
Python Programming:

An Introduction To

Computer Science

Chapter 10

Defining Classes

(These slides were heavily editted/

rewritten by Dan Fleck)

Coming up: Objectives 1

Objectives

•! To appreciate how defining new classes
can provide structure for a complex
program.

•! To be able to read and write Python
class definitions.

•! To understand the concept of
encapsulation and how it contributes to
building modular and maintainable
programs.

Objectives

•! To be able to write programs involving

simple class definitions.

•! To be able to write interactive graphics

programs involving novel (programmer

designed) widgets.

What are objects

•! In chapter five an object was defined

as an active data type that knows stuff

and can do stuff.

•! More precisely, an object consists of:

1.! A collection of related information.

2.! A set of operations to manipulate that

information.

What are Objects

•! The information is stored inside the

object in instance variables.

•! The operations, called methods, are

functions that “live” inside the object.

•!Collectively, the instance variables and

methods are called the attributes of an

object.

Design of Circle object

•! A Circle object will have instance

variables

–!center, which remembers the center point

of the circle,

–!radius, which stores the length of the

circle’s radius.

•! The draw method examines the

center and radius to decide which

pixels in a window should be colored.

Design of Circle

•!move method will change the value of
center to reflect the new position of
the circle.

•! All objects are said to be an instance of
some class. The class of an object
determines which attributes the object
will have.

•! A class is a description of what its
instances will know and do.

Circle Class

class Circle:

 def __init__(self, center, radius):

 self.center = center

 self.radius = radius

 def draw(self, canvas):

 rad = self.radius

 x1 = self.center[0]-rad

 y1 = self.center[1]-rad

 x2 = self.center[0]+rad

 y2 = self.center[1]+rad

 canvas.create_oval(x1, y1, x2, y2, fill='green')

 def move(self, x, y):

 self.center = [x, y]

Beginning of the class definition

The constructor. This is called when

someone creates a new Circle, these

assignments create instance variables.

A method that uses instance variables to

draw the circle

A method that sets the center to a new

location and then redraws it

Creating a Circle

•! New objects are created from a class by invoking a
constructor. You can think of the class itself as a sort of
factory for stamping out new instances.

•! Consider making a new circle object:
myCircle = Circle([10,30], 20)

•! Circle, the name of the class, is used to invoke the
constructor.

•! The constructor is ALWAYS named __init__ (it’s a special
name for this method)

•! Notice: I do not pass “self” as a parameter… it is
automatic!

Creating a Circle

myCircle = Circle([10,30], 20)

•! This statement creates a new Circle

instance and stores a reference to it in

the variable myCircle.

•! The parameters to the constructor are

used to initialize some of the instance

variables (center and radius) inside

myCircle.

Creating a Circle

myCircle = Circle([10,30], 20)

•!Once the instance has been created, it

can be manipulated by calling on its

methods:

myCircle.draw(canvas)
myCircle.move(x,y)

Objects and Classes

•! myCircle = Circle([10,30], 20)

•! myOtherCircle = Circle([4,60], 10)

•! myCircle and myOtherCircle are INSTANCES of the

Class Circle also, myCircle and myOtherCircle are

OBJECTS, instead of Classes

•! The constructor is called when you do this line:

–! myCircle = Circle([10,30], 20)

Using the Circle

•! from CircleModule import *

myCircle = Circle([10,30], 20)

print
"CENTER :"+str(myCircle.center)

>>> CENTER :(10, 30)

To get an instance variable from an

object, use: <<object>>.variable
What happens if the instance variable

doesn’t exist?

Using Instance Variables

myCircle = Circle([10,30], 20)

print "CENTER :"+str(circle.carl)

>>> AttributeError: Circle

instance has no attribute
’carl’

myCircle.bob = 234

What happens if you set an instance

variable that doesn’t exist?

Using Instance Variables

myCircle.bob = 234

Think: What happens if you assign ANY

variable in python that doesn’t exist?

john = 234

What happens if you set an instance

variable that doesn’t exist?

Python automatically creates a new variable if it doesn’t exist.

