
Python Programming, 1/e 1

Coming up: The Function of

Functions

1

Python Programming:

An Introduction to

 Computer Science

Chapter 6

Functions,Variables,Modules

Coming up: Example Function versus No FunctionsComing up: Example Function versus No Functions 22

The Function of Functions

• Why use functions at all?

– Reduces duplicate code
(Less maintenance, debugging, etc…)

– Makes programs easier to read

– Makes programs more “modular”.. easier to
change and reuse parts.

Coming up: Example Function versus No FunctionsComing up: Example Function versus No Functions 33

Example Function versus No Functions

See functionsexample.py
p1Name = raw_input("What is your name player1 ?")

p1Age = input("What is your age player1 ?")

p1Color = raw_input("What is your favorite color player1 ?")

p2Name = raw_input("What is your name player2 ?")

p2Age = input("What is your age player2 ?")

p2Color = raw_input("What is your favorite color player2 ?")

p3Name = raw_input("What is your name player3 ?")

p3Age = input("What is your age player3 ?")

p3Color = raw_input("What is your favorite color player3 ?")

print "Player 1 is %s who is %d years old. \nTheir favorite color is %s" \

 %(p1Name, p1Age, p1Color)

print "Player 2 is %s who is %d years old. \nTheir favorite color is %s" \

 %(p2Name, p2Age, p2Color)

print "Player 3 is %s who is %d years old. \nTheir favorite color is %s" \

 %(p3Name, p3Age, p3Color)

Coming up: Types of FunctionsComing up: Types of Functions 44

Example Function versus No Functions

Get the player's information

def getInfo(playerNum):

 playerStr = str(playerNum)

 nm = raw_input("What is your name player"+playerStr+" ?")

 age = input("What is your age player"+playerStr+" ?")

 color = raw_input("What is your favorite color player"+playerStr+" ?")

 return nm, age, color

Print out the information about a player

def printInfo(nm, age, color, num):

 print "Player %d is %s who is %d years old. \nTheir favorite color is %s" \

 %(num, nm, age, color)

def main():

 p1Name, p1Age, p1Color = getInfo(1)

 p2Name, p2Age, p2Color = getInfo(2)

 p3Name, p3Age, p3Color = getInfo(3)

 printInfo(p1Name, p1Age, p1Color, 1)

 printInfo(p2Name, p2Age, p2Color, 2)

 printInfo(p3Name, p3Age, p3Color, 3)

main()

Python Programming, 1/e 2

Coming up: Functions, InformallyComing up: Functions, Informally 55

Types of Functions

• So far, we’ve seen many different types
of functions:

– Our programs comprise a single function
called main().

– Built-in Python functions (abs, range,
input…)

– Functions from the standard libraries
(math.sqrt)

Coming up: Coolness CalculatorComing up: Coolness Calculator 66

Functions, Informally

• A function is like a subprogram, a small

program inside of a program.

• The basic idea – we write a sequence

of statements and then give that

sequence a name (define a function).

• We can then execute this sequence at

any time by referring to the name.

(invoke or call a function)

Coming up: Making a functionComing up: Making a function 77

Coolness Calculator

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

 if johnCoolness > 30:
 print ‘I will ask John out’

 elif johnCoolness > 20:
 print ‘I will set him up with my friend Mary’

 else:
 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Works great for John, but I have other people to check!

Coming up: What can change?Coming up: What can change? 88

Making a function

• Calculating Coolness
def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

 if johnCoolness > 30:
 print ‘I will ask John out’

 elif johnCoolness > 20:
 print ‘I will set him up with my friend Mary’

 else:
 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Make this a functions in case
 our coolness definition changes

 in the future (python * 10?)

Python Programming, 1/e 3

Coming up: Try #1Coming up: Try #1 99

What can change?

• Calculating Coolness
 johnCoolness = (johnPythonSkill * 2) + \

(johnMontyPythonTriviaScore * 1.5)

• Determine what you think may change from person to person

and make those parameters

• PythonSkill

• PythonTriviaScore

• PythonSkillWeight (maybe)

• PythonTriviaWeight (maybe)

Coming up: Variable ScopeComing up: Variable Scope 1010

Try #1

def calculateCoolness():

johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 calculateCoolness()

 if johnCoolness > 30:
 print ‘I will ask John out’

 elif johnCoolness > 20:
 print ‘I will set him up with my friend Mary’

 else:
 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

This does not work because of variable scope!

