
Creating a large GUI

Program

Dan Fleck

Spring 2007

Coming up: Hangman – yes

again!

Hangman – yes again!

•! Lets say we want to create a more fun,
graphical version of our Hangman game. This
is alarger program and we will follow the
Software Development Process from Chapter 2

•! Steps

–!Analyze the problem

–!Determine the specification

–!Create a design

–! Implementation

–!Testing / Debugging

–!Maintenance

Hangman Analysis

•! Analysis – understand what we want to

do. In our simple program, this is a

quickly drawn GUI:

Hangman: the Professor

_ _ e _ _ y

A button for each

letter goes in here

Hangman Analysis

•! Analysis – understand what we want to

do. In our simple program, this is a

quickly drawn GUI

–!Lets make it more fun by using a real

picture! So, we’ll take a GIF, and cut it into

pieces (head, arms, legs…) and use those

instead of drawing the hangman. !

Hangman Design

•! Design – start thinking about how to do
this in a computer. Lets break up our big
problem into little problems

•! Create a bunch of buttons each with a
letter in it

•! Create a label that we can display the
string in

•! Create a canvas with the hangman’s
holder drawn up, and allow it to a image
parts in

Hangman Design: Button Frame

•!Create a bunch of buttons each with a

letter in it

–!Pseudocode

•! loop through each letter in the alphabet

–!create a button

–!add the button to a frame

–!bind the button to a function that will determine which

button was pressed and then will call another function

that handles a specific guess

•!Create the button handler function (described

above)

Hangman Design: Button Frame

•! loop through each letter in the alphabet

–!create a button

–!bind the button to a function

–!add the button to a frame

def createButtons(parent):

 for i in range(26):

 letter = chr(i) # Convert number to ascii character

 b = button(parent, text=letter,
 command=handleButton)
 b.pack()

Button Frame Implementation

•! Problems to solve:

–!Want the buttons to be in multiple rows

–!Want the buttons to be grayed out after

clicked

–!Want i and j to show up!

–!Want the button handler to know which

button was pushed

Hangman Analysis

•! Analysis – understand what we want to

do. In our simple program, this is a

quickly drawn GUI:

Hangman: the Professor

_ _ e _ _ y

A button for each

letter goes in here

!

Hangman: Label Analysis

•!Create a label that we can display the

string in

–!Make a label with a changeable string

–!Make a function that decides what to show

(_ or the letter)

•!Needs to know: lettersGuessed and

currentWord

–!Create a function that accepts a guess and

maintains all this information

Hangman: Label Analysis

–!Make a function that decides what to show (_

or the letter)

•!Needs to know: lettersGuessed and currentWord

loop through all chars in the word

if charInWord is in lettersGuessed

 show the letter

else

 show the blank (_)

*** Need build up a string so we can call

changeAbleStr.set(stringToShow) ***

Hangman: Label Analysis

stringToShow = “” # Empty

loop through all chars in the word

if charInWord is in lettersGuessed

 add letter to stringToShow

else

 add blank to stringToShow

changeAbleStr.set(stringToShow)

See label1.py

Hangman Analysis

•! Analysis – understand what we want to

do. In our simple program, this is a

quickly drawn GUI:

Hangman: the Professor

_ _ e _ _ y

A button for each

letter goes in here

!

!

Hangman: Canvas Analysis

•! Create a canvas with the hangman’s
holder drawn up, and allow it to a image
parts in

•! Steps:
–!Create the canvas

–!Draw the noose

–!Create a function that accepts the body part
number, and add it into the canvas

–!Call that function everytime someone misses a
guess

Hangman: Canvas Implemenation

•!Create the canvas
–!canvas = Canvas(parent, width=300,height=700)

•!Draw the noose
–!canvas.create_line(5,540,220,540) #base

–!canvas.create_line(210, 540, 210, 5) # Long pole

–!canvas.create_line(100, 5, 210, 5)

–!canvas.create_line(100, 5, 100, 10)

Hangman: Canvas Implementation

•! Create a function that accepts the body part

number, and add it into the canvas

•! How?

•! Option 1: Make a series of pictures each showing

more body parts. Then replace the picture with the

next picture in the series to add a part

•! Option 2: Make a group of pictures each with one

body part. Add the pictures in one at a time

Hangman: Canvas Implementation

•! Option 1: Make a series of pictures each showing

more body parts. Then replace the picture with the

next picture in the series to add a part

images = ['head.gif', 'torso.gif', 'arm1.gif', 'arm2.gif', 'leg1.gif', 'fulldan.gif’]

canvas=None # Holds the canvas we're drawing the hangman on

def addPiece(misses):

 global canvas, images

 img = PhotoImage(file=images[misses])

 canvas.create_image(0, 6,anchor=NW, image=img)

 canvas.image = img

Things left to do

•! Add the title to the top of the window

(How?)

•!Make a “You lost” message appear

•!Make the game use words from a file

•!Don’t allow people to click on buttons

that are disabled (we used “bind” so

they are really still clickable)

•! Add sound? !

Recap

•!We started with a simple idea and a

simple GUI layout

•! Analysis

•!Design

•! Implementation

•! Testing/Debug

•!Maintenance

Hangman: the Professor

_ _ e _ _ y

A button for each

letter goes in here

Testing/Debugging

•!When testing your goal is to verify all

parts of your software work correctly

with both good and bad inputs.

•! Specifically you want to think about how

it SHOULD work… not really how you

implemented it! (aka Requirements)

•!What are some test scenarios you

would write for this software?

Some Test Scenarios

•! Validate that solving the puzzle works

•! Validate that when you do not solve the

puzzle, a message appears and the

game ends

•! Validate that the software works with

words to solve with spaces in them

•! Validate that the software works with

upper and lowercase words