For instance variables this works the same… if you assign an

instance variable that doesn’t exist, Python just creates it

Summary: Using instance variables

•!Creating new instance variables just

means assigning them a value:

–!myCircle.bob = 234

–!self.bob = 234

•!Using instance variables is done

through dot notation:

–!val = myCircle.bob

–!val = self.bob

Using Operations in Objects

•!Operations are created just like a

function, but inside a class:

class Circle:
def myFunction(self, p1, p2):

<< something >>>

def function2(self, input1=‘55’):

 <<something>>

•! To use operations, call them using dot

notation:
 myCircle.myFunction(actualP1, actualP2)

Note: self is automatically passed in to all operations… you never pass

it in yourself!

What is ‘self’

•! Self is a reference to the current

instance. Self lets you access all the

instance variables for the specific

instance you’re working with.

Why use classes at all?

•!Classes and object are more like the

real world. They minimize the semantic

gap.

•! The semantic gap is the difference

between the real world and the

representation in a computer.

•!Do you care how your TV works?

–!No… you are a user of the TV, the TV has

operations and they work. You don’t care

how.

Why use classes at all?

•!Classes model more closely real world

objects… you must define them, but

after that you just USE them without

knowing (or caring) how they work

inside.

•!Do you care how a Button fills in each

pixel to display itself on the screen?

–!No.. .you want to USE the button.

Why use classes at all?

•!Classes and objects allow you to define

an interface to some object (it’s

operations) and then use them without

know the internals.

•!Defining classes helps modularize your

program into multiple objects that work

together, that each have a defined

purpose

Encapsulating Useful Abstractions

•! The main program only has to worry about

what objects can do, not about how they are

implemented.

•! In computer science, this separation of

concerns is known as encapsulation.

•! The implementation details of an object are

encapsulated in the class definition, which

insulates the rest of the program from having

to deal with them.

Encapsulating Useful Abstractions

•!One of the main reasons to use objects

is to hide the internal complexities of the

objects from the programs that use

them.

•! From outside the class, all interaction

with an object can be done using the

interface provided by its methods.

Encapsulating Useful Abstractions

•!One advantage of this approach is that
it allows us to update and improve
classes independently without worrying
about “breaking” other parts of the
program, provided that the interface
provided by the methods does not
change.

•! If Python-masters change how the
Button puts pixels on the screen, do you
care?

Example: Bouncing Ball

•! Lets try to create a bouncing ball class.

Essentially this will be a ball that has a

velocity and can bounce around a

window.

•! Specification

–!We want to specify initial position, velocity,

color and bounds (where are the walls)

–!We then want to call an update method

that moves the ball

Screen Layout

0,0

400,400

0,400

400,0
Increasing X !

In
c
re

a
s
in

g
 Y
!

Example: Bouncing Ball

•! class Ball:

def __init__(self, xLoc, yLoc, xVel, yVel,

color, leftWall,rightWall, topWall,

bottomWall)

 # Should initialize everything

def update()

 # Should move the ball and let it bounce

appropriatly

Example: Bouncing Ball

•! class Ball:
 def __init__(self, xLoc, yLoc, xVelocity, yVelocity, color='green', \

 leftWall=0, rightWall=400, topWall=0, bottomWall=400):

 self.xLoc = xLoc

 self.yLoc = yLoc

 self.xVelocity = xVelocity

 self.yVelocity = yVelocity

 self.leftWall = leftWall

 self.rightWall = rightWall

 self.topWall = topWall

 self.bottomWall = bottomWall

 self.color = color

Example: Bouncing Ball

•! class Ball:
 # Draw the initial ball

 def draw(self, canvas):

 rad = 5

 x1 = self.xLoc-rad # Top left corner

 y1 = self.yLoc-rad # Top left corner

 x2 = self.xLoc+rad # Bottom right corner

 y2 = self.yLoc+rad # Bottom right corner

 # To create an oval, you specify the bounding box (top left and bottom right corner,

 # then the oval fills in the space.

 self.itm = canvas.create_oval(x1, y1, x2, y2, fill=self.color)

 self.canvas = canvas

Bouncing Ball: Physics 101

•! gravity accelerates items at 9.8m/s2

–!so every second you fall, your speed
increases by 9.8m/s

•! Our velocity has two components

–!Assuming ! is 30 degrees

–!cos(!) = x / 10

–!sin(!) = y / 10

y

x

!

