
Python Programming:

An Introduction to

Computer Science

Chapter 4 (End of Chapter)

File IO

Coming up: File Processing 1

File Processing

•! The process of opening a file involves

associating a file on disk with a variable.

•!We can manipulate the file by

manipulating this variable.

–!Read from the file

–!Write to the file

File Processing

•!When done with the file, it needs to be

closed. Closing the file causes any

outstanding operations and other

bookkeeping for the file to be

completed.

•! In some cases, not properly closing a

file could result in data loss.

File Processing Sequence

1.!Open the file

2.!Read from the file

3.!Close the file

File Processing

•!Working with text files in Python

–!Associate a file with a variable using the
open function
<filevar> = open(<name>, <mode>)

–!Name is a string with the actual file name
on the disk. The mode is either ‘r’ or ‘w’
depending on whether we are reading or
writing the file. “a” for appending to an
existing file. (“a” will also create a non-
existent file)

–!Infile = open(“numbers.dat”, “r”)

File Processing

•! <filevar>.read() – returns the entire remaining

contents of the file as a single (possibly large,

multi-line) string

•! <filevar>.readline() – returns the next line of

the file. This is all text up to and including the

next newline character

•! <filevar>.readlines() – returns a list of the

remaining lines in the file. Each list item is a

single line including the newline characters.

File Processing: read

printfile.py

Prints a file to the screen.

def main():

 fname = raw_input("Enter filename: ")

 infile = open(fname,'r')

 data = infile.read()

 print data

main()

•! First, prompt the user for a file name

•! Open the file for reading through the variable infile

•! The file is read as one string and stored in the
variable data

File Processing : readline

•! readline can be used to read the next
line from a file, including the trailing
newline character

 infile = open(someFile, ‘r’)
for i in range(5):
 line = infile.readline() # Read a single line
 print line[:-1] # Slice off the newline

•! This reads the first 5 lines of a file

•! Slicing is used to strip out the newline
characters at the ends of the lines

File Processing: readlines

•! Another way to loop through the

contents of a file is to read it in with

readlines and then loop through the

resulting list.

 infile = open(someFile, ‘r’)

for line in infile.readlines():

 # Line processing here

infile.close()

File Processing: easiest way!

•! Python treats the file itself as a

sequence of lines!

•! infile = open(someFile), ‘r’)

for line in infile:

 # process the line here

infile.close()

File Processing: writing

•!Opening a file for writing prepares the
file to receive data

•! If you open an existing file for writing,
you wipe out the file’s contents. If the
named file does not exist, a new one is
created.

•!Outfile = open(“mydata.out”, ‘w’)

•! <filevar>.write(<string>)

Warning: If you open an existing file for writing you

DELETE EXISTING CONTENT of the file!!

File Processing : Writing

outfile = open(“example.out”, ‘w’)

count = 1

outfile.write(“This is the first line\n”)

count = count + 1

outfile.write(“This is line number %d” % (count))

outfile.close()

•! If you want to output something that is not a string

you need to convert it first. Using the string formatting

operators are an easy way to do this.
This is the first line

This is line number 2

Example Program: Batch Usernames

•! Batch mode processing is where

program input and output are done

through files (the program is not

designed to be interactive)

•! Let’s create usernames for a computer

system where the first and last names

come from an input file.

Example Program: Batch Usernames

userfile.py

Program to create a file of usernames in batch mode.

import string

def main():

 print "This program creates a file of usernames from a"

 print "file of names."

 # get the file names

 infileName = raw_input("What file are the names in? ")

 outfileName = raw_input("What file should the usernames go in? ")

 # open the files

 infile = open(infileName, 'r')

 outfile = open(outfileName, 'w')

Example Program: Batch Usernames

 # process each line of the input file

 for line in infile:

 # get the first and last names from line

 last, first = string.split(line, “,”) # Split the names on comma

 # create a username

 uname = string.lower(first[0]+last[:7])

 # write it to the output file

 outfile.write(uname+'\n')

 # close both files

 infile.close()

 outfile.close()

 print "Usernames have been written to", outfileName

Example Program: Batch Usernames

•! Things to note:

–! It’s not unusual for programs to have multiple files

open for reading and writing at the same time.

–!The lower function is used to convert the names

into all lower case, in the event the names are
mixed upper and lower case.

–!We need to concatenate ‘\n’ to our output to the

file, otherwise the user names would be all run
together on one line.

Coming Attraction: Objects

•! Have you noticed the dot notation with the file
variable? infile.read()

•! This is different than other functions that act
on a variable, like abs(x), not x.abs().

•! In Python, files are objects, meaning that the
data and operations are combined. The
operations, called methods, are invoked using
this dot notation.

•! Strings and lists are also objects. More on
this later!

More info?

•! Always more info in the book…

•!On the web:

•! http://docs.python.org/tut/node9.html

