Python Programming:
An Introduction to
Computer Science

Chapter 4
Computing with Strings

» | Coming up: The String Data Type

I Examples

S SEas i £ = 2]

>>> str1="Hello"
>>> str2="spam’
>>> print str1, str2
Hello spam

>>> type(str1)
<type 'str'>

>>> type(str2)
<type 'str'>

T

PSRN 6 MR 2750 i]

I The String Data Type

o SR ST]

* The most common use of personal
computers is word processing.

» Text is represented in programs by the
string data type.

» A string is a sequence of characters
enclosed within quotation marks (") or
apostrophes (') or (“”).

'4'?

I Newline string examples A?

R o S SN = o~

To create a string with a newline (“return”) in it,
you can add a newline character \n .You can
think of newline as the character produced
when you press the <Enter> key

>>>print “The newspaper is \n at the door”

The newspaper is

at the door

>>> print “Mary: John? \nJohn: Yes \nMary: Your car is on fire”

Mary: John?

John: Yes

Mary: Your car is on fire

v

s 3 N

SRR\ MR 2750 g

Line continuation examples

S L p

“”” triple-quotes examples

S L p

wny

Triple-quotes “” tells Python to include newline
characters and you do not need the line continuation
characters. This is useful if you have a large block of
formatted text, just type it as you want it to look.

To create a very long string you may want to define it on
multiple lines, for this you can use the line
continuation character “\”

>>>hello = "This is a rather long string containing\n\ e ssi==

several lines of text just as you would do in C.\n\ Usage: thingy [OPTIONS]
| Note that whitespace at the beginning of the line is\ 5 -h Display this usage message
) significant.” -H hostname Hostname to connect to

>>>print hello

This is a rather long string containing

several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

>>> print str1

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

.

Al A DT YT AR I A Y (WD T

LN AL N e i YT A R I A Y (RN D T

T N e T T
T LS n 7 SRS IR 30 e T OM o 107

Why Input Doesn’t Work (cont)

Why input doesn’t work

R » s R

>>> firstName = input("Please enter your name: ")
Please enter your name: John

* The input statement is a delayed expression.

* When you enter a name, it’s doing the same
thing as:
firstName = John

* The way Python evaluates expressions is to
look up the value of the variable John and
store it in firstName.

» Since John didn’t have a value, we get a
NameError.

Traceback (most recent call last):
File "<pyshell#12>", line 1, in -toplevel-
firstName = input("Please enter your name: ")
B File "<string>", line O, in -toplevel-
i NameError: name 'John' is not defined

» What happened?

S EAAASAC S UL TR\ T I A Y AN DTN T/ A A A AN | T N T 0y Y (AN O 07X

S, Using qu

X -

otes to avoid the problem

S L

» One way to fix this is to enter your string

input with quotes around it:

>>> firstName = input("Please enter your name: ")
Please enter your name: "John"

>>> print "Hello", firstName

Hello John

» Even though this works, this is
cumbersome!

Accessing individual characters

S L

RS

* We can access the individual
characters in a string through indexing.

» The positions in a string are numbered
from the left, starting with 0.

» The general form is <string>[<expr>],
where the value of expr determines
which character is selected from the

string.

2 TSR A 7 YT A N R O A A Y (MARN DU T

Using raw_input to avoid the problem

S L

G S

* There is a better way to handle text — the
raw_input function.

e raw_input is like input, but it doesn’t evaluate
the expression that the user enters.

>>> firstName = raw_input("Please enter your name: ")
Please enter your name: John

>>> print "Hello", firstName

Hello John

Indexing example

S L

[o I o B|o | b
OEESISTE2) 3 4 S 5EECEER AR

>>> greet = "Hello Bob"

>>> greet[0]

e

>>> print greet[0], greet[2], greet[4]
Hlo

>>>x =8

>>> print greet[x - 2]

e
N T +

e
L =

Indexing example - from the right

S L

Hiel|ll|Il | o B|o | b
OFE1S2 3. 4 5o

* In a string of n characters, the last character
is at position n-1 since we start counting with
0.

* We can index from the right side using
negative indexes.

