
Python Programming, 1/e 1

Coming up: The Function of
Functions

1

Python Programming:
Introduction to

 Computer Science
Functions,Variables,Modules

The Function of Functions
•  Why use functions at all?

– Reduces duplicate code
(Less maintenance, debugging, etc…)

– Makes programs easier to read

– Makes programs more “modular”.. easier to
change and reuse parts.

Example Function versus No Functions
See functionsexample.py
p1Name = raw_input("What is your name player1 ?")
p1Age = input("What is your age player1 ?")
p1Color = raw_input("What is your favorite color player1 ?")
p2Name = raw_input("What is your name player2 ?")
p2Age = input("What is your age player2 ?")
p2Color = raw_input("What is your favorite color player2 ?")
p3Name = raw_input("What is your name player3 ?")
p3Age = input("What is your age player3 ?")
p3Color = raw_input("What is your favorite color player3 ?")
print "Player 1 is %s who is %d years old. \nTheir favorite color is %s" \
 %(p1Name, p1Age, p1Color)
print "Player 2 is %s who is %d years old. \nTheir favorite color is %s" \
 %(p2Name, p2Age, p2Color)
print "Player 3 is %s who is %d years old. \nTheir favorite color is %s" \
 %(p3Name, p3Age, p3Color)

Example Function versus No Functions
Get the player's information
def getInfo(playerNum):
 playerStr = str(playerNum)
 nm = raw_input("What is your name player"+playerStr+" ?")
 age = input("What is your age player"+playerStr+" ?")
 color = raw_input("What is your favorite color player"+playerStr+" ?")
 return nm, age, color

Print out the information about a player
def printInfo(nm, age, color, num):
 print "Player %d is %s who is %d years old. \nTheir favorite color is %s" \
 %(num, nm, age, color)

def main():
 p1Name, p1Age, p1Color = getInfo(1)
 p2Name, p2Age, p2Color = getInfo(2)
 p3Name, p3Age, p3Color = getInfo(3)

 printInfo(p1Name, p1Age, p1Color, 1)
 printInfo(p2Name, p2Age, p2Color, 2)
 printInfo(p3Name, p3Age, p3Color, 3)

main()

Python Programming, 1/e 2

Types of Functions
•  So far, we’ve seen many different types

of functions:
– Our programs comprise a single function

called main().
– Built-in Python functions (abs, range, input,

raw_input…)
– Functions from the standard libraries

(math.sqrt)

Functions, Informally
•  A function is like a subprogram, a small

program inside of a program.
•  The basic idea – we write a sequence

of statements and then give that
sequence a name (define a function).

•  We can then execute this sequence at
any time by referring to the name.
(invoke or call a function)

Parameters
•  Functions can accept data from other functions

as input.

def printHello(name):
 print “Hello”, name

def main():
 aVariable = “Mary”
 printHello(“John”)
 printHello(“Carl”)
 printHello(aVariable)

When the function is called,
the parameter “name” is assigned
the value from the caller.

A parameter is just a variable that gets reassigned
everytime someone calls the function

Parameter Terminology

def printHello(name):
 print “Hello”, name

def main():
 aVariable = “Mary”
 printHello(“John”)
 printHello(“Carl”)
 printHello(aVariable)

When the function is called,
the formal parameter “name” is assigned
the value of the actual parameter.

A parameter is just a variable that gets reassigned
everytime someone calls the function

Name is a formal
parameter

John, Carl and aVariable are actual
parameters

Python Programming, 1/e 3

Multiple Parameters
def parents(mom, dad):

 print “My parents are “, mom,” and “, dad

def main():
 parents(“Wilma”, “Fred”)

 parents(“Homer”, “Marge”) # Oops… order counts!

Returning information from a function

def getTax(cost):
 tax = cost * 0.08
 return tax

def main():
 carTax = getTax(25000)

 burgerTax = getTax(2.99)
 taxOnTax = getTax(carTax)

Return values enable
functions to process data
and return new information

To use a return value you
must assign the function
call as the RHS of an
assignment statement

Coolness Calculator
 def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

 if johnCoolness > 30:
 print ‘I will ask John out’

 elif johnCoolness > 20:
 print ‘I will set him up with my friend Mary’

 else:
 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Works great for John, but I have other people to check!

