
Exception Handling

Dan Fleck

Coming up: Long ago we wrote

this

Long ago we wrote this

def addGraphicalButton(parent):

 # Create the PhotoImage widget

 im = PhotoImage(file='cake.gif')

 button2 = Button(root, text="Potato", image=im)

 button2.image = im

 button2.pack()

But… there was a problem. If the cake.gif

file doesn’t exist, we crash

Long ago we wrote this

def addGraphicalButton(parent):

 # Create the PhotoImage widget

 im = PhotoImage(file='cake.gif')

 button2 = Button(root, text="Potato", image=im)

 button2.image = im

 button2.pack()

Traceback (most recent call last):

 File "images_sample.py", line 20, in <module>

 im = PhotoImage(file='cake.gif')

 File "/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/lib-tk/

Tkinter.py", line 3270, in __init__

 Image.__init__(self, 'photo', name, cnf, master, **kw)

 File "/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/lib-tk/

Tkinter.py", line 3226, in __init__

 self.tk.call(('image', 'create', imgtype, name,) + options)

_tkinter.TclError: couldn't open "cake.gif": no such file or directory

Exceptions

Normally, we’ll assume the cake file

should exist. However, on a rare

occasion it may not… this is an

exceptional case. We think it will

happen VERY rarely, but need to deal

with it

Exceptions are the way to handle these

types of problems.

try / except

try:

 <body>

except <ErrorType>:

 <error handler>

Python attempts to execute the statements in the body. If no

error occurs, control will continue after the try/except block

If an error does occur in the body, Python will look for an

except block with the matching error-type. If found, the error

handler in that block will execute

When an error occurs this is means an exception was ‘raised’

addGraphicalButton with exception handling

def addGraphicalButton(parent):

 # Create the PhotoImage widget

 try:

 im = PhotoImage(file='cake.gif')

 button2 = Button(root, text="Potato", image=im)

 button2.image = im

 button2.pack()

 except TclError:

 print 'There was an error. No file was found’

Better! The program just continues without the button if an

exception is raised. But lets try to do more, lets solve the

problem!

addGraphicalButton with exception handling

def addGraphicalButton(parent):

 # Create the PhotoImage widget

 try:

 im = PhotoImage(file='cake.gif')

 button2 = Button(root, text="Potato", image=im)

 button2.image = im

 button2.pack()

 except TclError:

 print 'There was an error. No file was found... creating a standard button
instead'

 button2 = Button(root, text="Potato")

 button2.pack()

Even better! If the image isn’t there, at least we still have a button, just not a
graphical button… our program still works though!

Get more information about the exception

def addGraphicalButton(parent):

 # Create the PhotoImage widget

 try:

 im = PhotoImage(file='cake.gif')

 button2 = Button(root, text="Potato", image=im)

 button2.image = im

 button2.pack()

 except TclError, moreDetails:

 print 'There was an error. No file was found... creating a standard \

 button instead. The error was:’, moreDetails

 button2 = Button(root, text="Potato")

 button2.pack()

>>> There was an error. No file was found... creating a standard button instead.
The error was: couldn't open "cake.gif": no such file or directory

The variable here will hold the

instance of the exception class used to
represent the exception. This is useful

to give people more inforamtion about
what happened.

Lets try it

•! Lets try writing a function to get a

number again, but make sure we have a

valid number

Exceptions propagate

•!When an exception is raised, it moves

from function to function until someone

handles it.

•! If it is never handled, it is printed to the

screen and the program terminates.

Exceptions propagate

def f1():

 print 'IN F1'

 f2()

def f2():

 print 'IN F2'

 f3()

def f3():

 print 'IN F3'

 y = 10 / 0 ## Oops!

def main():

 f1()

main()

IN F1

IN F2

IN F3

Traceback (most recent call last):

 File "propagate.py", line 19, in <module>

 main()

 File "propagate.py", line 17, in main

 f1()

 File "propagate.py", line 5, in f1

 f2()

 File "propagate.py", line 9, in f2

 f3()

 File "propagate.py", line 13, in f3

 y = 10 / 0

ZeroDivisionError: integer division or modulo by

zero Exception begins Exception is not handled… so

continues

Exceptions propagate

def f1():

 print 'IN F1'

 f2()

def f2():

 print 'IN F2'

 f3()

def f3():

 print 'IN F3'

 y = 10 / 0 ## Oops!

def main():

 f1()

main()

IN F1

IN F2

IN F3

Traceback (most recent call last):

 File "propagate.py", line 19, in <module>

 main()

 File "propagate.py", line 17, in main

 f1()

 File "propagate.py", line 5, in f1

 f2()

 File "propagate.py", line 9, in f2

 f3()

 File "propagate.py", line 13, in f3

 y = 10 / 0

ZeroDivisionError: integer division or modulo by

zero Exception is not handled… so

continues

Exceptions propagate

def f1():

 print 'IN F1'

 f2()

def f2():

 print 'IN F2'

 f3()

def f3():

 print 'IN F3'

 y = 10 / 0 ## Oops!

def main():

 f1()

main()

IN F1

IN F2

IN F3

Traceback (most recent call last):

 File "propagate.py", line 19, in <module>

 main()

 File "propagate.py", line 17, in main

 f1()

