New Datatypes:Tuples
and Sets

Dan Fleck

Coming up: Passing a list as a
parameter
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L Passing a list as a parameter
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def class FamilyTree:
# This class holds a list of family members in the variable tree

... lots of code not shown ...

def getTree(self):
return self.tree
Can a user of this class modify my family tree?

theTree = family.getTree()
theTree.del("Roger’)

this deletes Roger everywhere... remember we're passing a
reference (an arrow) because tree is a mutable type so
changing the data changes it everywhere!!!
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- One way to fix it
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def class FamilyTree:

# This class holds a list of family members
... lots of code not shown ...
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def getTree(self):
return self.tree[:] # Return a COPY of the entire list

This works, but if someone gets this list they may want to A

modify it. The modification works fine, but then later on the tree
“reverts” back to the original. What kind of error is this?
(Syntax? Runtime? Logical?)
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L The better way to fix it
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Use the Python tuple data type:
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def class FamilyTree:
# This class holds a list of family members
... lots of code not shown ...

def getTree(self):
treeTuple = tuple(self.tree) # Copy the list into a tuple
return treeTuple

-* | Atuple is an immutable list. It cannot be changed, but all the
other list operations apply (slicing and indexing).
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5 Tuples
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* Tuples are like immutable lists. You
can slice and index them, but you
cannot change them in any way:
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myTuple[1] = ‘Hello’

TypeError: 'tuple' object does not support item
assignment

* Doesn’t support appending or sorting
either.
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Create a tuple using

myTuple = (2, 3, 4, 'A’, 'B', 'C) parenthesis
>>> print myTupl

pr!n my Tuple[0] Index/Slice with [ ] like all other
>>> print myTuple[2:5] sequences

Officially you can create a tuple by using
commas without parenthesis:
myTuple = 3, 4, 5 # Don't do this!
— 2 This works, but is not recommended. Use
. parenthesis to make it clear.
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Small Tuples
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* To create an empty tuple:
myTuple = ()

» To create a one entry tuple

myTuple = (1) # Error... that’'s a math statement!

Could we just create an empty tuple and append one
thing to it?

No! Tuples are immutable!
Use: myTuple =(1,)
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Sequence Types
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* Tuples, lists, and strings are all sequence
types in Python.

« A sequence is an ordered list of “things”.

* Python sequences all support slicing,
Indexing and some other things like:
— X In seq : True if x is equal to any element in seq

— X not in seq
— len(seq)

— A few others see:
> http://docs.python.org/lib/typesseq.html




BRI AL sl (TR e s s S R AT T YRL ) AN 10 TR OV TR A Y TS TRE
¢ o0 . l.. . - . » .
- . . ‘ - .

215

Set Types
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Are mutable
Cannot contain duplicates

Are unordered — think of a set as a bag
of unique things.
— S0 can you slice and index sets?

! dVE O Order. ASK J 10
at position 23" doesn’t work because there are no

positions!

To the docs for the rest:
— http://docs.python.org/lib/types-set.html
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4 Set types
» A setis a different category than a
sequence. A set is a group of unique
objects (that does not allow duplicates).
New in Python version 2.4.

» Just so you know, sets and sequences
are very common in computer
languages. The ideas here translate

*  everywhere.




Set Example
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» Sets cannot be created dlrectly, but can
be created from lists:
myList = [1,2, 3, 4, 5]
mySet = set(myList) # To create a set from the list
print mySet
print type(mySet)
>>> set([1, 2, 3, 4, 5])
>>> <type 'set’>
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Set Example
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What if the list had duplicates?
myList =[1, 2, 3, 2, 4, 1, 5]
mySet = set(myList)
print mySet
print type(mySet)
>>> set([1, 2, 3, 4, 5])
>>> <type 'set’>

Same output, the duplicate values are
REMOVED. This is because a set
allows no duplicates!
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g Addlng to sets

myLlst = [1, 2.3.2 4.1, 5]
mySet = set(myList)

mySet.add(1) # Try to add a duplicate
print mySet
>>>set([1,2,3,4,5) |yt
mySet.add('AAA’)

print mySet

m - >>>set([1, 2, 3, 4, 5, 'AAA RUIECHELCELEIETIEIE

value though!
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-, Set difference and union
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» s.difference(t) 3
— returns a new set with elements in s but not !

In { ~

e s.union(t)

— Returns a new set elements from both s
and t

* Lets try an example!




g Using Sets
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You need sets in situations where you :
don’t want duplicates. i

One such place is the list of misses and
used values in the Hangman game.
Lets change Graphical Hangman to use
sets instead of lists!




: Summary
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 tuples are immutable lists

* Create them using () instead of [ ], but
slice and index using [ ].

» Strings, lists and tuples are all types of
sequences

A setis a data structure that does not
allow duplicates.

» Sets are created from lists by using the
built-in set( ) function




