
Sorting and Comparators

Dan Fleck

Coming up: Sorting a list

Sorting a list

•! Sorting a list seems simple:

myList = [1, 4, 3, 5]

myList.sort()

print myList

>>> [1, 3, 4, 5]

Backwards? Not so hard really

Okay, how about backwards then!

•! A little harder, but we can do it

myList = [1, 4, 3, 5]

myList.sort()

myList.reverse()

print myList

>>> [5, 4, 3, 1]

What about a heterogeneous list?

Okay, heterogeneous list?

•! First, what is a heterogeneous list?

•! heterogeneous - consisting of dissimilar

or diverse ingredients or constituents

•! homogeneous - of the same or a similar

kind or nature

 – mw.com

Okay, heterogeneous list?

•! First, what is a heterogeneous list? In

Python then:

•! heterogeneous list – has elements of

multiple data types (int, float, String, list)

•! homogeneous list – all elements are the

same type

So, lets sort one

myList = [1, ‘B’, 4, ‘A’, [1, 2, 3], 3, 5]

myList.sort()

print myList

>>> [1, 3, 4, 5, [1, 2, 3], 'A', 'B']

Uhhh… why?

The Python people had a problem… how does one compare an int

to a list? Ideas?

Sorting heterogeneous types

They didn’t have a good idea either, but in

a computer you MUST provide an

answer, even if it isn’t a good one!

Python sorts alphabetically based on the

name of the type.

ALL ints < ALL lists < ALL strings < ALL tuples

Note: Python does sort ints, floats, doubles together… so that

will work, but all of them will be “less than” lists, strings, tuples)

Sorting classes

What about classes?

Oh… still alphabetic:

ALL classes < ALL ints < ALL lists < ALL strings

< ALL tuples

What about just a homogeneous list of classes?

Sorting classes

What about just a homogeneous list of

classes?
class MyClass:

 def __init__(self, x):

 self.x = x

c1 = MyClass(1)

c2 = MyClass(2)

myList = [c2, c1]

myList.sort()

print myList

[<__main__.MyClass instance at 0x70148>, <__main__.MyClass instance at 0x70120>]

[<__main__.MyClass instance at 0x70120>, <__main__.MyClass instance at 0x70148>]

Making classes pretty

•! classes… when you print a class, the

default action is to print the memory

location of the class. Not very helpful.

•! You can override that behavior by

providing a special method to be called:

–!def __repr__(self):

“Returns a string representing this class”

Making classes pretty

class MyClass:

 def __init__(self, x):

 self.x = x

 def __repr__(self):

 “Returns a string representing this class”

 return ‘MyClass:’+str(self.x)

Back to sorting

c1 = MyClass(1)

c2 = MyClass(2)

myList = [c2, c1]

myList.sort()

print myList

>>> [MyClass:2, MyClass:1]

>>> [MyClass:1, MyClass:2]

It works! Or does it? How did it do the sorting? Can you think of
how it KNOWS what to sort?

Neither could the Python authors!

Back to sorting

c2 = MyClass(2)

c1 = MyClass(1)

myList = [c2, c1]

myList.sort()

print myList

>>> [MyClass:2, MyClass:1]

>>> [MyClass:2, MyClass:1]

Python doesn’t know how to sort your class unless *YOU* tell it
how!

Change the order

__cmp__ method

•! Another special method in Python tells sort routines

HOW do I compare two of these things?

•! def __cmp__(self, other):

 """Return -1 if self < otherInstance

 Return 0 if they are equal

 Return +1 if self > otherInstance """

 if self.x == other.x:

 return 0

 elif self.x < other.x:

 return -1

 else:

 return 1

What if I want

descending order?

__cmp__ method

•! Frequently you want to order by some instance

variable that is part of the class. So, you can just use

the built-in cmp method, which works for the basic
types (string, int, float, etc…)

•! def __cmp__(self, other):

 """Return -1 if self < otherInstance

 Return 0 if they are equal

 Return +1 if self > otherInstance """

 return cmp(self.x, other.x)

What if I want

descending order?

Sorting

•! In summary
–!Sorting in Python is done automatically for the

built-in types.

–!Sorting heterogeneous types is done
alphabetically by type name

–!Sorting a list of your own classes though
requires a comparator function (__cmp__)
where you tell Python how to compare two
instances of your class

•! And don’t forget to define __repr__ just to
make it easier for people to use your class.

Lets Try it

•! Look at inclass_sort.py and make it sort

by GPA and then names.