Coming up: Try #2Coming up: Try #2 1111

Variable Scope

• Every variable has a “scope”.

• The scope of a variable refers to the

places in a program a given variable

can be referenced.

• Variables defined in a function are

local variables and can only be

referenced directly in that function

Coming up: Try #3Coming up: Try #3 1212

Try #2

def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia):

johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 calculateCoolness(johnPythonSkill, johnMontyPythonTrivia)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Adding parameters makes things better.. But still a problem!
johnCoolness is local in calculateCoolness… how to fix?

Python Programming, 1/e 4

Coming up: Try #4Coming up: Try #4 1313

Try #3

def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia, johnCoolness):

johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = 0

 calculateCoolness(johnPythonSkill, johnMontyPythonTrivia, \
 johnCoolness)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
‘ CS112 textbook. ‘

Seems right, but Python uses copies (pass by value)… so
this also does not work!

Coming up: Try #5Coming up: Try #5 1414

Try #4

def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia):

johnCoolness = (johnPythonSkill * 2) + \
(johnMontyPythonTriviaScore * 1.5)

return johnCoolness

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = 0

 johnCoolness = calculateCoolness(johnPythonSkill,
johnMontyPythonTrivia)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Add a return value to get information out of a function!
 This works… but variables should be generically named

Coming up: Functions can call other functionsComing up: Functions can call other functions 1515

Try #5

def calculateCoolness(pythonSkill, montyPythonTrivia):

 coolness = (pythonSkill * 2) + \
(montyPythonTriviaScore * 1.5)

return coolness

def main():
 name = raw_input(“Who are we checking? “)

pythonSkill = input(“What is their Python skill?”)
 montyPythonTrivia = input(“What is their trivia score?”)

 coolness = 0
 coolness = calculateCoolness(pythonSkill, montyPythonTrivia)
 if coolness > 30:

 print ‘I will ask ‘,name,’ out’
 elif coolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send ‘,name,’ a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Now our coolness detector can tell us who we should date…
whew, much easier than the non-Python way!

Coming up: Function LifecycleComing up: Function Lifecycle 1616

Functions can call other functions

Any function can call any other function in

your module
def func1(from):

print “* I am in func 1 from”, from

def func2():

print “I am in func 2”

for i in range(3):

func1(“f2”)

def main():

func2()

func1(“main”)

Output:
I am in func2

* I am in func1 from f2

* I am in func1 from f2
* I am in func1 from f2

* I am in func1 from main

Python Programming, 1/e 5

Coming up: Functions and Parameters: The DetailsComing up: Functions and Parameters: The Details 1717

Function Lifecycle

Recall:

def function1(formalParameter1, fp2, fp3):

Do something

return someVal

def main():

answer = \

function1(actualParameter1, ap2, ap3)

We are formal
parameters

We are actual
parameters

Function Call Lifecycle

1. main is suspended
2. formal parameters are

assigned values from

actual parameters

3. function body executes

4. left-hand-side of
function call is

assigned value of

whatever is returned

from function
5. Control returns to the

point just after where

the function was called.

Coming up: Functions and Parameters: The DetailsComing up: Functions and Parameters: The Details 1818

Functions and Parameters: The Details

• Each function is its own little subprogram. The

variables used inside of one function are local to that

function, even if they happen to have the same name

as variables that appear inside of another function.

• The only way for a function to see a variable from

another function is for that variable to be passed as a

parameter.

•

The scope of a variable refers to the places in a

program a given variable can be referenced.

Coming up: Trace through some codeComing up: Trace through some code 1919

Functions and Parameters: The Details

• Formal parameters, like all variables

used in the function, are only accessible

in the body of the function.

• Variables with identical names

elsewhere in the program are distinct

from the formal parameters and

variables inside of the function body.

Coming up: Trace through some codeComing up: Trace through some code 2020

Trace through some code

Note that the variable person has just

been initialized.

Python Programming, 1/e 6

Coming up: Trace through some codeComing up: Trace through some code 2121

Trace through some code

• At this point, Python begins executing the
body of sing.

• The first statement is another function call, to
happy. What happens next?

• Python suspends the execution of sing and
transfers control to happy.

