
Page 1 of 6

 CS 112 - Lab Assignment #4 Specification (If Statements and Numeric
Conversions)

The purpose of this lab is to gain experience if statements, String to numeric conversions with multiple
number bases. The completed lab must be submitted via Blackboard NLT (no later than) the beginning
of the following week’s lab session (i.e. one week after assignment). If you have questions, use the
Blackboard discussion forums (and instructor/TA office hours) to obtain assistance.

Lab Requirements:

• The source code for this lab must be submitted in a file named lab4.py

• The source code file must contain a file header formatted as in previous labs.

• The source code file should use self-documenting code and additional comments (as

required) to improve code readability.

• The solution for the lab must take input from the user on the command line.

• The solution must then present a menu with options to ask for a problem type

• The solution must display a random addition problem using Hex or binary numbers as

appropriate.

• The lab must accept input from the user and determine the validity of the solution.
Including a test for the right type of answer (either binary or hex)

Lab Procedure:

You are going to use the power of Python to create a program to help you learn binary and
hexadecimal math.

Steps:
1. Print the following menu:

What type of problem do you want?
1. Binary
2. Hexadecimal

Type >

2. When the user answers you need to:
 Randomly choose two numbers between 0-50.
 Display an addition problem using those numbers. The display width of the number strings
should be padded to 10 characters wide. Example:

Page 2 of 6

Type >1
 0b110001
+ 0b101010

3. The user should then type in an answer in the appropriate number base. For example to answer 13 in
binary the user should type: 0b1101 or for hexadecimal the user should type in: 0xD

4. The system should check if their answer is correct. If it is correct print:
Excellent job!
(and let the program end).

If the answer is not correct print out the correct answer in the correct number base:
Wrong answer. The correct answer was: 0b111011

Hints

1. Generate random numbers: I would check the documentation
for the random module

2. Convert a number to a hexadecimal / binary string for display:

>>> bin(13)
'0b1101'
>>>
>>>
>>> hex(34)
'0x22'
>>>

NOTE: The bin function is only available if you’re in Python 2.6. If you are
not you need to import a version of this function written by Prof. Fleck.

http://cs.gmu.edu/~dfleck/classes/cs112/spring09/labs/lab4/bin.py

3. Convert a user’s input from hexadecimal or binary string to a
number:

>>> eval('0x22')
34

Page 3 of 6

>>> eval('0b1101')
13
>>>

NOTE: The eval function for binary numbers only works if you’re in Python
2.6. If you are not you need to import a version of this function written by
Prof. Fleck. The function is named evalBin, and is available in the following
file:

http://cs.gmu.edu/~dfleck/classes/cs112/spring09/labs/lab4/bin.py

4. To check for binary input, all you need to do is check for a “b” in the user’s
answer. For hexadecimal check for an “x” in the user’s answer. (This is not a
perfect way to check, but is fine for this lab.)

Bonus Points
A 20% bonus will be awarded if you add in code to validate the number is a valid hex/binary number
before you try to parse it, and if the number is invalid, give the user the opportunity to answer again.
This loop should continue until the user enters a valid number. Meaning, you keep asking until a valid
number is entered.

Be sure to note any bonus options you created in the file header of your program.

Sample Program Output: (Bolded is user-typed input)

...spring09/non_web/lab_solutions/lab4 > python lab4.py

What type of problem do you want?
1. Binary
2. Hexadecimal

Type >1
 0b10110
+ 0b101

0b11011
Excellent job!

...spring09/non_web/lab_solutions/lab4 > python lab4.py

What type of problem do you want?
1. Binary

Page 4 of 6

2. Hexadecimal

Type >1
 0b1001
+ 0b101010

0b1101
Wrong answer. The correct answer was: 0b110011

...spring09/non_web/lab_solutions/lab4 > python lab4.py
What type of problem do you want?
1. Binary
2. Hexadecimal

Type >2
 0x1a
+ 0x1e

0x1f
Wrong answer. The correct answer was: 0x38

...spring09/non_web/lab_solutions/lab4 > python lab4.py

What type of problem do you want?
1. Binary
2. Hexadecimal

Type >2
 0x2a
+ 0x30

0x5a
Excellent job!

>>>

What type of problem do you want?
1. Binary
2. Hexadecimal

Type >2
 0x16
+ 0xb

Page 5 of 6

19
You must answer in hex!

>>>
What type of problem do you want?
1. Binary
2. Hexadecimal

Type >1
 0b11110
+ 0b10100

13
You must answer in binary!

 Lab Assignment #4
 Excellent (85% or higher) Average (60% or higher) Needs Improving

(Less then 60%)
Points
Possible

Core Concepts
(Topics of
Focus)

• A menu is shown to read input
from the user. Including correctly
aligning the numbers.

• Printed output to user.
• Code accurately converts user

input to a number
• Code accurately converts output

to the correct numeric string
• Structure the program is clean.

• Some number
conversions are missing
(decimal numbers are
displayed)

• Numeric calculations are
incorrect (additions are
done in decimal, thereby
not being correct for the
output.)

• Used functions, but in a
poorly organized way.

• No number
conversions present

• Additions not
implemented

• Failed to read input
from user.

• Failed to print
output to user.

5

User Interface /
Input/Output

• Code correctly prompts the user
for the appropriate inputs.

• Menu is displayed and accepts
only the correct inputs and calls
an appropriate function.

• Output is descriptive to the user
and is well formatted.

• Input from the users is checked
for a valid type (bin or hex) as the
answer for the problem.

• Input prompt does not
tell the user what to
enter

• Output does not match
the specification

• Output is not checked
for valid type (bin or
hex)

• No menu is present
or options do not
work.

• Program does not
prompt for input

3

Syntax /
Overall Coding
Guidelines

• Code runs without any errors.
• Comments are meaningful and

professional.
• Code is clean and easy to read.

Uses meaningful variable names
• Complex algorithms (three lines

or more) are commented with
information on purpose and
start/stop states.

• Comments are not
helpful for
understanding the code

• variable names are not
meaningful

• code generates errors in
edge cases

• Code generates
errors in common
cases

• no comments were
used

2

Bonus Points Code correctly rejects any invalid
binary/hex number and reprompts
the user for a correct number..

None given. None given. (+2)

Final Score 10 (+2)

Page 6 of 6

Additional Comments:

