
Python Programming:

An Introduction

To Computer Science

Chapter 8

Booleans

Coming up: Computing with

Booleans

1

Computing with Booleans

•!if and while both use Boolean

expressions.

•! Boolean expressions evaluate to True

or False.

•! So far we’ve used Boolean expressions

to compare two values, e.g.

(while x >= 0)

Boolean Operators

•! The Boolean operators and and or are

used to combine two Boolean

expressions and produce a Boolean

result.

•!<expr> and <expr>

•!<expr> or <expr>

Expressions versus Statements

•! In the last slide we used the term

“expression”.

•! The difference between an expression

and a statement is:

–!Expressions are something (they evaluate

to a value)

•!e.g. x*7+(y**3) , t==True or v1 != v2

–!Statements do something

•!print “hello”

•!x = x * 7

Statement or Expression

•! x = 9

•! 45 % 78 == 0

•!myFunction(‘potato’)

•! x, y = 5, 6

•! print “%20s” %(‘potato’)

•! “%20s” %(‘potato’)

Statement

Expression

Statement

Statement

Statement

Expression

Boolean Operators

•! The Boolean operators and and or are

used to combine two Boolean

expressions and produce a Boolean

result.

•!<expr> and <expr>

•!<expr> or <expr>

Boolean Operators

•! The and of two expressions is true exactly

when both of the expressions are true.

•! We can represent this in a truth table.

P Q P and Q P or Q

T T T T

T F F T

F T F T

F F F F

Boolean Expressions

•! The only time and is true is when both

expressions are true

•! The only time or is false is when both

expressions are false.

•! Also, note that or is true when both

expressions are true. This isn’t how we

normally use “or” in language.

Boolean Operators

•! Consider a or not b and c

•! How should this be evaluated?

•! The order of precedence, from high to low, is
not, and, or.

•! This statement is equivalent to
(a or ((not b) and c))

•! Since most people don’t memorize the the
Boolean precedence rules, use parentheses
to prevent confusion.

Boolean Operators

•! To test for the co-location of two points,

we could use an and.
•! if p1.getX() == p2.getX() and

 p2.getY() == p1.getY():

 # points are the same

else:

 # points are different

•! The entire condition will be true only

when both of the simpler conditions are

true.

Boolean Operators

•! Say you’re writing a racquetball simulation.

The game is over as soon as either player

has scored 15 points.

•! How can you represent that in a Boolean

expression?
•! scoreA == 15 or scoreB == 15

•! When either of the conditions becomes true,

the entire expression is true. If neither

condition is true, the expression is false.

Boolean Operators

•!We want to construct a loop that

continues as long as the game is not

over.

•! You can do this by taking the negation

of the game-over condition as your loop

condition!
•! while not(scoreA == 15 or scoreB == 15):

 #continue playing

Boolean Operators

•! Some racquetball players also use a

shutout condition to end the game,

where if one player has scored 7 points

and the other person hasn’t scored yet,

the game is over.

•! while not(scoreA == 15 or scoreB == 15 or \

 (scoreA == 7 and scoreB == 0) or \

 (scoreB == 7 and scoreA == 0):

 #continue playing

Boolean Operators

•! Let’s look at volleyball scoring. To win, a

volleyball team needs to win by at least

two points.

•! In volleyball, a team wins at 15 points

•! If the score is 15 – 14, play continues,

just as it does for 21 – 20.
•! (a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

•! (a >= 15 or b >= 15) and abs(a - b) >= 2

Boolean Algebra

•! The ability to formulate, manipulate, and

reason with Boolean expressions is an

important skill.

•! Boolean expressions obey certain

algebraic laws called Boolean logic or

Boolean algebra.

Boolean Algebra

•!and has properties similar to multiplication

•!or has properties similar to addition

•!0 and 1 correspond to false and true,
respectively.

Algebra Boolean algebra

a * 0 = 0 a and false == false

a * 1 = a a and true == a

a + 0 = a a or false == a

Boolean Algebra

Anything ored with true is true:
a or true == true

Both and and or distribute:
a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)

Double negatives cancel out:
not(not a) == a

DeMorgan’s laws:
not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)

What is anything

and’d with False?

Similar to algebra!

a and (b or c)

a*(b+c) ==

(a*b) + (a*c)

Short Circuit

x = 7

y = 8

if x < 10 or y > 9:

 print “Hello”

Question: Does Python need to check if y

> 9?
No! Once it knows that x < 10 is True,

anything Or’d with True is True!

Short Circuit

x = 57

y = 8

if x < 10 and y > 9:

 print “Hello”

Question: Does Python need to check if y

> 9?
No! Once it knows that x < 10 is False,

anything And’d with False is False!

Short Circuit

This is called “short circuiting”. If possible,

only the first part of a boolean

expression will be executed. This has

consequences!

x = 88

if x < 10 and getAnswer() == ‘go’:

 print “Hello”

getAnswer is NOT called at all in this code!

Boolean Algebra

•! We can use Boolean rules to simplify our

Boolean expressions.
•! while not(scoreA == 15 or scoreB == 15):

 #continue playing

•! This is saying something like “While it is not

the case that player A has 15 or player B has

15, continue playing.”

•! Applying DeMorgan’s law:
while (not scoreA == 15) and (not scoreB == 15):

 #continue playing

Boolean Algebra

•! This becomes:
while scoreA != 15 and scoreB != 15

 # continue playing

•! Isn’t this easier to understand? “While

player A has not reached 15 and player

B has not reached 15, continue

playing.”

Applying DeMorgan’s Laws

•!Negate each element

•! change and to or

•! change or to and

Simplify:

not(x < 8 and y > 7)

--- not(x < 8) or not(y > 7)

--- x >= 8 or y <= 7

Boolean Algebra

•! Sometimes it’s easier to figure out when a

loop should stop, rather than when the loop

should continue.

•! In this case, write the loop termination

condition and put a not in front of it. After a

couple applications of DeMorgan’s law you

are ready to go with a simpler but equivalent

expression.

Dan’s Final Word

•! When in doubt, simplify as much as you can,

then add comments and explain the

reasoning behind the Boolean statement!

Keep is simple!

