Python Programming:
An Introduction
To Computer Science

Chapter 8
Booleans
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Coming up: Computing with ¢ [+
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Computing with Booleans
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« 1f and while both use Boolean
expressions.

 Boolean expressions evaluate to True
or F'alse.

» So far we’ve used Boolean expressions
to compare two values, e.g.
(while x >= 0)
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 The Boolean operators and and or are
used to combine two Boolean

expressions and produce a Boolean
result.

g exXpr> and <expr>

e <exXpr> or <expr>
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Expressions versus Statements
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 |n the last slide we used the term
“expression”.

* The difference between an expression

and a statement is:

— Expressions are something (they evaluate

to a value)
ce.g. XT7+y*™3), t==Trueorvl!=v2
— Statements do something
* print “hello”
e X=X*7
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-, Statement or Expression

+ x=9 S—
+ 45 % 78 == ——
» myFunction(‘potato’) T SEement
' X, y=5,6 S—
» print “%20s” %(‘potato’) W
* “%20s” %(‘potato’) TERSSoR
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 The Boolean operators and and or are
used to combine two Boolean

expressions and produce a Boolean
result.

g exXpr> and <expr>

e <exXpr> or <expr>
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* The and of two expressions is true exactly
when both of the expressions are true.

* We can represent this in a truth table.
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* The only time and is true is when both
expressions are true

* The only time or is false is when both
expressions are false.

* Also, note that or is true when both
expressions are true. This isn't how we
normally use “or” in language.
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Consider a or not b and c

How should this be evaluated?

The order of precedence, from high to low, is
iEs=—a T, O .

This statement is equivalent to
et (oL D) < and-<c)F)

Since most people don’t memorize the the

Boolean precedence rules, use parentheses
to prevent confusion.
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* To test for the co-location of two points,

we could use an and.

e if pl.getX() == p2.getX() and
p2.getY () == pl.get¥():
# points are the same
else:
# points are different

* The entire condition will be true only
when both of the simpler conditions are
true.
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« Say you're writing a racquetball simulation.
The game is over as soon as either player
has scored 15 points.

 How can you represent that in a Boolean
expression?
scoreA == 15 or scoreB == 15

* When either of the conditions becomes true,
the entire expression is true. If neither
condition is true, the expression is false.
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* \We want to construct a loop that
continues as long as the game is not
OVer.

* You can do this by taking the negation
of the game-over condition as your loop
condition!

e while not(scoreA == 15 or scoreB == 15):
#continue playing
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Boolean Operators
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* Some racquetball players also use a
shutout condition to end the game,
where if one player has scored 7 points
and the other person hasn’t scored yet,

the game is over.

e while not(scoreA == 15 or scoreB == 15 or \
(scoreA == 7 and scoreB == 0) or \
(scoreB == 7 and scoreA == 0):

#continue playing
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» Let's look at volleyball scoring. To win, a
volleyball team needs to win by at least
two points.

* In volleyball, a team wins at 15 points

* |f the score is 15 — 14, play continues,
just as it does for 21 — 20.

(a > 15 and a - b > 2) or (b > 15 and b - a >= 2)
(a >= 15 or b >> 15) and abs(a - b) >= 2
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* The ability to formulate, manipulate, and
reason with Boolean expressions is an
iImportant skill.

» Boolean expressions obey certain
algebraic laws called Boolean logic or
Boolean algebra.
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: Boolean Algebra
Algebra Boolean algebra
a*0=0 a and false == false
a*l=a a and true == a
at+0=a aor false == a

« and has properties similar to multiplication
« or has properties similar to addition
S « 0 and 1 correspond to false and true,

respectively.
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Boolean Algebra
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a or true == true
and’d with False?

Anything ored with true is true: [

What is anything J

Both and and or distribute:

a or (b and ¢) == (a or b) and (a or c)
a and (b or ¢) == (a and b) or (a and c)
Double negatives cancel out: Sl AR

a and (b or ¢)
a*(b+c) ==
(a*b) + (a*c)

not (not a) == a

DeMorgan’s laws: /
not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)
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& Short Clrcwt

X=17

y =38

fx<10ory>9:
print “Hello”

Question: Does Python need to check if y

> 97?
No! Once it knows that x < 10 is True,
anything Or’d with True is True!
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Short Clrcmt

x=57

y=28

fx<10andy>9:
print “Hello”

Question: Does Python need to check if y

> 97
No! Once it knows that x < 10 is False,
anything And’'d with False is False!
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Short Circuit
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This is called “short circuiting”. If possible,
only the first part of a boolean
expression will be executed. This has
consequences!

X = 88
If x <10 and getAnswer() == ‘go’:
print “Hello”

{ getAnswer is NOT called at all in this code! J
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» We can use Boolean rules to simplify our 3
Boolean expressions. A

while not (scoreA == 15 or scoreB == 15):
#continue playing

* This is saying something like “While it is not
the case that player A has 15 or player B has
15, continue playing.”

* Applying DeMorgan’s law:

while (not scorelA == 15) and (not scoreB == 15):
#continue playing

CO J Up. '“‘— b he . -. 7..\"-"‘.\".':.'1‘. '.S. .'.“’ w"“



A Boolean Algebra

R e B N . o A e TSR Sy T Pt S T e e BT o bl K ST o ekl Bt i

 This becomes:

i e scoreA !'= 15 and scoreB 1= 15
# continue playing

* Isn’t this easier to understand? “While

player A has not reached 15 and player
B has not reached 15, continue

playing.”
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Applylng DeMorgan S Laws

* Negate each element

e change and to or

* change orto and
Simplify:
not(x<8andy>7)

--- not(x < 8) or not(y > 7)
——-X>=8ory<=7
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 Sometimes it's easier to figure out when a
loop should stop, rather than when the loop
should continue.

* |n this case, write the loop termination
condition and put a not in front of it. After a
couple applications of DeMorgan’s law you
are ready to go with a simpler but equivalent
expression.
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* When in doubt, simplify as much as you can,
then add comments and explain the
reasoning behind the Boolean statement!
&
Keep is simple!
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