>>> greet[-1]

5

>>> greet[-3]

=

Slicing Example

S L

18 =12 o B|lo | b
ORSSIED - 3 4 -5 6RO)

>>> greet[0:3]
'Hel'

>>> greet[5:9]

' Bob'

R Hint: When slicing it helps
>>> greel[5:] to think of the slide indexes
S between the characters,
"Hello Bob’ then 0:3 is very clear

S e g .'AA‘V“,E\."-'nj'-._.‘.":‘ LT A

What about a substring?
. _Slicing a string

+ Slicing:
" <string>[<start>:<end>]
~ « start and end should both be ints

~« The slice contains the substring
beginning at position start and runs up
to but doesn’t include the position

String Operators

S L

Operator Meaning

W s Concatenation
v Repetition

E.,'_‘ <string>[] Indexing

o <string>[:] Slicing
len(<string>) Length

= for <var> in <string> | Iteration through
characters

Concatenation (str + str)

S L

» Concatenation adds two strings
together to for another string

>>> "spam" + "eggs"
'spameggs’

>>> x = “Dan”

>>>y = “WasHere”
>>> 7 = x+y

>>> print z
DanWasHere

len(str) returns string’s length

S L

* len(str) returns the number of
characters in the string (its “length”)

>>> |en("spam")
4
>>>y = |en(“spam” * 3)

WHAT IS Y?

Repetition (str * number)

S L

» Repetition creates a string by copying
the string X times

>>> "spam" * 3

'spamspamspam’

>>>x =10

>>> print “0” * x

0000000000

>>> myStr = 4 * “abc”

>>> print myStr

abcabcabc

Iterating through characters

S L

* For <var> in <string> this loops through
each character in the string, assigning the
value to <var>

>>> for ch in "Spam!":
print ch,

Spam!

Example: Reversing a String

S L

we

» Using these functions how would you
reverse a string (spam --> maps)?

Pseudocode Python Code

What is it? What is it?

AV U et S T DT AN YT R YR W0 Y VRN DI 00

Simple String Processing

S L

>>>
Please enter your first name (all lowercase): john
Please enter your last name (all lowercase): doe
uname = jdoe

>>>
Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski
uname = drostenk

AV U et S T DT AN YT R YR W0 Y VRN DI 00

ple String Processing

S L

Sim

» Usernames on a computer system

— First initial, first seven characters of last
name

get user’s first and last names
first = raw_input(“Please enter your first name (all lowercase): ”)

last = raw_input(“Please enter your last name (all lowercase): ")

concatenate first initial with 7 chars of last name

How?

AV U e S AT DT AN YT R D R 0 Y RO 00

Simple String Processing

S L

we

* Another use — converting an int that
stands for the month into the three letter
abbreviation for that month.

+ Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

* Use the month number as an index for

slicing this string:

AV U et S T DT AN YT R D R 0 Y VRN DI 00

S L

Simple String Processing Simple String Processing

S L

month.py - A program to print the abbreviation of a month, given its number
def main():

Number Position f # months is used as a lookup table
s months = "JanFebMarAprMayJunJulAugSepOctNovDec"

1 0

n = input("Enter a month number (1-12): ")

2 3

compute starting position of month n in months
pos = (n-1) * 3

3 6

Grab the appropriate slice from months
Apr 4 9 | monthAbbrev = months[pos:pos+3]

T & 4 # print the result
= To get the correct position, subtract one print "The month abbreviation is", monthAbbrev + "."

from the month number and multiply by

three ey

TN R S R O 0 Y (Y 3 ek R RToT | AT R AL LN VSR

Simple String Processing Strings, Lists, and Sequences

S L

S L

e 2 -« ltturns out that strings are really a special
The month abbreviation is Jan. kind of sequence, so these operations also
= apply to sequences!
Enter a month number (1-12): 12 i e [1‘:;]p+?g 4 q
The month abbreviation is Dec. bt | "2, 3 4] !
+ One weakness — this method only works s

where the potential outputs all have the same | >>>grades=[A, B, 'C, D, F]

I >>> grades[0]

length. "
+ How could you handle spelling out the i
months? 1t >>> |en(grades)

N A A Y LTt Y PARAN NIV VLA 2 LA NS

Intro to Lists
 Strings are always sequences of

‘ characters, but lists can be sequences
7 of arbitrary values.

