Python Programming:
An Introduction
To Computer Science

Chapter 8
Booleans

O

Coming up: Computing with ¢ [+
Booleans

} Y NTW w*w :
:) N 5
"3 .

Computing with Booleans

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

« 1f and while both use Boolean
expressions.

 Boolean expressions evaluate to True
or F'alse.

» So far we’ve used Boolean expressions
to compare two values, e.g.
(while x >= 0)

9 R AV PRIV R R 98y VO RSN T R PR A S

N Boolean Operators

R B o o N e R T S Ty Tl ot S T e T o B Kol A ST 0 .kl

 The Boolean operators and and or are
used to combine two Boolean

expressions and produce a Boolean
result.

g exXpr> and <expr>

e <exXpr> or <expr>

v

CO d UD. EXPDrE 0 vVersu [atements
PN V201 A ald))

O N A

SR o {':_D l". - .

\ Ql'
'n' '1“

E‘

) "W "" B

Expressions versus Statements

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

 |n the last slide we used the term
“expression”.

* The difference between an expression

and a statement is:

— Expressions are something (they evaluate

to a value)
ce.g. XT7+y*™3), t==Trueorvl!=v2
— Statements do something
* print “hello”
e X=X*7

AU T N PR

Cddar

- - —--.'-'-’---' 'l"’""\“"’ MR T -\\-‘u'v.--..v--‘-'r PO INTAI U 7] -
A 2ty) “+l uf...'l.' '.",!)5{-2 _f-' .\' !‘ Nl -,'.'v; 1'% '1~" Al ' J
. oot 4Ll . A

-, Statement or Expression

+ x=9 S—
+ 45 % 78 == ——
» myFunction(‘potato’) T SEement
' X, y=5,6 S—
» print “%20s” %(‘potato’) W
* “%20s” %(‘potato’) TERSSoR

’e JUulE e Joeldll ‘ :) Pl M ¢ b e Laaf
. ..l ha YA 4 §) AAS l : _ _ _ _ I FPIRY '.'-‘..nl\ .". "4‘.':\2‘ /.%('." 1 't‘..'\"

B O o LSO

e

- .4 — ‘.-{".

N Boolean Operators

R B o B o A e R AR Vil Ryt ST O e 2 Tt T ol W ST S el ek i

 The Boolean operators and and or are
used to combine two Boolean

expressions and produce a Boolean
result.

g exXpr> and <expr>

e <exXpr> or <expr>

- '- . . -.:"'. ."I"

Boolean Operators

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* The and of two expressions is true exactly
when both of the expressions are true.

* We can represent this in a truth table.

A O YYD -
— L e] L -

P| Q|Pand Q| PorQ
Réhnl T T
R 5 T
i = T
Eopak E F

RN 7 M P2) 4 s

4 Boolean Expressions

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* The only time and is true is when both
expressions are true

* The only time or is false is when both
expressions are false.

* Also, note that or is true when both
expressions are true. This isn't how we
normally use “or” in language.

) "W "" B

Boolean Operators

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

Consider a or not b and c

How should this be evaluated?

The order of precedence, from high to low, is
iEs=—a T, O .

This statement is equivalent to
et (oL D) < and-<c)F)

Since most people don’t memorize the the

Boolean precedence rules, use parentheses
to prevent confusion.

an Operz WP p—
. 2 ; v PN RN E 7.'

Cdd e

} Y NTW w*w :
LA LA " L !,
3 .

Z Boolean Operators

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

* To test for the co-location of two points,

we could use an and.

e if pl.getX() == p2.getX() and
p2.getY () == pl.get¥():
points are the same
else:
points are different

* The entire condition will be true only
when both of the simpler conditions are
true.

- %,)
— e B~

Coming up: Boolean Operata SRR AN € 7 M 2704) L

Boolean Operators

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

« Say you're writing a racquetball simulation.
The game is over as soon as either player
has scored 15 points.

 How can you represent that in a Boolean
expression?
scoreA == 15 or scoreB == 15

* When either of the conditions becomes true,
the entire expression is true. If neither
condition is true, the expression is false.

l'.,.\‘ Ao R
NEVVAWMEA LY AN L.

e "" B

e Boolean Operators

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* \We want to construct a loop that
continues as long as the game is not
OVer.

* You can do this by taking the negation
of the game-over condition as your loop
condition!

e while not(scoreA == 15 or scoreB == 15):
#continue playing

AU T N PR

12

Boolean Operators

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* Some racquetball players also use a
shutout condition to end the game,
where if one player has scored 7 points
and the other person hasn’t scored yet,

the game is over.

e while not(scoreA == 15 or scoreB == 15 or \
(scoreA == 7 and scoreB == 0) or \
(scoreB == 7 and scoreA == 0):

#continue playing

: Boolean Operators

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

» Let's look at volleyball scoring. To win, a
volleyball team needs to win by at least
two points.

