteration through

characters

for <var> in <string>

Lengthlen(<string>)

Slicing<string>[:]

Indexing<string>[]

Repetition*

Concatenation+

MeaningOperator
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Concatenation (str + str)

• Concatenation adds two strings
together to for another string

>>> "spam" + "eggs"

'spameggs’

>>> x = “Dan”

>>> y = “WasHere”

>>> z = x+y

>>> print z

DanWasHere
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Repetition (str * number)

• Repetition creates a string by copying
the string X times

>>> "spam" * 3

'spamspamspam’

>>> x = 10

>>> print “o” * x

oooooooooo

>>> myStr = 4 * “abc”

>>> print myStr

abcabcabc
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len(str) returns string’s length

• len(str) returns the number of
characters in the string (its “length”)

>>> len("spam")

4

>>> y = len( “spam” * 3)

WHAT IS Y?
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Iterating through characters

• For <var> in <string>   this loops through
each character in the string, assigning the
value to <var>

>>> for ch in "Spam!":

print ch,

S p a m !
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Example: Reversing a String

• Using these functions how would you
reverse a string ( spam --> maps )?

Pseudocode
Create an empty string

Loop through string

Add chars to the front of
the empty str

Python Code
def reverse(str):
    tstr = ""
    for ch in str:
        tstr = ch + tstr
    print tstr

What is it? What is it?
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Simple String Processing

• Usernames on a computer system

– First initial, first seven characters of last
name

# get user’s first and last names

first = raw_input(“Please enter your first name (all lowercase): ”)

last = raw_input(“Please enter your last name (all lowercase): ”)

# concatenate first initial with 7 chars of last name

uname = first[0] + last[:7]

How?
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Simple String Processing

>>>

Please enter your first name (all lowercase): john

Please enter your last name (all lowercase): doe

uname =  jdoe

>>>

Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski

uname =  drostenk
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Simple String Processing

• Another use – converting an int that
stands for the month into the three letter
abbreviation for that month.

• Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

• Use the month number as an index for
slicing this string:
monthAbbrev = months[pos:pos+3]
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Simple String Processing

94Apr

63Mar

32Feb

01Jan

PositionNumberMonth

! To get the correct position, subtract one
from the month number and multiply by
three
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Simple String Processing

# month.py - A program to print the abbreviation of a month, given its number

def main():

    # months is used as a lookup table

    months = "JanFebMarAprMayJunJulAugSepOctNovDec"

    n = input("Enter a month number (1-12): ")

    # compute starting position of month n in months

    pos = (n-1) * 3

    # Grab the appropriate slice from months

    monthAbbrev = months[pos:pos+3]

    # print the result

    print "The month abbreviation is", monthAbbrev + "."

main()
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Simple String Processing

>>> main()

Enter a month number (1-12): 1

The month abbreviation is Jan.

>>> main()

Enter a month number (1-12): 12

The month abbreviation is Dec.

• One weakness – this method only works
where the potential outputs all have the same
length.

• How could you handle spelling out the
months?
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Strings, Lists, and Sequences

• It turns out that strings are really a special
kind of sequence, so these operations also
apply to sequences!

>>> [1,2] + [3,4]

[1, 2, 3, 4]

>>> [1,2]*3

[1, 2, 1, 2, 1, 2]

>>> grades = ['A', 'B', 'C', 'D', 'F']

>>> grades[0]

'A'

>>> grades[2:4]

['C', 'D']

>>> len(grades)

5
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Intro to Lists

• Strings are always sequences of
characters, but lists can be sequences
of arbitrary values.

• Lists can have numbers, strings, or
both!

myList = [1, "Spam ", 4, "U"]
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Lists as a lookup table

• We can use the idea of a list to make
our previous month program even
simpler!

• We change the lookup table for months
to a list:

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
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Lists as a lookup table

• To get the months out of the sequence,
do this:
monthAbbrev = months[n-1]

Rather than this:
monthAbbrev = months[pos:pos+3]
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Strings, Lists, and Sequences

# month2.py

#  A program to print the month name, given it's
number.

#  This version uses a list as a lookup table.

def main():

    # months is a list used as a lookup table

    months = ["Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

    n = input("Enter a month number (1-12): ")

    print "The month abbreviation is", months[n-1] +
"."

main()

Note that the months
line overlaps a line.
Python knows that
the expression isn’t
complete until the
closing ] is
encountered.
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Strings, Lists, and Sequences

# month2.py

#  A program to print the month name, given it's
number.

#  This version uses a list as a lookup table.

def main():

    # months is a list used as a lookup table

    months = ["Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

    n = input("Enter a month number (1-12): ")

    print "The month abbreviation is", months[n-1] +
"."

main()

Since the list is
indexed starting from
0, the n-1 calculation
is straight-forward
enough to put in the
print statement
without needing a
separate step.
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Strings, Lists, and Sequences

• This version of the program is easy to
extend to print out the whole month
name rather than an abbreviation!

 months = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"]
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Strings, Lists, and Sequences

• Lists are mutable, meaning they can be
changed. Strings can not be changed.