 File "propagate.py", line 5, in f1

 f2()

 File "propagate.py", line 9, in f2

 f3()

 File "propagate.py", line 13, in f3

 y = 10 / 0

ZeroDivisionError: integer division or modulo by

zero Exception is not handled… so

continues

Exceptions propagate

def f1():

 print 'IN F1'

 f2()

def f2():

 print 'IN F2'

 f3()

def f3():

 print 'IN F3'

 y = 10 / 0 ## Oops!

def main():

 f1()

main()

IN F1

IN F2

IN F3

Traceback (most recent call last):

 File "propagate.py", line 19, in <module>

 main()

 File "propagate.py", line 17, in main

 f1()

 File "propagate.py", line 5, in f1

 f2()

 File "propagate.py", line 9, in f2

 f3()

 File "propagate.py", line 13, in f3

 y = 10 / 0

ZeroDivisionError: integer division or modulo by

zero Exception is not handled… so

continues

Exceptions propagate

def f1():

 print 'IN F1'

 f2()

def f2():

 print 'IN F2'

 f3()

def f3():

 print 'IN F3'

 y = 10 / 0 ## Oops!

def main():

 f1()

main()

IN F1

IN F2

IN F3

Traceback (most recent call last):

 File "propagate.py", line 19, in <module>

 main()

 File "propagate.py", line 17, in main

 f1()

 File "propagate.py", line 5, in f1

 f2()

 File "propagate.py", line 9, in f2

 f3()

 File "propagate.py", line 13, in f3

 y = 10 / 0

ZeroDivisionError: integer division or modulo by

zero Oops..Exception is never

handled… end program

Exceptions propagate

def f1():
 print 'IN F1'

 f2()

 print 'F1 NORMAL EXIT'

def f2():

 try:

 print 'IN F2'

 f3()

 print 'F2 NORMAL EXIT'

 except ZeroDivisionError, detail:

 print 'There was a divide by zero error!',
detail

def f3():

 print 'IN F3'

 y = 10 / 0

 print ‘hello world’

def main():

 f1()

main()

IN F1

IN F2

IN F3

There was a divide by zero error! integer division

or modulo by zero

F1 NORMAL EXIT

Notice: F2 did not have a normal exit, why?

Exceptions Propagate

So, if a function has an unhandled

exception, the exception moves up the

call stack until it is handled.

Call Stack:

main

F1

F2

F3 Exception occurred, is it

handled in here?

then, how about here?

here?

Yes, F2 handles the

exception and all other

code continues normally

What prints?

def test():

 print ‘A’,

 try:

 x = 10 / 0

 print ‘B’,

 except ZeroDivisionError:

 print ‘OOPS’,

 print ‘C’, A OOPS C

What prints?

def test():

 print ‘A’,

 try:

 x = 10 / someVar

 print ‘B’,

 except ZeroDivisionError:

 print ‘OOPS’,

 print ‘C’,

A

Traceback (most recent call last):

 File "test2.py", line 12, in

<module>

 test()

 File "test2.py", line 6, in test

 x = 10 / someVar

NameError: global name

'someVar' is not defined

We handled Zero error… NOT

NameError!!

Adding multiple handlers

def test():

 print ‘A’,

 try:

 x = 10 / someVar

 print ‘B’,

 except ZeroDivisionError:

 print ‘OOPS’,

 except NameError:

 print ‘DOH’

 print ‘C’,

A DOH C

We handled the NameError

You can have as many exception

handlers as you want, but only

the first one matching the error

will ever execute.

If you leave out the name, the

except handler handles ALL

exceptions

except: # Handle any exception

Adding multiple handlers

def test():

 print ‘A’,

 try:

 x = 10 / someVar

 y = 10 / 0
 print ‘B’,

 except:

 print ‘WHOA’

 except ZeroDivisionError:

 print ‘OOPS’,

 except NameError:

 print ‘DOH’

 print ‘C’,

A WHOA C

This is BAD CODE!

except: matches ALL errors…

so it should be a last resort. If

used, put it at the end of the error

handlers!

Most of the time you shouldn’t

use it at all… catch specific

errors and handle them, let all

other errors propagate up.

Adding multiple handlers

def test():

 print ‘A’,

 try:

 x = 10 / someVar

 y = 10 / 0

 print ‘B’,

 except ZeroDivisionError:

 print ‘OOPS’,

 except NameError:

 print ‘DOH’

 except:

 print ‘WHOA’

 print ‘C’,

A DOH C

This is better. But in general you

should avoid catching except: if

you can. Better to catch specific

errors and handle them

appropriately.

If you need the safety net of

catching except:, do it with

caution.

Summary

•! Exceptions should be used for unexpected

conditions in your program.

•! When an exception happens we say the exception

was raised

•! Use try/except to handle them appropraitely

•! Exceptions propagate up the call stack until they

are handled or the program ends

•! You can have mutliple exception handlers, and the

first matching one is the only one that will execute.

•! Without a name ‘except:’ will handle all exceptions

and should be used carefully

References

•! http://docs.python.org/tut/node10.html

•! This reference has much more

information on the many other things

you can do with exceptions like:

–!Creating your own

–!Raising an exception on purpose

–!Adding a ‘finally’ block

- Adding an ‘else’ block

