- Python Programming:
| An Introduction to
Computer Science

Chapter 6
Functions,Variables,Modules

b Coming up: The Function of
Functions

Example Function versus No Functions

SR

See functionsexample.py

p1Name = raw_input("What is your name player1 ?")

p1Age = input("What is your age player1 ?")

p1Color = raw_input("What is your favorite color player1 ?")

p2Name = raw_input("What is your name player2 ?")

p2Age = input("What is your age player2 ?")

p2Color = raw_input("What is your favorite color player2 ?")

p3Name = raw_input("What is your name player3 ?")

p3Age = input("What is your age player3 ?")

p3Color = raw_input("What is your favorite color player3 ?")

print "Player 1 is %s who is %d years old. \nTheir favorite color is %s" \
%(p1Name, p1Age, p1Color)

print "Player 2 is %s who is %d years old. \nTheir favorite color is %s" \
%(p2Name, p2Age, p2Color)

print "Player 3 is %s who is %d years old. \nTheir favorite color is %s" \

%(p3Name, p3Age, p3Color)

LT Ul A LA LV s L I SO 0 M AN DR /N 0 Y

Python Programming, 1/e

™

L S R L S R T e, T a3
The Function of Functions

* Why use functions at all?

— Reduces duplicate code
(Less maintenance, debugging, etc...)

— Makes programs easier to read

— Makes programs more “modular”.. easier to
change and reuse parts.

LT Ul S LA LV o L MO 0 M D3t

Example Function versus No Functions

SR

Get the player's information
def getinfo(playerNum):
playerStr = str(playerNum)
nm = raw_input("What is your name player"+playerStr+" 2")
age = input("What is your age player"+playerStr+" ?")
color = raw_input("What is your favorite color player"+playerStr+" ?")
return nm, age, color

Print out the information about a player
def printinfo(nm, age, color, num):
print "Player %d is %s who is %d years old. \nTheir favorite color is %s" \
%(num, nm, age, color)

def main():
piName, p1Age, p1Color = getlnfo(1)
p2Name, p2Age, p2Color = getlnfo(2)
p3Name, p3Age, p3Color = getlnfo(3)

4 printinfo(p1Name, p1Age, piColor, 1)
|~ printinfo(p2Name, p2Age, p2Color, 2)
- printinfo(p3Name, p3Age, p3Color, 3)

main()

L1 el A Ve N R SO 0 Y AN DR /) 0 Y

SRV R T Py e L e

Types of Functions

» So far, we've seen many different types
of functions:
— Our programs comprise a single function
called main().
— Built-in Python functions (abs, range,
input...)
— Functions from the standard libraries
(math.sqrt)

AR

G G SRS e T 0 e

ulator

Coolness Calc

SR

def main() :
johnPythonSkill = 10
johnMontyPythonTrivia = 20

johnCoolness = (johnPythonSkill * 2) + A\
(3 tyPythonTrivi *IR5))

if johnCoolness > 30:
print ‘I will ask John out’
elif johnCoolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send John a Monty Python DVD and’,
' CS112 textbook.

Works great for John, but I have other people to check!

Python Programming, 1/e

Functions, Info

SR

(ST

rmally

A function is like a subprogram, a small
program inside of a program.

* The basic idea — we write a sequence
of statements and then give that
sequence a name (define a function).

* We can then execute this sequence at

any time by referring to the name.

(invoke or call a function)

TR T N N T T T IR T
LA ?

Ma

» Calculating Coolness
def main():
johnPythonSkill = 10
johnMontyPythonTrivia = 20

johnCoolness = (johnPythonSkill * 2) + \
(3 tyPythonTrivi A135)

TT JONNMCOOINESE > 307
print ‘I will ask John out’

if johnCoolness > 20:

rint ‘I will set him up with my friend Mary’

‘I will send John a Monty Python DVD and’,
\

‘ Make this a functions in case
our coolness definition changes
| in the future (python * 10?)

What can change?

Calculating Coolness
johnCoolness = (johnPythonSkill * 2) + \
(5 YPyY ivi AETIT5))

Determine what you think may change from person to person
and make those parameters

PythonSkill
PythonTriviaScore

PythonSkillWeight (maybe)
PythonTriviaWeight (maybe)

Nl VRPN e PN

it 2

Variable Scope é

» Every variable has a “scope”.

