
Python Classes and
Objects

The Ball Example

Coming up: Example: Bouncing
Ball

1

Example: Bouncing Ball
•  Lets try to create a bouncing ball class.

Essentially this will be a ball that has a
velocity and can bounce around a
window.

•  Specification
– We want to specify initial position, velocity,

color and bounds (where are the walls)
– We then want to call an update method

that moves the ball

Goal
•  Create a Ball class that can display a

bouncing ball on the screen
•  Ball

– attributes: color, gravity, airResistance, current
location, current velocity

– method:
•  update – sets the location of the ball to a new location

based on time incrementing

Creating a Ball
•  tkinter is Python’s standard graphical

toolkit.
•  canvas is a class that allows drawing

things.
–  # (x1,y1) = upper left corner
–  # (x2,y2) = lower right corner
–  myBall = canvas.create_oval(x1, y1, x2, y2, fill=“red”)

See samplecode/objects/ball/DrawCircle.py

Screen Layout

0,0

400,400

0,400

400,0 Increasing X

Increasing Y

Example: Bouncing Ball
•  class Ball:

def __init__(self, xLoc, yLoc, xVel, yVel,
color, leftWall,rightWall, topWall,
bottomWall)

 # Should initialize everything

def update()
 # Should move the ball and let it bounce
appropriatly

Moving something
•  Every X seconds, change the location
•  From: http://effbot.org/tkinterbook/canvas.htm

–  move(item, dx, dy) #Moves matching items by an offset.

•  myCanvas.move(myBall,5,0) # right 5 pixels

•  # Call a function or method after 5 millis
•  myCanvas.after(5, someMethod)

•  See: MovingCircle.py

Create the Ball class
•  Ball

– attributes: color, gravity, airResistance,
current location, current velocity

•  Constructor needs to create a circle on
the canvas, and set the appropriate
attributes

•  See Ball1.py

Falling Ball
•  At time T we are at 100m
•  Our velocity is -10m/s
•  So, at time t=1 where are we?
•  At time t=2 where are we?

•  See Ball2.py

Bouncing Ball
•  Everytime we hit the floor, or a wall, just

change the direction of our velocity.

•  if we’re at the floor, start going up
•  if we’re at the ceiling, start going down
•  if we’re at the left/right …

•  See Ball3.py

Acceleration
•  As the ball bounces, gravity needs to

act on it.
•  Gravity accelerates at -9.8ms^2. So

every second go 9.8m/s faster than the
previous second!

•  yVelocity = yVelocity + 9.8

•  See Ball4.py

Fix some issues
•  Make the “moves” smaller, by dividing

all the velocities and times by 10

•  Fix the problem that the ball bounces
past the bottom of the screen

•  Ball5.py
•  Ball6.py --- add in lots of balls!

Design Summary
•  Think about each “object” in your

system
– What behaviors should it have?
– What information does it need to know?

What information changes from one
instance of this object to the next?

•  There are many books on design
strategies for object oriented
programming!

Extra Slides

Bouncing Ball: Physics 101
•  gravity accelerates items at 9.8m/s2

–  so every second you fall, your speed
increases by 9.8m/s

•  Our velocity has two components

– Assuming Θ is 30 degrees
–  cos(Θ) = x / 10
–  sin(Θ) = y / 10

y

x
Θ

Bouncing Ball: Physics 101
•  Our velocity has two components

– Assuming Θ is 30 degrees
– cos(Θ) = x / 10
– sin(Θ) = y / 10

•  x = 10 cos(30) =8.66 m/s
•  y = 10 sin (30) =0.5 m/s

y

x
Θ

Bouncing Ball: Physics 101
•  Our velocity has two components

– So, if our ball is travelling at 10 m/s, the y
velocity is subject to gravity, but not the x.
(we’ll ignore wind resistance and all other
factors)

– So the first second we travel 8.66 meters in
X and 0.5 meters in Y

y

x
Θ

Bouncing Ball: Physics 101
•  Our update function will use simulation

to keep the ball moving:
– update():
 # If we call update every second, then the change in X and Y directions are just their
 # velocity (since it’s in meters/second)

deltaX = 8.66 # Velocity in X direction never changes
yVelocity = yVelocity – 9.8 # Gravity
deltaY = yVelocity

Move the ball
self.canvas.move(self.itm, deltaX, deltaY)

This gives us a falling ball, how
do we make it bounce?

Bouncing Ball: Physics 101
•  If we hit the “floor”, change the yVelocity

from positive to negative, and reduce it
some (we bounce a little lower than we
started)
 # Bounce off the "floor"

 if self.yLoc > self.bottomWall:
 self.yVelocity = -1 * self.yVelocity * self.bouncyness
 deltaY = self.bottomWall - self.yLoc # Make sure you’re above the floor!
 else:
 deltaY = int(self.yVelocity)
 self.yLoc += deltaY

Now we bounce up and down,
what about left and right wall?

Bouncing Ball: Physics 101
•  If we hit the left/right wall, just change

our x direction
 # Bounce off the "wall"

 if self.xLoc > self.rightWall or self.xLoc < self.leftWall:
 self.xVelocity *= -1

 deltaX = self.xVelocity/5
 self.xLoc += deltaX

Great… but the balls should stop
not keep rolling around

Bouncing Ball: Physics 101
•  If we get to a very small yVelocity, just

stop bouncing and rolling.
 # The ball isn't bouncing... stop!

 if abs(self.yVelocity) < 10 and self.yLoc >= (self.bottomWall-5):
 self.yVelocity = 0
 self.xVelocity = 0
 return
 else:
 self.yVelocity += 2 #9.8/5

Bouncing Ball: Physics 101
•  Now it’s easy to create a whole bunch

of balls because they are Objects, and
each will maintain it’s own state
(velocities)

 for i in range(10):
 rcolor = '#%d%d%d' %(randint(0,9), randint(0,9), randint(0,9)) # Random color
 ball = Ball(randint(left,right), randint(top,bottom), randint(2,20), \

 randint(2,20), color=rcolor, \
 leftWall=left, rightWall=right, topWall=top, bottomWall=bottom)
 ball.draw(canvas)
 balls.append(ball)