• happy consists of a single print, which is
executed and control returns to where it left
off in sing.

Coming up: Trace through some codeComing up: Trace through some code 2222

Trace through some code

• Execution continues in this way with two more
trips to happy.

• When Python gets to the end of sing, control
returns to main and continues immediately
following the function call.

Coming up: Trace through some codeComing up: Trace through some code 2323

Trace through some code

• Notice that the person variable in sing has
disappeared!

• The memory occupied by local function
variables is reclaimed when the function exits.

• Local variables do not retain any values from
one function execution to the next.

Coming up: Trace through some codeComing up: Trace through some code 2424

Trace through some code

• The body of sing is executed for Lucy

with its three side trips to happy and

control returns to main.

Python Programming, 1/e 7

Coming up: Trace through some codeComing up: Trace through some code 2525

Trace through some code

Coming up: Trace through some codeComing up: Trace through some code 2626

Trace through some code

• One thing not addressed in this
example was multiple parameters. In
this case the formal and actual
parameters are matched up based on
position, e.g. the first actual parameter
is assigned to the first formal
parameter, the second actual parameter
is assigned to the second formal
parameter, etc.

Coming up: Functions and Parameters: The DetailsComing up: Functions and Parameters: The Details 2727

Trace through some code

• As an example, consider the call to
drawBar:
drawBar(win, 0, principal)

• When control is passed to drawBar,

these parameters are matched up to the

formal parameters in the function

heading:
def drawBar(window, year, height):

Coming up: Parameters are INPUT to a functionComing up: Parameters are INPUT to a function 2828

Functions and Parameters: The Details

• The net effect is as if the function body

had been prefaced with three

assignment statements:

window = win
year = 0
height = principal

Python Programming, 1/e 8

Coming up: Return values are OUTPUT from a functionComing up: Return values are OUTPUT from a function 2929

Parameters are INPUT to a function

• Passing parameters provides a

mechanism for initializing the variables

in a function.

• Parameters act as inputs to a function.

• We can call a function many times and

get different results by changing its

parameters.

Coming up: Functions That Return ValuesComing up: Functions That Return Values 3030

Return values are OUTPUT from a function

• We’ve already seen numerous

examples of functions that return values

to the caller.
discRt = math.sqrt(b*b – 4*a*c)

• The value b*b – 4*a*c is the actual

parameter of math.sqrt.

• We say sqrt returns the square root of

its argument.

Coming up: Return examplesComing up: Return examples 3131

Functions That Return Values

• This function returns the square of a number:

def square(x):
 return x*x

• When Python encounters return, it exits the
function and returns control to the point where
the function was called.

• In addition, the value(s) provided in the
return statement are sent back to the caller
as an expression result.

Coming up: Multiple Return valuesComing up: Multiple Return values 3232

Return examples

• >>> square(3)
9

• >>> print square(4)
16

• >>> x = 5
>>> y = square(x)
>>> print y
25

• >>> print square(x) + square(3)
34

Python Programming, 1/e 9

Coming up: Multiple Return ValuesComing up: Multiple Return Values 3333

Multiple Return values

• Sometimes a function needs to return

more than one value.

• To do this, simply list more than one
expression in the return statement.

• def sumDiff(x, y):

 sum = x + y

 diff = x – y

 return sum, diff

Coming up: Secretly -- all functions return a valueComing up: Secretly -- all functions return a value 3434

Multiple Return Values

• When calling this function, use
simultaneous assignment.

• num1, num2 = input("Please enter two numbers (num1, num2) ")
s, d = sumDiff(num1, num2)
print "The sum is", s, "and the difference is", d

• As before, the values are assigned
based on position, so s gets the first
value returned (the sum), and d gets the
second (the difference).

Coming up: Python passes parameter valuesComing up: Python passes parameter values 3535

Secretly -- all functions return a value

• One “gotcha” – all Python functions

return a value, whether they contain a
return statement or not. Functions

without a return hand back a special

object, denoted None.

• A common problem is writing a value-

returning function and omitting the
return!

• Watch out!