» The scope of a variable refers to the
places in a program a given variable
can be referenced.

» Variables defined in a function are
local variables and can only be
referenced directly in that function

Nl VRPN e PN

Python Programming, 1/e

Try #1

def calculateCoolness():
johnCoolness = (johnPythonSkill * 2) + \
(3 YPy ivi * 1.5)

def main():
johnPythonSkill = 10
johnMontyPythonTrivia = 20

calculateCoolness ()
if johnCoolness > 30:
print ‘I will ask John out
elif johnCoolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send John a Monty Python DVD and’,
' Cs1l12 textbook. '

This does not work because of variable scope!

MNFRAl AN e LAY SRy 3

Try #2

def calculateCoolness (johnPythonsSkill, j yPy
johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

it 2

def main () :
johnPythonskill = 10
johnMontyPythonTrivia = 20

calculateCoolness (johnPythonSkill, j
if johnCoolness > 30:
print ‘I will ask John out’
elif johnCoolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send John a Monty Python DVD and’,
' CS112 textbook.

Adding parameters makes things better.. But still a problem!
johnCoolness is local in calculateCoolness... how to fix?

Nl VRPN e PN

Try #3

def calculateCoolness (johnPy: i11, 3

i,

johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

def main():
johnPythonskill = 10
johnMontyPythonTrivia = 20
johnCoolness = 0

calculateCoolness (johnPy
johnCoolness)
if johnCoolness > 30:
print ‘I will ask John out’
elif johnCoolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send John a Monty Python DVD and’,
' CS112 textbook. '

Seems right, but Python uses copies (pass by value)...
this also does not work!

Try #5

def calculateCoolness(py 111,

i,

yPy
coolness = (pythonSkill * 2) + \

(montyPythonTriviaScore * 1.5)
return coolness

def main():
name = raw_input(“Who are we checking? “)
pythonskill = input(“What is their Python skill?”)
montyPythonTrivia = input(“What is their trivia score?”)
coolness = 0
coolness = calculateCoolness(py alil,
if coolness > 30:
print ‘I will ask ',name,’ out’
elif coolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send ‘,name,’ a Monty Python DVD and’,
' CS112 textbook. '

yPy

- Now our coolness detector can tell us who we should date...

whew, much easier than the non-Python way!

Python Programming, 1/e

04 ivia, johnCoolness): def calculateCoolness (johnPy: LR NAST |

Try #4

i,

4
johnCoolness = (johnPythonSkill * 2) + \

(johnMontyPythonTriviaScore * 1.5)
return johnCoolness

def main():
johnPythonskill = 10
johnMontyPythonTrivia = 20
johnCoolness = 0

johnCoolness = calculateCoolness (johnPythonSkill,
johnMontyPythonTrivia)
if johnCoolness > 30:
print ‘I will ask John out’
elif johnCoolness > 20:
print ‘I will set him up with my friend Mary’
else:
print ‘I will send John a Monty Python DVD and’,
' CS112 textbook. '

Add a return value to get information out of a function!
This works... but variables should be generically named
A MNTol U IR AN

Functions can call other functions

it 2

Any function can call any other function in

your module
d s
func 1 from”, from
Output:
def func2(): I am in func2
print “I am in func 2’, * I am in funcl from f2
for i in range(3): * I am in funcl from f2
“ * I am in funcl from f2
func(“f:
e * I am in funcl from main
ef main():
func2()
func1(”

SR AT

Function Lifecycle

SR

We are formal Function Call Lifecycle

arameters 1. main is suspended
2. formal parameters are
assigned values from
actual parameters
function body executes
left-hand-side of
function call is
assigned value of
whatever is returned
from function
. Control returns to the
point just after where
the function was called.

Recall:

def function1(formalParameter1, fp2, fp3):
Do something
return someVal

P w

def main():
answer =\
function1(actualParameter1, ap2, ap3)

We are actual
parameters

L T L N O O AN TTHONS 2/

_4 Functions and Parameters: The Details

SR

* Formal parameters, like all variables
used in the function, are only accessible
in the body of the function.

» Variables with identical names
elsewhere in the program are distinct
from the formal parameters and

variables inside of the function body.

LI Lt AT NN SO 0 Y AN DR /) 0

Python Programming, 1/e

_4, Functions and Parameters: The Details

SR

» Each function is its own little subprogram. The
variables used inside of one function are local to that
function, even if they happen to have the same name
as variables that appear inside of another function.