>>> myList = [34, 26, 15, 10]

>>> myList[2]

15

>>> myList[2] = 0

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"

>>> myString[2]

'l'

>>> myString[2] = "p"

Traceback (most recent call last):

  File "<pyshell#16>", line 1, in -toplevel-

    myString[2] = "p"

TypeError: object doesn't support item assignment

What do you 
mean no mutations 

for Strings?
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List methods

• Lists have some other methods you can
use

• Why type what you can reference… lets
just go here:
http://docs.python.org/tut/node7.html
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List example

• Lets say you were trying to store the
state of a tic-tac-toe board in a list. How
would you represent this board:

Thoughts? What would you say to
someone over the phone to describe
the board?

X

X

O O
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List example

• Label each “spot” with a number, then
create a list with those numbers.

boardState = [‘_‘,’O’,’O’,’_‘,’X’,’_‘,’_‘,’X’,’_‘]

X

X

O O0 1 2

3 4 5

6 7 8
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String Library

• Just like there is a math library,
there is a string library with many
handy functions.

• One of these functions is called split.
This function will split a string into
substrings based on spaces.

>>> import string

>>> string.split("Hello string library!")

['Hello', 'string', 'library!']
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Split example

• Split can be used on characters other
than space, by supplying that character
as a second parameter.

>>> string.split("32,24,25,57", ",")

['32', '24', '25', '57']

>>>
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Converting Strings to Numbers

• How can we convert a string containing digits
into a number?

• Python has a function called eval that takes
any strings and evaluates it as if it were an
expression.

>>> numStr = "500"

>>> eval(numStr)

500

>>> x = eval(raw_input("Enter a number "))

Enter a number 3.14

>>> print x

3.14

>>> type (x)

<type 'float'>
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A String Formatting Example

Let’s see if we can make a hang man
game using strings.

How would you do it?
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Input/Output as String Manipulation

• Often we will need to do some string
operations to prepare our string data for
output (“pretty it up”)

• Let’s say we want to enter a date in the
format “05/24/2003” and output “May
24, 2003.” How could we do that?
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Input/Output as String Manipulation

• Input the date in mm/dd/yyyy format (dateStr)

• Split dateStr into month, day, and year strings

• Convert the month string into a month number

• Use the month number to lookup the month
name

• Create a new date string in the form “Month Day,
Year”

• Output the new date string
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Input/Output as String Manipulation

• The first two lines are easily
implemented!
dateStr = raw_input(“Enter a date (mm/dd/yyyy): ”)
monthStr, dayStr, yearStr = string.split(dateStr, “/”)

• The date is input as a string, and then
“unpacked” into the three variables by
splitting it at the slashes using
simultaneous assignment.
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Input/Output as String Manipulation

• Next step: Convert monthStr into a
number

• We can use the eval function on
monthStr to convert “05”, for example,
into the integer 5. (eval(“05”) = 5)

• Another conversion technique would be
to use the int function. (int(“05”) = 5)
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Input/Output as String Manipulation

• There’s one “gotcha” – leading zeros.

• >>> int("05")
5
>>> eval("05")
5

• >>> int("023")
23
>>> eval("023")
19

• What’s going on??? Int seems to ignore
leading zeroes, but what about eval?
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Eval and Octal Numbers

• Python allows int literals to be
expressed in other number systems
than base 10! If an int starts with a 0,
Python treats it as a base 8 (octal)
number.

• 0238 = 2*8 + 3*1 = 1910

• OK, that’s interesting, but why support
other number systems?
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The Rule: Use int to convert numbers

• Computers use base 2 (binary). Octal is
a convenient way to represent binary
numbers.

• If this makes your brain hurt, just
remember to use int rather than eval
when converting strings to numbers
when there might be leading zeros.
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Input/Output as String Manipulation

months = [“January”, “February”, …, “December”]

monthStr = months[int(monthStr) – 1]

• Remember that since we start counting
at 0, we need to subtract one from the
month.

• Now let’s concatenate the output string
together!
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Input/Output as String Manipulation

print “The converted date is:”, monthStr, dayStr+”,”, yearStr

• Notice how the comma is appended to
dayStr with concatenation!

• >>> main()
Enter a date (mm/dd/yyyy): 01/23/2004
The converted date is: January 23, 2004
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Converting a number to a string

• Sometimes we want to convert a number into
a string.

• We can use the str function!
>>> str(500)

'500'

>>> value = 3.14

>>> str(value)

'3.14'

>>> print "The value is", str(value) + "."

The value is 3.14.
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Converting a number to a string

• If value is a string, we can concatenate
a period onto the end of it.

• If value is an int, what happens?
>>> value = 3.14

>>> print "The value is", value + "."

The value is

Traceback (most recent call last):

  File "<pyshell#10>", line 1, in -toplevel-

    print "The value is", value + "."

