
Debugging & Errors 
“Why you were up till 2AM”

Dan Fleck
Fall 2008

Coming up: Running programs from the command line…

Running programs from the
command line…
 In windows just double-click on the

“sliders.py” file
 In Unix/Mac (or Windows also) run the

command:
 python sliders.py

 This is needed to verify that the clear
screen works.

 Sliders grading criteria posted to sliders
assignment in Blackboard

Coming up: Debugging

Debugging

 Definition: The process of finding
problems (bugs) in programs and
removing them

Coming up: General Steps

General Steps

 Recognize that a bug exists
 Isolate the source of the bug
 Identify the cause of the bug
 Determine a fix for the bug
 Apply the fix and test it

Coming up: Isolating source of the bug

Isolating source of the bug

Once found, and understood, most bugs
are easy to fix. We will concentrate only
on finding the bug

Coming up: Confirm your beliefs

Confirm your beliefs

Finding your bug is a process of confirming the many
things you believe are true, until you find one which is
not true

 You believe that at a certain point in your source file, a
certain variable has a certain value

 You believe that in a given if-then-else statement, the
“else” part is the one that is executed

 You believe that when you call a certain function, the
function receives its parameters correctly

Coming up: Confirm your beliefs

Confirm your beliefs

So the processing of finding the location of a bug
consists of confirming all these things!

Check everything!

Okay… How?

Coming up: One way

One way

 Put lots of print statements in at each
point that says “I am in method X with
parameters set to Y,Z”

 Note: If you do this, be able to turn them
on/off easily!
 DEBUG = True;
  If (DEBUG) print…..

Coming up: Often a better way

Often a better way

 Use the debugger
 Set a breakpoint at a point in the code
 Step through the code
 Look at the variables to see ones that are

not as you expected

The debugger is usually better/faster… but print statements
are also easy to turn on/off as a whole to make a DEBUG

mode for your program. Which is often useful. Coming up: The Most Important Thing

The Most Important Thing

 To do ANY debugging you must
understand what the program should do

 What each method should do
 What each if statement should do

If your beliefs are wrong, confirming
your beliefs will not help!

Coming up: The Most Important Thing

The Most Important Thing

 Add beliefs into your code… beliefs are
otherwise known as COMMENTS!

Coming up: Terminology

Terminology

 Breakpoint – A marker in a program that signals the
debugger to stop when execution reaches that point.
Code beyond the breakpoint is not executed until
further instructions are provided. 

 Step through your code – execute your program a
single line (or “step”) at a time stopping after each line
to inspect values.

Coming up: Lets try out the IDLE debugger

Lets try out the IDLE debugger

 Startup IDLE
 Open a module
 Select DEBUG->Debugger

 You should see [DEBUG ON] in the shell
 Run your program 

More info: http://www.python.org/idle/doc/idle2.html#Debugger

Coming up: Lets try out the IDLE debugger

Lets try out the IDLE debugger

 Next – go to the next line in the current
function

 Step – go to the next line that executes
(usually to step into a function)

 Out – run until the current function ends
or a return statement is reached

Coming up: Lets work some examples

IDLE does support breakpoints in the recent versions!
Right-click on your source vode to set a breakpoint!

Lets work some examples

 See debugExamples.py
 See debugExamples2.py

Coming up: COMMENT YOUR CODE!

COMMENT YOUR CODE!

COMMENT!

COMMENT!

COMMENT!

COMMENT!

COMMENT!

COMMENT! COMMENT! COMMENT!
COMMENT! COMMENT! COMMENT! COMMENT!

COMMENT!

COMMENT!
COMMENT!

COMMENT!

COMMENT!
COMMENT!

COMMENT!

COMMENT!

COMMENT!

COMMENT!
COMMENT!

COMMENT!

COMMENT!

COMMENT! COMMENT!

COMMENT!

COMMENT!

COMMENT! COMMENT!

COMMENT! COMMENT!