» The only way for a function to see a variable from
another function is for that variable to be passed as a
parameter.

The scope of a variable refers to the places in a
program a given variable can be referenced.

L TR L N O Y AN TTHONS 2/

Trace through some code

SR

def ging(person):

daf main(): pareon = “Fred

sing (“Fred") ::‘;gg
print E print "Happy birthday, dear", person + "."
ing ey happy ()

e

Note that the variable person has just
been initialized.

LI Lt AT NN SO 0 Y AN DR /) 0

Trace through some code

ST L.

Trace through some code

ST L.

_def sing(person): def happy():

person = “Fred" print “Heppy Birthday to you!®
happy ()

£ maing):

« At this point, Python begins executing the

; sing (“Fred")
body of sing. e | - ——
ging {("Iucy"’ 2
« The first statement is another function call, to Ty
happy. What happens next? person: “Frea-|

» Python suspends the execution of sing and
transfers control to happy.

» happy consists of a single print, which is

executed and control returns to where it left

off in sing.

= Execution continues in this way with two more
i trips to happy.

» When Python gets to the end of sing, control
returns to main and continues immediately
following the function call.

Trace through some code

it : i

Trace through some code

SR L.

A
,.

,def sing{person):

3 - def main():
def main(): R e ::“9“:"“’- singrredr) L« aped hapey
sing ("Frad") PPY prinit 9 appy () .
rint happy () sing (~Tucy")y print "Happy birthday, dear”, person + *."
P. print “Happy birthdey, dear", person + “.* g ¥ happy ()
eing {"Tucy") happy ()

patacad]]
-+ The body of sing is executed for Lucy
‘ with its three side trips to happy and
control returns to main.

* Notice that the person variable in sing has
disappeared!

» The memory occupied by local function
variables is reclaimed when the function exits.

 Local variables do not retain any values from

one function execution to the next.

Python Programming, 1/e

| der

L

3 . def sing({person):
main{): "
eing {("Fred") o v happy ()
print gor?®® happy ()

8ing (“Iucy") happy)

Trace through some code

it 2

* As an example, consider the call to
drawBar:
drawBar (win, 0O, principal)

* When control is passed to drawBar,
these parameters are matched up to the
formal parameters in the function

heading:

def drawBar (window,

year, height) :

Python Programming, 1/e

print “"Happy birthday, dear", person + “."

* One thing not addressed in this

» The net effect is as if the function body

Trace through some code

it 2

example was multiple parameters. In
this case the formal and actual
parameters are matched up based on
position, e.g. the first actual parameter
is assigned to the first formal

parameter, the second actual parameter
is assigned to the second formal
parameter, etc.

Functions and Parameters: The Details

it 2

had been prefaced with three
assignment statements:
window = win
year = 0
height =

principal

Parameters are INPUT to a function

ST L.

» Passing parameters provides a
mechanism for initializing the variables
in a function.

» Parameters act as inputs to a function.

-+ We can call a function many times and
get different results by changing its
parameters.

Functions That Return Values

SR L.

 This function returns the square of a number:

def square(x):
return x*x

» When Python encounters return, it exits the
I function and returns control to the point where
the function was called.
+ In addition, the value(s) provided in the
return statement are sent back to the caller
as an expression result.

Python Programming, 1/e

Return values are OUTPUT from a function

ST L.

* We've already seen numerous
examples of functions that return values
to the caller.

EifscRE="math.sqgrt (b*b — 4*axc)

.+ Thevalueb*b - 4*a*c is the actual

| parameter of math.sqrt.

» We say sqgrt returns the square root of
its argument.

s e e £ S S T A T O e

Return examples

SR L.

* >>> square (3)

9
* >>> print square(4)
16
e >>>x =75
>>> y = square (x)
& >>> print y
(25

print square(x) + square(3)

Multlple Return values Multlple Return Values

. When calling this functlon use
simultaneous assignment.

. Sometlmes a function needs to return
more than one value.

» To do this, simply list more than one
expression in the return statement.

* numl, num2 = input("Please enter two numbers (numl, num2) ")

s, d = sumDiff (numl, num2)

print "The sum is", s, "and the difference is", d
* As before, the values are assigned
based on position, so s gets the first
value returned (the sum), and d gets the
second (the difference).