TypeError: unsupported operand type(s) for +: 'float' and 'str'

Coming up: Conversion OperationsComing up: Conversion Operations 5454

Converting a number to a string

• If value is an int, Python thinks the + is
a mathematical operation, not
concatenation, and “.” is not a number!
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Conversion Operations

• We now have a complete set of type
conversion operations:

Evaluate string as an expressioneval(<string>)

Return a string representation of exprstr(<expr>)

Convert expr to a long integer valuelong(<expr>)

Convert expr to an integer valueint(<expr>)

Convert expr to a floating point valuefloat(<expr>)

MeaningFunction
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String Formatting using templates

• <template-string> % (<values>)

• % within the template-string mark “slots”
into which the values are inserted.

• There must be one slot per value.

• Each slot has a format specifier that
tells Python how the value for the slot
should appear.
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String Formatting

print "The total value of your change is $%0.2f “ % (total)

• The template contains a single
specifier: %0.2f

• The value of total will be inserted into
the template in place of the specifier.

• The specifier tells us this is a floating
point number (f) with two decimal
places (.2)

Coming up: String FormattingComing up: String Formatting 5858

String Formatting

• The formatting specifier has the form:
%<width>.<precision><type-char>

• Type-char can be decimal, float, string
(decimal is base-10 ints)

• <width> and <precision> are optional.

• <width> tells us how many spaces to
use to display the value. 0 means to
use as much space as necessary.
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String Formatting

• If you don’t give it enough space using
<width>, Python will expand the space until
the result fits.

• <precision> is used with floating point
numbers to indicate the number of places to
display after the decimal.

• %0.2f means to use as much space as
necessary and two decimal places to display
a floating point number.
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String Formatting

>>> "Hello %s %s, you may have already won $%d" % ("Mr.", "Smith",
10000)

'Hello Mr. Smith, you may have already won $10000’

>>> 'This int, %5d, was placed in a field of width 5' % (7)

'This int,     7, was placed in a field of width 5'

>>> 'This int, %10d, was placed in a field of witdh 10' % (10)

'This int,         10, was placed in a field of witdh 10'

>>> 'This int, %10d, was placed in a field of width 10' % (7)

'This int,          7, was placed in a field of width 10'
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String Formatting

>>> 'This float, %10.5f, has width 10 and precision 5.' % (3.1415926)

'This float,    3.14159, has width 10 and precision 5.'

>>> 'This float, %0.5f, has width 0 and precision 5.' % (3.1415926)

'This float, 3.14159, has width 0 and precision 5.'

>>> 'Compare %f and %0.20f' % (3.14, 3.14)

'Compare 3.140000 and 3.14000000000000010000'

Coming up: Another way to format..Coming up: Another way to format.. 6262

String Formatting

• If the width is wider than needed, the value is
right-justified by default. You can left-justify
using a negative width (%-10.5f)
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Another way to format..

import string

x = “Joe”

x.ljust(10) # Left justify this string in a 10 char field

x.rjust(10) # Right justify this string in a 10 char field

x.center(10) # Center this string in a 10 char field

>>> x = "Joe"

>>> x.ljust(10)

'Joe       '

>>> x.rjust(10)

'       Joe'

>>> x.center(10)

'   Joe    '

>>>
Coming up: Example: Making ChangeComing up: Example: Making Change…… 6464

Example: Making Change…

• Assume you are working at cash
register and you need a program to
calculate the number of coins to give
out for a given number. For example, if
the price is $17.23 and someone give
you a $20, you should return:

• 2 dollars

• 3 quarters

• 2 pennies
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Example: Making Change…

• Ask for cost

• Ask for payment amount

• Compute number of dollars

• Compute number of quarters, dimes,
nickels, pennies

• Output (nicely) to the user

Coming up: Detailed Pseudocode: dollarsComing up: Detailed Pseudocode: dollars 6666

Example: Making Change…

• Ask for cost

• Ask for amount input

cost, payment = input(“What is the cost
and payment ->”)

Coming up: Detailed Pseudocode: coinsComing up: Detailed Pseudocode: coins 6767

Detailed Pseudocode: dollars

Determine number of dollars

determine change (payment - cost)

remove decimal value

return that as the number of dollars

Coming up: Example: Making changeComing up: Example: Making change…… 6868

Detailed Pseudocode: coins

Determine number of coins

determine change (payment - cost - dollars)

figure out how many quarters you can use

remove that value from the change

figure out how many dimes you can use

subtract that value from the change…
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Example: Making change…

• On to computechangeSkeleton.py
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Example: Verifying input…

• If we provide a menu to the user with
numbers, how can we validate that they
enter a valid number? Let’s try…

• First, to the string documentation…

• Next up: Pseudocode
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Pseudocode: Verifying input…

1. ask user the question

2. check if answer is all digits

3. if so

- convert the answer to an int

- return the int to the user

4. else

- print an error

- go back to step 2
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Example: Verifying input…

On to inputverification.py…