* Lists can have numbers, strings, or
both!

myList = [1, "Spam ", 4, "U"]

AU TN AR 0 AN S SR D NN A G

Lists as a lookup table

S L

» To get the months out of the sequence,
do this:

monthAbbrev = months[n-1]

Rather than this:

monthAbbrev = months[pos:pos+3]

LT N DA A A L RN DIty

Lists as a lookup table

S L

» We can use the idea of a list to make
our previous month program even
simpler!

» We change the lookup table for months
to a list:

mOﬂthS = [IlJanll, IlFebll, "Mar", "Apr“, "May“, llJun",
"JU|", "Aug", usepu, "OCt", "NOV", "DeC"]

AU TN AR 0 AN S SRR D IR A

Strings, Lists, and Sequences

S L

month2.py

A program to print the month name, given it's
number.
This version uses a list as a lookup table. Note that the months

line overlaps a line.
def main(): Python knows that
the expression isn’t
months is a list used as a lookup table .
months = ["Jan", "Feb", "Mar", "Apr", "May", Com_plete, until the
"Jun", "Jul", "Aug", "Sep”, "Oct", "Nov", "Dec'] closing] is

encountered.
n = input("Enter a month number (1-12): ")

print "The month abbreviation is", months[n-1] +

main()

LT N DA A A L RN DAty

Strlngs Llsts and Sequences

S L

month2.py
A program to print the month name, given it's
number.

This version uses a list as a lookup table. Since the list is

indexed starting from
def main(): 0, the n-1 calculation
is straight-forward
months is a list used as a lookup table q
months = ["Jan", "Feb", "Mar", "Apr", "May", er!OUQh to putin the
"Jun”, "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] print statement
without needing a

n = input("Enter a month number (1-12): ") separate step

print "The month abbreviation is", months[n-1] +

main()

AN A A Y

Strlngs Llsts and Sequences

S L

. Llsts are mutable, meanlng they can be
changed. Strings can not be changed.

>>> myList = [34, 26, 15, 10]
ke b What do you
>>> myList(2] = 0 e mean no mutations
>>> L t K S -
(34, 26,0, 10 M WA for Strings?
>>> myString = "Hello World" " -
>>> myString[2]
M
>>> myString[2] = "p"
Traceback (most recent call last):
File "<pyshell#16>", line 1, in -topleve

myString[2] = "p"
TypeError: object doesn't support item

MAT A0 LR A 0 LA VS

Strlngs Llsts and Sequences

S L

. Th|s version of the program is easy to
extend to print out the whole month
name rather than an abbreviation!

months = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"]

AN AN SR A A Y

List methods

S L

. Llsts have some other methods you can
use

» Why type what you can reference... lets

just go here:
http://docs.python.org/tut/node7.html

MAT A0 LR A L LA VS

List example List example

» Lets say you were trying to store the
state of a tic-tac-toe board in a list. How
would you represent this board:

S L

» Label each “spot” with a number, then
create a list with those numbers.

olo 0l1]2 olo
ki X ki 3145 X
i X i 678 X
boardstate= [‘_"’O’”O”’_"’X”’_"’_"’X’”_‘]

Thoughts? What would you say to
I, someone over the phone to describe
i the board?

String Library Split example

 Just like there is a math library,
there is a string library with many
handy functions.

* One of these functions is called split.

i This function will split a string into

' substrings based on spaces.

 Split can be used on characters other

than space, by supplying that character
as a second parameter.

>>> string.split("32,24,25,57", "")
'%J ['32', '24', '25', '57']
b >>>

>>> jmport string
>>> string.split("Hello string library!")
['Hello', 'string', 'library!']

Converting Strlngs to Numbers

S L

G S

* How can we convert a strlng contalnlng digits
into a number?

» Python has a function called eval that takes
any strings and evaluates it as if it were an
expression.

>>> numStr = "500"

>>> eval(numStr)

500

>>> x = eval(raw_input("Enter a number "))
Enter a number 3.14

>>> print x
3.14

>>> type ()
'—‘3 <type 'float’>

RN AT U N A R I A R A AV

LN

InputIOutput as Strlng Manlpulatlon

S L

. Often we will need to do some string
operations to prepare our string data for
output (“pretty it up”)

» Let's say we want to enter a date in the
format “05/24/2003” and output “May

24, 2003.” How could we do that?