* def sumDiff(x, y):
sum=x+y
diff=x—y

return sum, diff

Secretly -- all functions return a value Python passes parameter values
+ One “gotcha” — all Python functions def addToVar(X) Output:
return a value, whether they contain a X=x+2 10
return statement or not. Functions
without a return hand back a special def main():
object, denoted None. <10 Why? Python passes
Ll addToVar(x) copies of the value,
« A common pro.blem is wrltllnlg a value- Bl so changing the
returnln? function and omitting the copy doesn't
= do anything!!
» Watch out! (This is called

“pass by value :

Python Programming, 1/e

Lets explain Pass by value

def addInterest(balance, rate):
newBalance = balance * (1 +

et vear() : 8af adalnterest (balance, rate) ‘ Ilne Of !::f:nce = newBalance
l alownE: 1800 %’ BAMTane = BAlanss & T ¢ ane) | addInterest
e

rata = 0.05 Talance = newEalance
AdAINTOraNT (aTounT, TATG) def test():

prin: s creates a new amount = 1000

. 5 rate = 0.05
‘//E | Vanable: addInterest (amount, rate)
-

newBalance. print amount

. Executlng the first

rate

balance is then
assigned the value

Picture all variables as arrows pointing o mo i

to a number, changing the variable’s
value just makes the arrow point
somewhere else

Pass by value Pass by value

e balance now refers def addinterest(balance, rate):
newBalance = balance * (1 + rate)

to the same value as balance = newBalance
newBalance, but b

- ef test():
this had no effect on Aot =000

amount in the test rate = 0.05
addInterest(amount, rate)

Saf teani): " 307 adtinterest Balanoe, rate):
| aeowst = 100 /‘,.% nawialance = balanoe * (1 + Taze)
§ faze = 0.5 el Dalanoe = newbalanos
AN LT 68 L IRROUOT, TRLe)
Pprint asount

balance

function. print amount

O 2
l, Dawal s o
[lS”J o

Python Programming, 1/e

R R

Pass by value

def addInterest(balance, rate):
newBalance = balance * (1 +

addInterest has e
completed and control
returns to test.

» Execution of

balance = newBalance

2 def test():
* The local variables, amount = 1000
including the rate = 0.05
! parameters, in :‘:fl’t“:::::"“"““" zate)
rﬁ:} addInterest go

lig away, but amount and
i rate in the test

’d function still refer to
‘ their initial values!

def func1(input):
for i in range(3): Output:
inputfi] = inputfi] + 10 111, 12, 13
| def main():
| mylist=[1,2,3] Why why
| funct(myList) why?

print myList

Python Programming, 1/e

N A N P U S R ot 1 e

Pass by value

To summarize: the formal parameters of
a function only receive the values of the
actual parameters. The function does
not have access to the variable that
holds the actual parameter.

Python is said to pass all parameters by

i :Answers
:Z; A. Python is just messed up
. B. Mr. Fleck lied to us and some things
are not passed by value
C. Who cares, I'm going to change to a
i history major.. Python annoys me now
| D. Something different happens with
mutable data types

11

Lets look at this code

addinterest3.py

Illustrates modification of a mutable parameter (a list).

def addInterest(balances, rate):
for i in range(len(balances)):
balances[i] = balances[i] * (l+rate)

test():

amounts = [1000, 2200, 800, 360]
rate = 0.05

addInterest (amounts, 0.05)

print amounts

test()

The truth ... really this time!

def addInterest(balances, rate):
Next, addInterest T

balances[i] = balances[i] *

executes. The loop (i+eate)
goes through each test0):

index in the range 0, e e

addInterest (amounts, 0.05)

1, ..., length -1 and S (s
updates that value in
balances.

Python Programming, 1/e

-
e O e—

The truth ... really this time!

balanoes[i] = Balacces(i] * {leraze)

daf testi}: Suf aMMIntacust (Dalanoss, Tate):
amointe = [1300, 150,900, n-;/ for L Ln range(len(belences))t

* rate = 0.05
sddInterest (Anounte, Fate)
Peint arcunte

=S

e

/T VN
(o) o =))

The “value” of a list is a group of arrows

The truth ... really this time!

daf tastl): Bul aMMIntecest (Dalanoes, £ale):
amoints = [1300,%150,900, X275) for L in range(len|beleicus)):
rate = 0.03 Salances[i] = balarces[i] * {leraze}
AAAT Lo LRIt (antunle, EALe)

O @'/"E] .

