
1

CS 112: Introduction to
Programming:

File IO

Coming up: File Processing 1

File Processing

File Processing Sequence
1.  Open the file
2.  Read from the file
3.  Close the file

In some cases, not properly closing a file
could result in data loss.

File Processing
•  Working with text files in Python

– Associate a file with a reference variable
using the open function
<filevar> = open(<name>, <mode>)

– Name is a string with the actual file name
on the disk.

– Mode is either ‘r’ or ‘w’ depending on
whether we are reading or writing the file.
‘a’ for appending to an existing file. (‘a’ will
also create a non-existent file)

–  infile = open(“numbers.dat”, “r”)

2

Reading Files File Processing: read
printfile.py
Prints a file to the screen.

def main():
 fname = raw_input("Enter filename: ")
 infile = open(fname,'r')
 data = infile.read()
 print data

main()

•  First, prompt the user for a file name
•  Open the file for reading through the variable infile
•  The file is read as one string and stored in the

variable data

File Processing : readline
•  readline can be used to read the next

line from a file, including the trailing
newline character

 infile = open(someFile, ‘r’)
for i in range(5):

 line = infile.readline() # Read a single line
 print line[:-1] # Slice off the newline

•  This reads the first 5 lines of a file
•  Slicing is used to strip out the newline

characters at the ends of the lines

File processing: readline(x)

3

File Position

12345
abc
999

inFile = open(‘theFile.dat’, ‘r’)

File Position

line = inFile.readline()

line = inFile.read(2)
(pointing to newline)

line = inFile.read(1)
(pointing to newline)

File Processing: readlines
•  Another way to loop through the

contents of a file is to read it in with
readlines and then loop through the
resulting list.

 infile = open(someFile, ‘r’)
for line in infile.readlines():

 # Line processing here
infile.close()

File Processing: easiest way!

•  Python treats the file itself as a
sequence of lines!

•  infile = open(someFile, ‘r’)
for line in infile:

 # process the line here
infile.close()

File Processing: writing
•  Two basic functions for writing data in

text file mode:

•  write(x) – writes te string x to text file

•  writelines(x) – writes strings in list x to
text file

4

File Processing: writing
•  Opening a file for writing prepares the

file to receive data
•  If you open an existing file for writing,

you wipe out the file’s contents. If the
named file does not exist, a new one is
created.

•  Outfile = open(“mydata.out”, ‘w’)
•  <filevar>.write(<string>)

Warning: If you open an existing file for writing you
DELETE EXISTING CONTENT of the file!!

File Processing : Writing
outfile = open(“example.out”, ‘w’)
count = 1
outfile.write(“This is the first line\n”)
count = count + 1
outfile.write(“This is line number %d” % (count))
outfile.close()

•  If you want to output something that is not a string
you need to convert it first. Using the string formatting
operators are an easy way to do this.

This is the first line
This is line number 2

Example Program: Batch Usernames

•  Batch mode processing is where
program input and output are done
through files (the program is not
designed to be interactive)

•  Let’s create usernames for a computer
system where the first and last names
come from an input file.

Example Program: Batch Usernames
userfile.py
Program to create a file of usernames in batch mode.

import string

def main():
 print "This program creates a file of usernames from a"
 print "file of names."

 # get the file names
 infileName = raw_input("What file are the names in? ")
 outfileName = raw_input("What file should the usernames go in? ")

 # open the files
 infile = open(infileName, 'r')
 outfile = open(outfileName, 'w')

5

Example Program: Batch Usernames
 # process each line of the input file
 for line in infile:
 # get the first and last names from line
 last, first = string.split(line, “,”) # Split the names on comma
 # create a username
 uname = string.lower(first[0]+last[:7])
 # write it to the output file
 outfile.write(uname+'\n')

 # close both files
 infile.close()
 outfile.close()

 print "Usernames have been written to", outfileName

Example Program: Batch Usernames

•  Things to note:
–  It’s not unusual for programs to have multiple files

open for reading and writing at the same time.
–  The lower function is used to convert the names

into all lower case, in the event the names are
mixed upper and lower case.

–  We need to concatenate ‘\n’ to our output to the
file, otherwise the user names would be all run
together on one line.

Basic File I/O Modes
•  Three basic modes

– “r” – read from file
•  If file doesn’t exist error

– “w” – write to file
•  If file doesn’t exist file created
•  If file does exist content overwritten

– “a” – append to file
•  If file doesn’t exist file created
•  If file does exist new data appended

Basic File I/O Modes
•  Three mixed modes (read/write)

– “r+” – read from and write to file
•  If file doesn’t exist error

– “w+” – write to and read from file
•  If file doesn’t exist file created
•  If file does exist content overwritten

– “a+” – append to and read from file
•  If file doesn’t exist file created
•  If file does exist new data appended

6

File Seek and tell
•  Lots of other File methods you can use:

–  http://docs.python.org/library/stdtypes.html#bltin-file-objects

•  <filevar>.tell() – returns the current position in the file

•  <filevar>.seek(offset [, whence]) -- set the file’s current
position
–  whence = 0, set absolute position starting from beginning of file
–  whence = 1, set relative position starting at current file position
–  whence = 2, set absolute position from end of the file

•  Lets see an example: fileSeekAndTell.py

Where to find information
Remember:
•  Language reference – describes

specific syntax about Python. Use this if
you are writing a Python interpreter
(rarely used)

•  Library reference – describes modules,
built-in functions, data types, etc… used
frequently!