A Strlng Formattlng Example

S L

Let s see if we can make a hang man
game using strings.

How would you do it?

InputIOutput as Strlng Manlpulatlon

S L

. Input the date in mm/dd/yyyy format (dateStr)
+ Split dateStr into month, day, and year strings
» Convert the month string into a month number

* Use the month number to lookup the month
name

» Create a new date string in the form “Month Day,
Year’

Output the new date string

11

0 R VST A TR A S T IR S TR

Input/Output as String Manipulation
The first two lines are easily

implemented!
dateStr = raw_input(“Enter a date (mm/dd/yyyy): ”)
monthStr, dayStr, yearStr = string.split(dateStr, “/”)

The date is input as a string, and then
“‘unpacked” into the three variables by
splitting it at the slashes using
simultaneous assignment.

J

» There’s one “gotcha” — leading zeros.
B> int("05")

« >>>int("023")

» What’s going on??? Int seems to ignore

T R A e e e o

Input/Output as String Manipulation

S -

5
>>> eval("05")
5

23
>>> eval("023")
19

leading zeroes, but what about eval?

0 R VST A TR A S T IR S TR

Input/Output as String Manipulation

S

» Next step: Convert monthStr into a
number

» We can use the eval function on
monthStr to convert “05”, for example,
into the integer 5. (eval(“05”) = 5)

* Another conversion technique would be
to use the int function. (int(“05”) = 5)

Eval and Octal Numbers

» Python allows int literals to be
expressed in other number systems
than base 10! If an int starts with a 0,
Python treats it as a base 8 (octal)
number.

e 0235 = 2*8 + 3"1 = 19,,
» OK, that’s interesting, but why support
other number systems?

12

The Rule: Use int to convert numbers

S L

G S

» Computers use base 2 (binary). Octal is
a convenient way to represent binary
numbers.

« If this makes your brain hurt, just
remember to use int rather than eval
when converting strings to numbers
when there might be leading zeros.

Input/Output as String Manipulation

S L

print “The converted date is:”, monthStr, dayStr+”,”, yearStr

* Notice how the comma is appended to
dayStr with concatenation!

e >>>main()
Enter a date (mm/dd/yyyy): 01/23/2004
The converted date is: January 23, 2004

Input/Output as String Manipulation

S L

months = [“January”, “February”, ..., “December”]

monthStr = months[int(monthStr) — 1]

» Remember that since we start counting
at 0, we need to subtract one from the
month.

* Now let’s concatenate the output string
together!

Converting a number to a string

S L

G S

* Sometimes we want to convert a number into
a string.

* We can use the str function!

>>> str(500)

'500'

>>> value = 3.14

>>> str(value)

8l lak

>>> print "The value is", str(value) + "."

The value is 3.14.

13

Converting a number to a string

S L

=

« If value is a string, we can concatenate
a period onto the end of it.

* If value is an int, what happens?

>>> value = 3.14
>>> print "The value is", value +"."
The value is

Traceback (most recent call last):
File "<pyshell#10>", line 1, in -toplevel-
print "The value is", value +"."
TypeError: unsupported operand type(s) for +: 'float' and 'str'

Conversion Operations

S L

=

» We now have a complete set of type
conversion operations:

Function Meaning

float(<expr>) Convert expr to a floating point value

int(<expr>) Convert expr to an integer value

long(<expr>) Convert expr to a long integer value

str(<expr>) Return a string representation of expr

eval(<string>) | Evaluate string as an expression

Converting a number to a string

S L

RS

« If value is an int, Python thinks the + is
a mathematical operation, not
concatenation, and “.” is not a number!

il A N D TN A R TS A 03 s M N DN /e

S, String Formatting
% e
» <template-string> % (<values>)
* % within the template-string mark “slots”
into which the values are inserted.
* There must be one slot per value.

» Each slot has a format specifier that
tells Python how the value for the slot
should appear.

using templates

S L 2

b 42 DTSR A 7 YT A U R Y A A Y (MR DU T

14

LV B A e N S U e R DR A oA

S L

R String Formatting

: print "The total value of your change is $%0.2f “ % (total)

* The template contains a single
specifier: %0.2f

» The value of total will be inserted into
the template in place of the specifier.