Making a function
•  Calculating Coolness

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

 if johnCoolness > 30:
 print ‘I will ask John out’

 elif johnCoolness > 20:
 print ‘I will set him up with my friend Mary’

 else:
 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Make this a function in case
 our coolness definition changes

 in the future (python * 10?)

Python Programming, 1/e 4

What can change?
•  Calculating Coolness

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

•  Determine what you think may change from person to person
and make those parameters

•  PythonSkill
•  PythonTriviaScore
•  PythonSkillWeight (maybe)
•  PythonTriviaWeight (maybe)

Try #1

def calculateCoolness():
 johnCoolness = (johnPythonSkill * 2) + \

 (johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 calculateCoolness()
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

This does not work because of variable scope!

Variable Scope
•  Every variable has a “scope”.
•  The scope of a variable refers to the

places in a program a given variable
can be referenced (or used).

•  Variables defined in a function are
local variables and can only be
referenced directly in that function

Try #2
def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia):

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 calculateCoolness(johnPythonSkill, johnMontyPythonTrivia)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Adding parameters makes things better.. But still a problem!
johnCoolness is local in calculateCoolness… how to fix?

Python Programming, 1/e 5

Try #3
def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia, johnCoolness):

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = 0

 calculateCoolness(johnPythonSkill, johnMontyPythonTrivia, \
 johnCoolness)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’, ‘
CS112 textbook. ‘

Seems right, but Python uses copies (pass by value)… so
this also does not work!

Try #4
def calculateCoolness(johnPythonSkill, johnMontyPythonTrivia):

 johnCoolness = (johnPythonSkill * 2) + \
 (johnMontyPythonTriviaScore * 1.5)

 return johnCoolness

def main():
 johnPythonSkill = 10
 johnMontyPythonTrivia = 20

 johnCoolness = 0

 johnCoolness = calculateCoolness(johnPythonSkill,
johnMontyPythonTrivia)
 if johnCoolness > 30:

 print ‘I will ask John out’
 elif johnCoolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send John a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Add a return value to get information out of a function!
 This works… but variables should be generically named

Try #5
def calculateCoolness(pythonSkill, montyPythonTrivia):

 coolness = (pythonSkill * 2) + \
 (montyPythonTriviaScore * 1.5)

 return coolness

def main():
 name = raw_input(“Who are we checking? “)

 pythonSkill = input(“What is their Python skill?”)
 montyPythonTrivia = input(“What is their trivia score?”)

 coolness = 0
 coolness = calculateCoolness(pythonSkill, montyPythonTrivia)
 if coolness > 30:

 print ‘I will ask ‘,name,’ out’
 elif coolness > 20:

 print ‘I will set him up with my friend Mary’
 else:

 print ‘I will send ‘,name,’ a Monty Python DVD and’,
 ‘ CS112 textbook. ‘

Now our coolness detector can tell us who we should date…
whew, much easier than the non-Python way!

Functions Part II

 Advanced concepts

Python Programming, 1/e 6

Reminders

def addTwoNumbers(num1, num2):
 sum = num1 + num2
 print “The sum is %d “ %(sum)

 return sum

def main():
 sum = addTwoNumbers(12,34)

Formal parameters
 get replaced with
actual parameters
from function call.

Execute (call) the function.
Think of this as the function
runs and then you replace
the call with the return value

Formal Parameters

Actual
Parameters

Return value

Functions can call other functions
Any function can call any other function in

your module
def func1(from):

 print “* I am in func 1 from”, from

def func2():
 print “I am in func 2”
 for i in range(3):
 func1(“f2”)

def main():
 func2()
 func1(“main”)

Output:
I am in func2
* I am in func1 from f2
* I am in func1 from f2
* I am in func1 from f2
* I am in func1 from main

Function Lifecycle
Recall:

def function1(formalParameter1, fp2, fp3):
 # Do something
 return someVal

def main():
 answer = \
 function1(actualParameter1, ap2, ap3)

We are formal
parameters

We are actual
parameters

Function Call Lifecycle
1.  main is suspended
2.  formal parameters are

assigned values from
actual parameters

3.  function body executes
4.  left-hand-side of

function call is
assigned value of
whatever is returned
from function

5.  Control returns to the
point just after where
the function was called.

Functions and Parameters: The Details
•  Each function is its own little subprogram. The

variables used inside of one function are local to that
function, even if they happen to have the same name
as variables that appear inside of another function.

