
New Datatypes:Tuples

and Sets

Dan Fleck

Coming up: Passing a list as a

parameter

Passing a list as a parameter

def class FamilyTree:

 # This class holds a list of family members in the variable tree

 … lots of code not shown …

 def getTree(self):

 return self.tree

Can a user of this class modify my family tree?

Yes… since lists are mutable:

theTree = family.getTree()

theTree.del(‘Roger’)

this deletes Roger everywhere… remember we’re passing a

reference (an arrow) because tree is a mutable type so

changing the data changes it everywhere!!!

One way to fix it

def class FamilyTree:

 # This class holds a list of family members

 … lots of code not shown …

 def getTree(self):

 return self.tree[:] # Return a COPY of the entire list

This works, but if someone gets this list they may want to

modify it. The modification works fine, but then later on the tree

“reverts” back to the original. What kind of error is this?

(Syntax? Runtime? Logical?)

The better way to fix it

Use the Python tuple data type:

def class FamilyTree:

 # This class holds a list of family members

 … lots of code not shown …

 def getTree(self):

 treeTuple = tuple(self.tree) # Copy the list into a tuple

 return treeTuple

A tuple is an immutable list. It cannot be changed, but all the

other list operations apply (slicing and indexing).

Tuples

•! Tuples are like immutable lists. You

can slice and index them, but you

cannot change them in any way:

myTuple[1] = ‘Hello’

TypeError: 'tuple' object does not support item

assignment

•!Doesn’t support appending or sorting

either.

Tuples

myTuple = (2, 3, 4, 'A', 'B', 'C')

>>> print myTuple[0]

>>> print myTuple[2:5]

Officially you can create a tuple by using

commas without parenthesis:

 myTuple = 3, 4, 5 # Don’t do this!

This works, but is not recommended. Use

parenthesis to make it clear.

Create a tuple using

parenthesis

Index/Slice with [] like all other

sequences

Small Tuples

•! To create an empty tuple:

myTuple = ()

•! To create a one entry tuple
myTuple = (1) # Error… that’s a math statement!

Could we just create an empty tuple and append one

thing to it?

No! Tuples are immutable!

Use: myTuple = (1,)

Sequence Types

•! Tuples, lists, and strings are all sequence
types in Python.

•! A sequence is an ordered list of “things”.

•! Python sequences all support slicing,
indexing and some other things like:
–!x in seq : True if x is equal to any element in seq

–!x not in seq

–!len(seq)

–!A few others see:
http://docs.python.org/lib/typesseq.html

Set Types

•! Are mutable

•!Cannot contain duplicates

•! Are unordered – think of a set as a bag

of unique things.

–!So can you slice and index sets?

•! To the docs for the rest:

–!http://docs.python.org/lib/types-set.html

No! They have no order. Asking for the “set element

at position 23” doesn’t work because there are no

positions!

Set types

•! A set is a different category than a

sequence. A set is a group of unique

objects (that does not allow duplicates).

New in Python version 2.4.

•! Just so you know, sets and sequences

are very common in computer

languages. The ideas here translate

everywhere.

Set Example

•! Sets cannot be created directly, but can

be created from lists:
myList = [1,2, 3, 4, 5]

mySet = set(myList) # To create a set from the list

print mySet

print type(mySet)

>>> set([1, 2, 3, 4, 5])

>>> <type 'set’>

Set Example

What if the list had duplicates?
myList = [1, 2, 3, 2, 4, 1, 5]

mySet = set(myList)

print mySet

print type(mySet)

>>> set([1, 2, 3, 4, 5])

>>> <type 'set’>

Same output, the duplicate values are

REMOVED. This is because a set

allows no duplicates!

Adding to sets

myList = [1, 2, 3, 2, 4, 1, 5]

mySet = set(myList)

mySet.add(1) # Try to add a duplicate

print mySet

>>> set([1, 2, 3, 4, 5])

mySet.add('AAA')

print mySet

>>> set([1, 2, 3, 4, 5, 'AAA'])

Nope… you cannot add a

duplicate into a Set

You can add a new unique

value though!

Set difference and union

•! s.difference(t)

–!returns a new set with elements in s but not

in t

•! s.union(t)

–!Returns a new set elements from both s

and t

•! Lets try an example!

Using Sets

You need sets in situations where you

don’t want duplicates.

One such place is the list of misses and

used values in the Hangman game.

Lets change Graphical Hangman to use

sets instead of lists!

Summary

•! tuples are immutable lists

•!Create them using () instead of [], but

slice and index using [].

•! Strings, lists and tuples are all types of

sequences

•! A set is a data structure that does not

allow duplicates.

•! Sets are created from lists by using the

built-in set() function