Coming up: Lets explainComing up: Lets explain 3636

Python passes parameter values

def addToVar(x):

x = x + 2

def main():

x = 10

addToVar(x)

print x

Output:
10

Why? Python passes
copies of the value,
so changing the
copy doesn’t
do anything!!
(This is called
 “pass by value”)

Python Programming, 1/e 10

Coming up: Pass by valueComing up: Pass by value 3737

Lets explain

Picture all variables as arrows pointing
to a number, changing the variable’s
value just makes the arrow point
somewhere else

Coming up: Pass by valueComing up: Pass by value 3838

Pass by value

• Executing the first

line of
addInterest

creates a new

variable,
newBalance.

• balance is then

assigned the value
of newBalance.

def addInterest(balance, rate):

 newBalance = balance * (1 +
rate)

 balance = newBalance

def test():

 amount = 1000

 rate = 0.05

 addInterest(amount, rate)

 print amount

Coming up: Pass by valueComing up: Pass by value 3939

Pass by value

• balance now refers

to the same value as
newBalance, but

this had no effect on
amount in the test

function.

def addInterest(balance, rate):

 newBalance = balance * (1 + rate)

 balance = newBalance

def test():

 amount = 1000

 rate = 0.05

 addInterest(amount, rate)

 print amount

Coming up: Pass by valueComing up: Pass by value 4040

Pass by value

Python Programming, 1/e 11

Coming up: Pass by valueComing up: Pass by value 4141

Pass by value

• Execution of
addInterest has
completed and control
returns to test.

• The local variables,
including the
parameters, in
addInterest go
away, but amount and
rate in the test
function still refer to
their initial values!

def addInterest(balance, rate):

 newBalance = balance * (1 +
rate)

 balance = newBalance

def test():

 amount = 1000

 rate = 0.05

 addInterest(amount, rate)

 print amount

Coming up: ButComing up: But…… 4242

Pass by value

• To summarize: the formal parameters of

a function only receive the values of the

actual parameters. The function does

not have access to the variable that

holds the actual parameter.

• Python is said to pass all parameters by

value.

Coming up: AnswersComing up: Answers 4343

But…

def func1(input):

for i in range(3):

input[i] = input[i] + 10

def main():

myList = [1, 2, 3]

func1(myList)

print myList

Output:

11, 12, 13

Why why
why?

Coming up: Lets look at this codeComing up: Lets look at this code 4444

Answers

A. Python is just messed up

B. Mr. Fleck lied to us and some things

are not passed by value

C. Who cares, I’m going to change to a

history major.. Python annoys me now

D. Something different happens with

mutable data types

Python Programming, 1/e 12

Coming up: The truth Coming up: The truth …… really this time! really this time! 4545

Lets look at this code

addinterest3.py

Illustrates modification of a mutable parameter (a list).

def addInterest(balances, rate):

 for i in range(len(balances)):

 balances[i] = balances[i] * (1+rate)

def test():

 amounts = [1000, 2200, 800, 360]

 rate = 0.05

 addInterest(amounts, 0.05)

 print amounts

test()

Output:
[1050.0, 2310.0, 840.0, 378.0

Coming up: The truth Coming up: The truth …… really this time! really this time! 4646

The truth … really this time!

The “value” of a list is a group of arrows

Coming up: The truth Coming up: The truth …… really this time! really this time! 4747

The truth … really this time!

• Next, addInterest

executes. The loop

goes through each

index in the range 0,

1, …, length –1 and

updates that value in
balances.

def addInterest(balances, rate):

 for i in range(len(balances)):

 balances[i] = balances[i] *
(1+rate)

def test():

 amounts = [1000, 2200, 800, 360]

 rate = 0.05

 addInterest(amounts, 0.05)

 print amounts

Coming up: The truth Coming up: The truth …… really this time! really this time! 4848

The truth … really this time!

Python Programming, 1/e 13

Coming up: The final answerComing up: The final answer 4949

The truth … really this time!

• In the diagram the old
values are left hanging
around to emphasize
that the numbers in the
boxes have not
changed, but the new
values were created
and assigned into the
list.

• The old values will be
destroyed during
garbage collection.

def addInterest(balances, rate):

 for i in
range(len(balances)):

 balances[i] = balances[i]
* (1+rate)

def test():

 amounts = [1000, 2200, 800,
360]

 rate = 0.05

 addInterest(amounts, 0.05)

 print amounts

Coming up: One last time for the cheap seatsComing up: One last time for the cheap seats…… 5050

The final answer

• When addInterest terminates, the list

stored in amounts now contains the new

values.