Dalanoces

wouara E__,///E]

o)) o)
)) 6

12

The truth ... really this time!

ST L.

« Inthe diagram the old def addInterest(balances, rate):

values are left hanging B e
around to emphasize balances[i] = balances[i]
that the numbers in the SRt
boxes have not el
changed, but the new amounts = [1000, 2200, 800,
360]
i values were created Mot
i and assigned into the addInterest (amounts, 0.05)

list. print amounts

* The old values will be
destroyed during
garbage collection.

One last time for the cheap seats...

SR L.

» Parameters are always passed by
value. However, if the value of the
variable is a mutable object (like a list),
then changes to the state of the object

will be visible to the calling program.

Python Programming, 1/e

The final answer

ST L.

* When addInterest terminates, the list
stored in amounts now contains the new
values.

* The variable amounts wasn’t changed (it's
still a list), but the state of that list has

2 changed, and this change is visible to the

i calling program.

» So... the final answer is, we did NOT change
the value of the list, we changed where the

list arrows (inside the list) pointed (and Mr. Fleck is
not a liar... just goofy, and a bit crazy...)

If your brain hurts...
" R e - v
MONTY/PUTHON'S 7
(ﬂ'l”"‘]"‘ LOR)

13

Lets write a Hangm

* When you write a game you first can
decide what are the core functions and
variables we need.

* Let think of Hangman... what | want it to
look like is this:

What information
@ : t (variables) do I need
oo Sallinc to know to generate

Currentword: __t_on this?
Enter guess or 1 to quit ->

Hangman St

misses = 0 # How many bad guesses have they had?

lettersGuessed = [] # Empty list of the letters already
guessed

wordToGuess = "python" # Should ask the user for
this

Got it... let's move to the pseudocode

Python Programming, 1/e

Hangman St

Guesses: s, q,r, et
Currentword: __t_on

Enter guess or 1 to quit ->

What information
(variables) do I need
to know to generate
this?

Hangman Pseudocode

* Whatis it?

14

udocode

print the hangman
print the word

ask the user for input

— check if the letter was already used (if so, warn the user and
start over at step 1)
— update the list of used letters
— check if the letter is in the word
« if so, check if the user has won
« if not, check if the user has lost

Not bad.. on to hangman.py!

R

Default Parameters

Function parameters can have default
values
def exponent(num, exp=2):
return num ** exp
Output:
TypeError: exponent() takes

print exponent(4, 3, 45)

Python Programming, 1/e

at most 2 arguments (3 given)

meter

Function parameters can have default
values

def exponent(num, exp=2):
return num ** exp

print exponent(4)
print exponent(4, 3)

R

Default Parameters

Non-default arguments cannot follow
default arguments!

def exponent(num, exp=2, temp):
return num ** exp

print exponent(4, 3, 45)

X

There's an error in your program:
default argument follows default argument

*** non-defaul
(defaultParameterExample.py, line 3)

(S

15

R N R A A S D TS A ot 1

Default Parameter

ST L.

Arguments are assigned left to right
def exponent(num, exp=2, temp=>5):
print “Num:%d Exp:%d Temp:%d” \
%(num, exp, temp)
return num ** exp Output:
Num:4 Exp:2 Temp:5

) 16
print exponent(4) Num:4 Exp:3 Temp:5

print exponent(4, 3) 64

print exponent(4, 3, 45) I;‘“m:“ LEh397) LIS

What prints?

i : e -

def myFunction(a, b, c=4, d=5):

printa, b, c, d

myFunction(5, 4, 3, 2) 5432
| myFunction(3, 4) 3445

myFunction(3, 4, 5) 3455

myFunction(3, 4, d=5) 3445
myFunction(b=1, a=2)

Python Programming, 1/e

S

Named Argument

N A TNy ST s

ST L.

What if you want to use the default for parameter 2, but
give a value for parameter 3?

def exponent(num, exp=2, temp=>5):
print “Num:%d Exp:%d Temp:%d” \
%(num, exp, temp)
return num ** exp

Output:
exponent(34, temp=3) Num:34 Exp:2 Temp:3
exponent(temp=3, num=34) Num:34 Exp:2 Temp:3

16