Bouncing Ball: Physics 101

•!Our velocity has two components

–!Assuming ! is 30 degrees

–!cos(!) = x / 10

–!sin(!) = y / 10

•!x = 10 cos(30) =8.66 m/s

•!y = 10 sin (30) =0.5 m/s

y

x

!

Bouncing Ball: Physics 101

•!Our velocity has two components

–!So, if our ball is travelling at 10 m/s, the y

velocity is subject to gravity, but not the x.

(we’ll ignore wind resistance and all other

factors)

–!So the first second we travel 8.66 meters in

X and 0.5 meters in Y

y

x

!

Bouncing Ball: Physics 101

•!Our update function will use simulation

to keep the ball moving:

–!update():

 # If we call update every second, then the change in X and Y directions are just their

 # velocity (since it’s in meters/second)

deltaX = 8.66 # Velocity in X direction never changes

yVelocity = yVelocity – 9.8 # Gravity

deltaY = yVelocity

Move the ball

self.canvas.move(self.itm, deltaX, deltaY)

This gives us a falling ball, how

do we make it bounce?

Bouncing Ball: Physics 101

•! If we hit the “floor”, change the yVelocity

from positive to negative, and reduce it

some (we bounce a little lower than we

started)
 # Bounce off the "floor"

 if self.yLoc > self.bottomWall:

 self.yVelocity = -1 * self.yVelocity * self.bouncyness

 deltaY = self.bottomWall - self.yLoc # Make sure you’re above the floor!

 else:

 deltaY = int(self.yVelocity)

 self.yLoc += deltaY

Now we bounce up and down,

what about left and right wall?

Bouncing Ball: Physics 101

•! If we hit the left/right wall, just change

our x direction
 # Bounce off the "wall"

 if self.xLoc > self.rightWall or self.xLoc < self.leftWall:

 self.xVelocity *= -1

 deltaX = self.xVelocity/5

 self.xLoc += deltaX

Great… but the balls should stop

not keep rolling around

Bouncing Ball: Physics 101

•! If we get to a very small yVelocity, just

stop bouncing and rolling.
 # The ball isn't bouncing... stop!

 if abs(self.yVelocity) < 10 and self.yLoc >= (self.bottomWall-5):

 self.yVelocity = 0

 self.xVelocity = 0

 return

 else:

 self.yVelocity += 2 #9.8/5

Bouncing Ball: Physics 101

•!Now it’s easy to create a whole bunch

of balls because they are Objects, and

each will maintain it’s own state

(velocities)

 for i in range(10):

 rcolor = '#%d%d%d' %(randint(0,9), randint(0,9), randint(0,9)) # Random color

 ball = Ball(randint(left,right), randint(top,bottom), randint(2,20), \

 randint(2,20), color=rcolor, \

 leftWall=left, rightWall=right, topWall=top, bottomWall=bottom)

 ball.draw(canvas)

 balls.append(ball)

Design Summary

•! Think about each “object” in your

system

–!What behaviors should it have?

–!What information does it need to know?

What information changes from one

instance of this object to the next?

•! There are many books on design

strategies for object oriented

programming!

Data Processing with Class

•! A class is useful for modeling a real-world

object with complex behavior.

•! Another common use for objects is to group

together a set of information that describes a

person or thing.

–!Eg., a company needs to keep track of information

about employees (an Employee class with

information such as employee’s name, social

security number, address, salary, etc.)

Data Processing with Class

•!Grouping information like this is often

called a record.

•! Let’s try a simple data processing

example!

•! A typical university measures courses in

terms of credit hours, and grade point

averages are calculated on a 4 point

scale where an “A” is 4 points, a “B” is

three, etc.

Data Processing with Class

•!Grade point averages are generally

computed using quality points. If a class

is worth 3 credit hours and the student

gets an “A”, then he or she earns

3(4) = 12 quality points. To calculate the

GPA, we divide the total quality points

by the number of credit hours

completed.