• The variable amounts wasn’t changed (it’s

still a list), but the state of that list has

changed, and this change is visible to the

calling program.

• So… the final answer is, we did NOT change

the value of the list, we changed where the

list arrows (inside the list) pointed (and Mr. Fleck is

not a liar… just goofy, and a bit crazy…)

Coming up: If your brain hurtsComing up: If your brain hurts…… 5151

One last time for the cheap seats…

• Parameters are always passed by

value. However, if the value of the

variable is a mutable object (like a list),

then changes to the state of the object

will be visible to the calling program.

Coming up: Lets write a Hangman GameComing up: Lets write a Hangman Game 5252

If your brain hurts…

Python Programming, 1/e 14

Coming up: Hangman StateComing up: Hangman State 5353

Lets write a Hangman Game

• When you write a game you first can

decide what are the core functions and

variables we need.

• Let think of Hangman… what I want it to

look like is this:

Guesses: s, q, r, e t

Current word: _ _ t _ o n

Enter guess or 1 to quit ->

What information
(variables) do I need
to know to generate
this?

Coming up: Hangman StateComing up: Hangman State 5454

Hangman State

Guesses: s, q, r, e t

Current word: _ _ t _ o n

Enter guess or 1 to quit ->

What information
(variables) do I need
to know to generate
this?

Hangman
Drawn Here

Coming up: Hangman PseudocodeComing up: Hangman Pseudocode 5555

Hangman State

• misses = 0 # How many bad guesses have they had?

• lettersGuessed = [] # Empty list of the letters already

guessed

• wordToGuess = "python" # Should ask the user for

this

• Got it… let’s move to the pseudocode

Coming up: Hangman PseudocodeComing up: Hangman Pseudocode 5656

Hangman Pseudocode

• What is it?

Python Programming, 1/e 15

Coming up: Default ParametersComing up: Default Parameters 5757

Hangman Pseudocode

• print the hangman

• print the word

• ask the user for input

– check if the letter was already used (if so, warn the user and

start over at step 1)

– update the list of used letters

– check if the letter is in the word

• if so, check if the user has won

• if not, check if the user has lost

• Not bad.. on to hangman.py!

Coming up: Default ParametersComing up: Default Parameters 5858

Default Parameters

Function parameters can have default

values

def exponent(num, exp=2):

return num ** exp

print exponent(4)

print exponent(4, 3)

Output:
16
64

Coming up: Default ParametersComing up: Default Parameters 5959

Default Parameters

Function parameters can have default

values

def exponent(num, exp=2):

return num ** exp

print exponent(4, 3, 45)

Output:
TypeError: exponent() takes

at most 2 arguments (3 given)

Coming up: Default ParametersComing up: Default Parameters 6060

Default Parameters

Non-default arguments cannot follow

default arguments!

def exponent(num, exp=2, temp):

return num ** exp

print exponent(4, 3, 45)

Python Programming, 1/e 16

Coming up: Named ArgumentsComing up: Named Arguments 6161

Default Parameters

Arguments are assigned left to right

def exponent(num, exp=2, temp=5):

print “Num:%d Exp:%d Temp:%d” \

%(num, exp, temp)

return num ** exp

print exponent(4)

print exponent(4, 3)

print exponent(4, 3, 45)

Output:

Num:4 Exp:2 Temp:5

16

Num:4 Exp:3 Temp:5

64

Num:4 Exp:3 Temp:45

64

Coming up: What prints?Coming up: What prints? 6262

Output:

Num:34 Exp:2 Temp:3

Num:34 Exp:2 Temp:3

Named Arguments

What if you want to use the default for parameter 2, but

give a value for parameter 3?

def exponent(num, exp=2, temp=5):

print “Num:%d Exp:%d Temp:%d” \

%(num, exp, temp)

return num ** exp

exponent(34, temp=3)

exponent(temp=3, num=34)

More info at: http://www.python.org/doc/current/tut/node6.html

Coming up: What prints?Coming up: What prints? 6363

What prints?

def myFunction(a, b, c=4, d=5):

print a, b, c, d

myFunction(5, 4, 3, 2)

myFunction(3, 4)

myFunction(3, 4, 5)

myFunction(3, 4, d=5)

myFunction(b=1, a=2)

5 4 3 2

3 4 4 5

3 4 5 5

3 4 4 5

2 1 4 5