* In volleyball, a team wins at 15 points

* |f the score is 15 — 14, play continues,
just as it does for 21 — 20.

(a > 15 and a - b > 2) or (b > 15 and b - a >= 2)
(a >= 15 or b >> 15) and abs(a - b) >= 2

C 0 Up: Boolean Algebre , Y A e LA
O . _ 1 .\'-".\':4."‘.! IH. %.:7-' »

) "W "" B

¢ Boolean Algebra

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* The ability to formulate, manipulate, and
reason with Boolean expressions is an
iImportant skill.

» Boolean expressions obey certain
algebraic laws called Boolean logic or
Boolean algebra.

Co J Up. B0C €an Algen PNIALAS 'R ROEEAYY

9

e "" B

: Boolean Algebra
Algebra Boolean algebra
a*0=0 a and false == false
a*l=a a and true == a
at+0=a aor false == a

« and has properties similar to multiplication
« or has properties similar to addition
S « 0 and 1 correspond to false and true,

respectively.

Co J Uup. Boa0

LA N AN AR |

Co

»

" "" B

Boolean Algebra

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

a or true == true
and’d with False?

Anything ored with true is true: [

What is anything J

Both and and or distribute:

a or (b and ¢) == (a or b) and (a or c)
a and (b or ¢) == (a and b) or (a and c)
Double negatives cancel out: Sl AR

a and (b or ¢)
a*(b+c) ==
(a*b) + (a*c)

not (not a) == a

DeMorgan’s laws: /
not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)

AV REPAN TN 22 A A

PR ¥ Yo
l .- Y ‘ s I ‘.""I' A

& Short Clrcwt

X=17

y =38

fx<10ory>9:
print “Hello”

Question: Does Python need to check if y

> 97?
No! Once it knows that x < 10 is True,
anything Or’d with True is True!

—

AN T YT R AR A

Ll

- - -~ . -
= - -:—.?::W| ZoE

- -—
—

ig,ijzk e i

1 l, y'.n ,,f.;."\:. /:. l ‘ i j’ , "‘..l'. 0' ,',

Short Clrcmt

x=57

y=28

fx<10andy>9:
print “Hello”

Question: Does Python need to check if y

> 97
No! Once it knows that x < 10 is False,
anything And’'d with False is False!

AT S 71 T A S I S O A PR DA L S 73 ey

Short Circuit

R e B N . o A e TSR Sy T Pt S T e e BT o bl K ST o ekl Bt i

This is called “short circuiting”. If possible,
only the first part of a boolean
expression will be executed. This has
consequences!

X = 88
If x <10 and getAnswer() == ‘go’:
print “Hello”

{ getAnswer is NOT called at all in this code! J

R T

4 Boolean Algebra

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

» We can use Boolean rules to simplify our 3
Boolean expressions. A

while not (scoreA == 15 or scoreB == 15):
#continue playing

* This is saying something like “While it is not
the case that player A has 15 or player B has
15, continue playing.”

* Applying DeMorgan’s law:

while (not scorelA == 15) and (not scoreB == 15):
#continue playing

CO J Up. '“‘— b he . -. 7..\"-"‘.\".':.'1‘. '.S. .'.“’ w"“

A Boolean Algebra

R e B N . o A e TSR Sy T Pt S T e e BT o bl K ST o ekl Bt i

 This becomes:

i e scoreA !'= 15 and scoreB 1= 15
continue playing

* Isn’t this easier to understand? “While

player A has not reached 15 and player
B has not reached 15, continue

playing.”

v

Coming up- Applying UeMoarge | SRR YA ¢ 7 M 22

TN s e
e A N e v, 7 4

Y

Applylng DeMorgan S Laws

* Negate each element

e change and to or

* change orto and
Simplify:
not(x<8andy>7)

--- not(x < 8) or not(y > 7)
——-X>=8ory<=7

Co

Boolean Algebra

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

 Sometimes it's easier to figure out when a
loop should stop, rather than when the loop
should continue.

* |n this case, write the loop termination
condition and put a not in front of it. After a
couple applications of DeMorgan’s law you
are ready to go with a simpler but equivalent
expression.

N Dan’s Flnal Word

'1‘ ' R RS S S e S e o
* When in doubt, simplify as much as you can,
then add comments and explain the
reasoning behind the Boolean statement!
&
Keep is simple!

HLARILT A o e D MR B (£ LA O e oD A S AN