COMMENT!
COMMENT!

Coming up: Whoa there cowboy… I canʼt even run my program!

Whoa there cowboy… I canʼt even run
my program!

 First, try never to get here. Run early, run
often. If you canʼt run at any point STOP… fix
the code before adding any new code.

 Review the error, read it carefully
 Check your book and online resources for

examples and see what may be wrong
 Ask questions on Blackboard, to your TA or

Professor.

Coming up: The Most Important Thing (again)

The Most Important Thing (again)

 Add beliefs into your code… beliefs are
otherwise known as COMMENTS! 

Coming up: More Information

More Information

 List of Python debuggers:
 http://wiki.python.org/moin/PythonDebuggers

 Other Python editors
 http://wiki.python.org/moin/PythonEditors 

Coming up: Basic Error Types

Basic Error Types

 Syntax errors - incorrect syntax due to
spelling errors, missing operators, etc. ,
(easiest to fix)

 Run- time errors - compiled/interpreted, but
crashes when encounters certain data sets
(harder to fix)

 Logic error - executes, but provides
incorrect or inconsistent outputs (hardest)

Coming up: Syntax Error

Syntax Error
def main():
 test_str = "FAC50000BC4A01015CC01010
 for i in range(len(test_str)):
 if i % 8 == 0:
 print " " + test_str[i:i+4] + \
 " " + test_str[i+4:i+8]

main()

>>> import errors_1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/rheishma/GMU/Classes/CS-112/errors_1.py", line 3
 test_str = "FAC50000BC4A01015CC01010 
 ^
SyntaxError: EOL while scanning single-quoted string

Coming up: Syntax Error

Syntax Error
def main():
 test_str = "FAC50000BC4A01015CC01010”
 for i in range(len(test_str)):
 if i % 8 == 0:
 print " ” test_str[i:i+4] + \
 " " + test_str[i+4:i+8]

main()

>>> import errors_1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/rheishma/GMU/Classes/CS-112/errors_1.py", line 8
 print " " test_str[i:i+4] + \
 ^
SyntaxError: invalid syntax

Coming up: Syntax Error

Syntax Error
def main():
 test_str = "FAC50000BC4A01015CC01010”
 fir i in range(len(test_str)):
 if i % 8 == 0:
 print " ” + test_str[i:i+4] + \
 " " + test_str[i+4:i+8]

main()

>>> import errors_1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/rheishma/GMU/Classes/CS-112/errors_1.py", line 5
 fir i in range(len(test_str)):
 ^
SyntaxError: invalid syntax

Coming up: Run-time error

Run-time error
Runtime Error Example
runtimeError.py
def func1(name, num):

 print "%s has a favorite number: %d" %(name, int(num))

def main():
 name = raw_input("What is your name?")
 num = raw_input("What is your favorite number?")
 func1(name, num)

main() Input: Dan, 5
Output: Dan has a favorite number: 5

Coming up: Run-time error

Run-time error
Runtime Error Example
runtimeError.py
def func1(name, num):

 print "%s has a favorite number: %d" %(name, int(num))

def main():
 name = raw_input("What is your name?")
 num = raw_input("What is your favorite number?")
 func1(name, num)

main()

Input: Dan, A2
Traceback (most recent call last):
File "/Users/dfleck/Documents/gmuwebsite/classes/cs112/spring08/
samplecode/runtimeError.py", line 6, in func1

 print "%s has a favorite number: %d" %(name, int(num))

ValueError: invalid literal for int() with base 10: 'A2’
Coming up: Logic Error

Logic Error
def add_nums(op_1,op_2):
 return op_1 - op_2

def main():
 x,y = input("Enter (#,#): ")
 z = add_nums(x,y)
 print z

main() Enter (#,#): 10, 5

Output: 5

Coming up: References

References
  http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/

Debug.html#tth_sEc2
  http://en.wikipedia.org/wiki/Debugging

End of presentation