Data Processing with Class

•! Suppose we have a data file that
contains student grade information.

•! Each line of the file consists of a
student’s name, credit-hours, and
quality points.
Adams, Henry 127 228
Comptewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155
Smith, Frank 37 125.33

Data Processing with Class

•!Our job is to write a program that reads
this file to find the student with the best
GPA and print out their name, credit-
hours, and GPA.

•! The place to start? Creating a Student
class!

•!We can use a Student object to store
this information as instance variables.

Data Processing with Class

•! class Student:
 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

•! The values for hours are converted to
float to handle parameters that may be
floats, ints, or strings.

•! To create a student record:
aStudent = Student(“Adams, Henry”, 127, 228)

•! The coolest thing is that we can store all the
information about a student in a single
variable!

Data Processing with Class

•! We need to be able to access this information, so we
need to define a set of accessor methods.

•! def getName(self):
 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

•! For example, to print a student’s name you could
write:
print aStudent.getName()

These are commonly

called “getters”

Data Processing with Class

•!How can we use these tools to find the

student with the best GPA?

•!We can use an algorithm similar to

finding the max of n numbers! We could

look through the list one by one,

keeping track of the best student seen

so far!

Data Processing with Class

Pseudocode:

Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

 if s.gpa() > best.gpa

 set best to s

Print out information about best

Data Processing with Class
gpa.py

Program to find student with highest GPA

import string

class Student:

 def __init__(self, name, hours, qpoints):

 self.name = name

 self.hours = float(hours)

 self.qpoints = float(qpoints)

 def getName(self):

 return self.name

 def getHours(self):

 return self.hours

 def getQPoints(self):

 return self.qpoints

 def gpa(self):

 return self.qpoints/self.hours

def makeStudent(infoStr):

 name, hours, qpoints = string.split(infoStr,"\t")

 return Student(name, hours, qpoints)

def main():

 filename = raw_input("Enter name the grade file: ")

 infile = open(filename, 'r')

 best = makeStudent(infile.readline())

 for line in infile:

 s = makeStudent(line)

 if s.gpa() > best.gpa():

 best = s

 infile.close()

 print "The best student is:", best.getName()

 print "hours:", best.getHours()

 print "GPA:", best.gpa()

if __name__ == '__main__':

 main()

Why use getters?

•! In general you should avoid using dot notation

to read instance variables from anywhere

except within the class itself.

•! So, since main was not in the Class, we used

getters instead.

•! This is called data encapsulation. It hides your

implementation inside the Class from the user

of your class (main in this example).

•! Doing it this way lets me update my class and

change anything I want except the method

names/parameters (it’s signature)

Why use getters?

•! Assume I have getter:
 def getName(self):

 return self.name

What if I want to store the name instead as first and last name in the class?
Well, with the getter I only have to do this:

 def getName(self):

 return self.firstname + self.lastname

If I had used dot notation outside the class, then all the code OUTSIDE the
class would need to be changed because the internal structure INSIDE
the class changed. Think about libraries of code… If the Python-authors
change how the Button class works, do you want to have to change
YOUR code? No! Encapsulation helps make that happen. They can
change anything inside they want, and as long as they don’t change the
method signatures, your code will work fine.

Setters

•! Anoter common method type are “setters”
•! def setAge(self, age):

 self.age = age

Why? Same reason + one more. I want to hide the internal structure of my
Class, so I want people to go through my methods to get and set instance
variables. What if I wanted to start storing people’s ages in dog-years?
Easy with setters:

 def setAge(self, age):

 self.age = age / 7

More commonly, what if I want to add validation… for example, no age can
be over 200 or below 0? If people use dot notation, I cannot do it. With
setters:

 def setAge(self, age):

 if age > 200 or age < 0:

 # show error

 else:

 self.age = age / 7

Getters and Setters

•! Getters and setters are useful to provide data

encapsulation. They should be used!

•! CS211 Preview: In Java you will be able to

enforce access restrictions on your instance

variables… you can (and should) make them

private so Java itself enforces data encapsulation.

•! So… does Python support “private” data? Yes

(and no)

Hiding your private parts (in Python)

•! You can create somewhat private parts in Python. Naming an instance
variable with an __ (two underscores) makes it private.

