New Datatypes:Tuples
and Sets

Dan Fleck

Coming up: Passing a list as a
parameter

T A e T e e R
;.| e . - -4 22 e O . IANY . =i ‘s a bt ' e SO AT IR fF LT % : SRR LIS - 4 . ~

L Passing a list as a parameter

R B S A e A ST B Ty vl st ST O e T o B Kol N STt 2 O Ml bt

def class FamilyTree:
This class holds a list of family members in the variable tree

... lots of code not shown ...

def getTree(self):
return self.tree
Can a user of this class modify my family tree?

theTree = family.getTree()
theTree.del("Roger’)

this deletes Roger everywhere... remember we're passing a
reference (an arrow) because tree is a mutable type so
changing the data changes it everywhere!!!

ALY A T A S T R P A I RN Ak e

\‘ ".{“.\7 ‘.*‘.' '.',l" " t..- .)

SN ENRON

¥ ..",:;.‘.. '.“' : .

N AT T

N -“.l_.‘ [SAR-Y

- One way to fix it

R B o B o I e R S AN R Ty v Rt ST T e 2 o2 T Ko il W ST P 0 el b B i
def class FamilyTree:

This class holds a list of family members
... lots of code not shown ...

- ._:‘ f' :_. "'. -y

def getTree(self):
return self.tree[:] # Return a COPY of the entire list

This works, but if someone gets this list they may want to A

modify it. The modification works fine, but then later on the tree
“reverts” back to the original. What kind of error is this?
(Syntax? Runtime? Logical?)

'y

Coming Up: The better way to fix It Fui IDNRNPRRR T e w272y il

MAYE WU

L The better way to fix it

R B o B o A e R AR Vil Ryt ST O e 2 Tt T ol W ST S el ek i

Use the Python tuple data type:

VNS o !

def class FamilyTree:
This class holds a list of family members
... lots of code not shown ...

def getTree(self):
treeTuple = tuple(self.tree) # Copy the list into a tuple
return treeTuple

-* | Atuple is an immutable list. It cannot be changed, but all the
other list operations apply (slicing and indexing).

Cofming - Tapes il RN i 7\ 72 i

5 Tuples

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

* Tuples are like immutable lists. You
can slice and index them, but you
cannot change them in any way:

N P T DN
— s il S e @Y Y -

myTuple[1] = ‘Hello’

TypeError: 'tuple' object does not support item
assignment

* Doesn’t support appending or sorting
either.

»

-

A L e

Create a tuple using

myTuple = (2, 3, 4, 'A’, 'B', 'C) parenthesis
>>> print myTupl

pr!n my Tuple[0] Index/Slice with [] like all other
>>> print myTuple[2:5] sequences

Officially you can create a tuple by using
commas without parenthesis:
myTuple = 3, 4, 5 # Don't do this!
— 2 This works, but is not recommended. Use
. parenthesis to make it clear.

OIS - ARG O DT AT A IR R A T A T NN 70 e o

| T T e g = IR T

» (‘::’ . :(’n_\\“:-- L

T R

Small Tuples

T R B N o I e R N Ty T R st S P O e s BT ol . STt 0 R b g

* To create an empty tuple:
myTuple = ()

» To create a one entry tuple

myTuple = (1) # Error... that’'s a math statement!

Could we just create an empty tuple and append one
thing to it?

No! Tuples are immutable!
Use: myTuple =(1,)

AR £ AN B0 v [S b R A G AN O

“‘.: o -
+

L/ Y.

Sequence Types

R R A N B o N o A R TR Ty Tl Pt S O e 2 et B Kl N STt 0 el bt i

* Tuples, lists, and strings are all sequence
types in Python.

« A sequence is an ordered list of “things”.

* Python sequences all support slicing,
Indexing and some other things like:
— X In seq : True if x is equal to any element in seq

— X not in seq
— len(seq)

— A few others see:
> http://docs.python.org/lib/typesseq.html

BRI AL sl (TR e s s S R AT T YRL) AN 10 TR OV TR A Y TS TRE
¢ o0 . l.. . - . » .
- . . ‘ - .

215

Set Types

R B o o N e R T S Ty Tl ot S T e T o B Kol A ST 0 .kl

Are mutable
Cannot contain duplicates

Are unordered — think of a set as a bag
of unique things.
— S0 can you slice and index sets?

! dVE O Order. ASK J 10
at position 23" doesn’t work because there are no

positions!

To the docs for the rest:
— http://docs.python.org/lib/types-set.html

O AN AR

4 Set types
» A setis a different category than a
sequence. A set is a group of unique
objects (that does not allow duplicates).
New in Python version 2.4.

» Just so you know, sets and sequences
are very common in computer
languages. The ideas here translate

* everywhere.

Set Example

e R e T SN N SR A e SRS Ty ve

» Sets cannot be created dlrectly, but can
be created from lists:
myList = [1,2, 3, 4, 5]
mySet = set(myList) # To create a set from the list
print mySet
print type(mySet)
>>> set([1, 2, 3, 4, 5])
>>> <type 'set’>

-

TN T T IO AT 070 W3RN /0

. Y o O,

Co

»

Set Example
R I o TS A 500 et S Sk o 282
What if the list had duplicates?
myList =[1, 2, 3, 2, 4, 1, 5]
mySet = set(myList)
print mySet
print type(mySet)
>>> set([1, 2, 3, 4, 5])
>>> <type 'set’>

Same output, the duplicate values are
REMOVED. This is because a set
allows no duplicates!

L S AR AN I kA T A T R

el gL

g Addlng to sets

myLlst = [1, 2.3.2 4.1, 5]
mySet = set(myList)

mySet.add(1) # Try to add a duplicate
print mySet
>>>set([1,2,3,4,5) |yt
mySet.add('AAA’)

print mySet

m - >>>set([1, 2, 3, 4, 5, 'AAA RUIECHELCELEIETIEIE

value though!

E

DI RG M 270 0 o d

-, Set difference and union

R I o S A s B St Ty vl 3 ot ST P T T B Kol N ST S Ml b i

» s.difference(t) 3
— returns a new set with elements in s but not !

In { ~

e s.union(t)

— Returns a new set elements from both s
and t

* Lets try an example!

g Using Sets

R e B N . o A e TSR Sy T Pt S T e e BT o bl K ST o ekl Bt i

You need sets in situations where you :
don’t want duplicates. i

One such place is the list of misses and
used values in the Hangman game.
Lets change Graphical Hangman to use
sets instead of lists!

: Summary

R e T N o I e A TR Ty T gt S T O e s ™ Sl S S T o Mt B i

 tuples are immutable lists

* Create them using () instead of [], but
slice and index using [].

» Strings, lists and tuples are all types of
sequences

A setis a data structure that does not
allow duplicates.

» Sets are created from lists by using the
built-in set() function