» The specifier tells us this is a floating

point number (f) with two decimal
places (.2)

L)L A S N 0 Y UASNDINNS 01

P e L e A e N P /Ty

_4, String Formatting

S L

 |f you don’t give it enough space using
<width>, Python will expand the space until
the result fits.

» <precision> is used with floating point
numbers to indicate the number of places to
display after the decimal.

* %0.2f means to use as much space as

necessary and two decimal places to display
a floating point number.

L)L A S N 0 Y UASNDINNS 01

LV B A e N S B DR A e A

= S £

_4, String Formatting
. The formatting specifier has the form:

%<width>.<precision><type-char>
» Type-char can be decimal, float, string
(decimal is base-10 ints)
» <width> and <precision> are optional.
» <width> tells us how many spaces to

use to display the value. 0 means to
use as much space as necessary.

2L A S N0 YN INNS 01

SV A R e S S R e

_4, String Formatting

G S St L

>>> "Hello %s %s, you may have already won $%d" % ("Mr.", "Smith",
10000)

'Hello Mr. Smith, you may have already won $10000’

>>> 'This int, %5d, was placed in a field of width 5' % (7)
'This int, 7, was placed in a field of width 5'

>>> 'This int, %10d, was placed in a field of witdh 10' % (10)
'This int, 10, was placed in a field of witdh 10’

>>> 'This int, %10d, was placed in a field of width 10" % (7)
'This int, 7, was placed in a field of width 10’

2L A S N0 YN INNS 01

15

String Formatting

S L

>>> 'This float, %10.5f, has width 10 and precision 5.' % (3.1415926)
‘This float, 3.14159, has width 10 and precision 5.'

>>> 'This float, %0.5f, has width 0 and precision 5." % (3.1415926)
‘This float, 3.14159, has width 0 and precision 5.'

>>>"Compare %f and %0.20f' % (3.14, 3.14)
'‘Compare 3.140000 and 3.14000000000000010000'

M TG R USRI

Another way to format..

S L

import string
x =“Joe”
x.ljust(10) # Left justify this string in a 10 char field
x.rjust(10) # Right justify this string in a 10 char field
x.center(10) # Center this string in a 10 char field

>>> x ="Joe"
>>> x.ljust(10)
‘Joe ¥

>>> x.rjust(10)
: Joe
>>> x.center(10)
' Joe '

>>>

MAT A0 LR A 0 LA VS

String Formatting

S L

 |f the width is wider than needed, the value is
right-justified by default. You can left-justify
using a negative width (%-10.5f)

M TG R U R

Example: Making Change...

S L

Assume you are working at cash
register and you need a program to
calculate the number of coins to give
out for a given number. For example, if
the price is $17.23 and someone give
you a $20, you should return:

2 dollars

3 quarters
2 pennies

MAT A0 LR A L LA VS

16

Example: Making Change...

S L

 Ask for cost
Ask for payment amount

Compute number of dollars
Compute number of quarters, dimes,
51 nickels, pennies

' Output (nicely) to the user

Detailed Pseudocode: dollars

S L

Determine number of dollars

determine change (payment - cost)
remove decimal value
return that as the number of dollars

Example: Making Change...

S L

 Ask for cost
» Ask for amount input

cost, payment = input(“What is the cost
and payment ->")

Detailed Pseudocode: coins

S L

Determine number of coins
determine change (payment - cost - dollars)
figure out how many quarters you can use
remove that value from the change
figure out how many dimes you can use

subtract that value from the change...

17

Example: Making change... ; .‘ Example: Verifying input...

S L

S L

* On to computechangeSkeleton.py * If we provide a menu to the user with
b numbers, how can we validate that they
enter a valid number? Let’s try...

* First, to the string documentation...
* Next up: Pseudocode

ST

Pseudocode: Verifying input... ; .‘ Example: Verifying input...

S L

S L

. ask user the question ~ On to inputverification.py...
. check if answer is all digits -
. ifso
- convert the answer to an int
- return the int to the user
. else

- print an error
- go back to step 2

18