•! Example:

class Circle:

 def __init___(self):

 __name = ‘I am private’

def main():

 circ = Circle()

 nm = circ.name

Traceback (most recent call last):

 File "Private.py", line 16, in <module>

 main()

 File "Private.py", line 12, in main

 nm = circ.name

AttributeError: Circle instance has no attribute 'name’

Hiding your private parts (in Python)

•! Be a little sneakier then.. use __name:

•! Example:

class Circle:

 def __init___(self):

 __name = ‘I am private’

def main():

 circ = Circle()

 nm = circ.__name

•! Traceback (most recent call last):
 File "Private.py", line 16, in <module>

 main()

 File "Private.py", line 12, in main

 nm = circ.name

AttributeError: Circle instance has no attribute ’__name’

Nice try, but that won’t work!

Hiding your private parts (in Python)

•! Be super sneaky then.. use _Circle__name:

•! Example:

class Circle:

 def __init___(self):

 self.__name = ‘I am private’

def main():

 circ = Circle()

 nm = circ._Circle__name

 print nm

•! >>> I am private

Ahh… you saw my private parts… that was rude!

So, it is possible to interact with private data in Python, but it is difficult

and good programers should know not to do it. Using the defined

interfaces will make code more maintainable and safer to use

Private Instance Variables

•! So it is good pratice to make all instance

variables private by naming them beginning

with two underscores.

•! Then use getters to access them

•! This also means you can create “read only”

instance variables, but making them private

and creating a getter but not a setter.

Helping other people use your classes

•! Frequently, you will need to write classes other

people will use

•! Or classes you will want to use later, but have

forgotton how

Answer: Document your class usage!

Putting Classes in Modules

•! Sometimes we may program a class that

could useful in many other programs.

•! If you might be reusing the code again, put

it into its own module file with

documentation to describe how the class

can be used so that you won’t have to try

to figure it out in the future from looking at

the code!

Module Documentation

•! You are already familiar with “#” to indicate

comments explaining what’s going on in a

Python file.

•! Python also has a special kind of

commenting convention called the

docstring. You can insert a plain string

literal as the first line of a module, class, or

function to document that component.

Module Documentation

•! Why use a docstring?

–!Ordinary comments are ignored by Python

–!Docstrings are accessible in a special attribute

called __doc__.

•! Most Python library modules have extensive

docstrings. For example, if you can’t

remember how to use random:
>>> import random

>>> print random.random.__doc__
random() -> x in the interval [0, 1).

Module Documentation

•! Docstrings are also used by the Python online

help system and by a utility called PyDoc that

automatically builds documentation for

Python modules. You could get the same

information like this:
>>> import random

>>> help(random.random)
Help on built-in function random:

random(...)

 random() -> x in the interval [0, 1).

Module Documentation

•! To see the documentation for an entire

module, try typing help(module_name)!

•! The following code for the projectile

class has docstrings.

Module Documentation

projectile.py

"""projectile.py

Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

 """Simulates the flight of simple projectiles near the earth's

 surface, ignoring wind resistance. Tracking is done in two

 dimensions, height (y) and distance (x)."""

 def __init__(self, angle, velocity, height):

 """Create a projectile with given launch angle, initial

 velocity and height."""

 self.xpos = 0.0

 self.ypos = height

 theta = pi * angle / 180.0
 self.xvel = velocity * cos(theta)

 self.yvel = velocity * sin(theta)

Module Documentation

 def update(self, time):
 """Update the state of this projectile to move it time seconds

 farther into its flight"""

 self.xpos = self.xpos + time * self.xvel

 yvel1 = self.yvel - 9.8 * time

 self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0

 self.yvel = yvel1

 def getY(self):

 "Returns the y position (height) of this projectile."

 return self.ypos

 def getX(self):

 "Returns the x position (distance) of this projectile."

 return self.xpos

PyDoc

•! PyDoc The pydoc module automatically

generates documentation from Python

modules. The documentation can be

presented as pages of text on the

console, served to a Web browser, or

saved to HTML files.

•! pydoc –g # Launch the GUI