•  The only way for a function to see a variable from
another function is for that variable to be passed as a
parameter.

• 
The scope of a variable refers to the places in a
program a given variable can be referenced.

Python Programming, 1/e 7

Functions and Parameters: The Details
•  Formal parameters, like all variables

used in the function, are only accessible
in the body of the function.

•  Variables with identical names
elsewhere in the program are distinct
from the formal parameters and
variables inside of the function body.

Trace through some code

Note that the variable person has just
been initialized to a value. What value?

person = “Fred”

person: “Fred”

Trace through some code

•  At this point, Python begins executing the
body of sing.

•  The first statement is another function call, to
happy. What happens next?

•  Python suspends the execution of sing and
transfers control to happy.

•  happy consists of a single print, which is
executed and control returns to where it left
off in sing.

Trace through some code

•  Execution continues in this way with two more
trips to happy.

•  When Python gets to the end of sing, control
returns to main and continues immediately
following the function call.

person = “Fred”

person: “Fred”

Python Programming, 1/e 8

Trace through some code

•  Notice that the person variable in sing has
disappeared!

•  The memory occupied by local function
variables is reclaimed when the function exits.

•  Local variables do not retain any values from
one function execution to the next.

person = “Fred”

Trace through some code

•  The body of sing is executed for Lucy
with its three side trips to happy and
control returns to main.

person = “Lu
cy”

person: “Lucy”

Trace through some code

•  One thing not addressed in this
example was multiple parameters. In
this case the formal and actual
parameters are matched up based on
position, e.g. the first actual parameter
is assigned to the first formal parameter,
the second actual parameter is
assigned to the second formal
parameter, etc.

Trace through some code

•  As an example, consider the call to
drawBar:
drawBar(win, 0, principal)

•  When control is passed to drawBar,
these parameters are matched up to the
formal parameters in the function
heading:
def drawBar(window, year, height):

Python Programming, 1/e 9

Functions and Parameters: The Details
•  The net effect is as if the function body

had been prefaced with three
assignment statements:

window = win
year = 0
height = principal

Parameters are INPUT to a function
•  Passing parameters provides a

mechanism for initializing the variables
in a function.

•  Parameters act as inputs to a function.
•  We can call a function many times and

get different results by changing its
parameters.

Return values are OUTPUT from a function
•  We’ve already seen numerous examples

of functions that return values to the caller.
discRt = math.sqrt(b*b – 4*a*c)

•  The expression b*b – 4*a*c is the
actual parameter of math.sqrt.

•  We say sqrt returns the square root of its
argument.

•  You must assign the function to a variable
in order to save the result of the function

Functions That Return Values
•  This function returns the square of a number:

def square(x):
 return x*x

•  When Python encounters return, it exits the
function and returns control to the point where
the function was called.

•  In addition, the value(s) provided in the
return statement are sent back to the caller
as an expression result.

Return statement exit the function immediately. Only use them
when you want to exit the function.
If you return from the main function what typically happens?

Python Programming, 1/e 10

Return examples
•  >>> square(3)
9

•  >>> print square(4)
16

•  >>> x = 5
>>> y = square(x)
>>> print y
25

•  >>> print square(x) + square(3)
34

Picture in your head
replacing the call:
 square(x) with it’s
return value 25, so:

y = square(x) 25

Multiple Return values
•  Sometimes a function needs to return

more than one value.
•  To do this, simply list more than one

expression in the return statement
separated by commas.

•  def sumDiff(x, y):
 sum = x + y
 diff = x – y
 return sum, diff

Multiple Return Values
•  When calling this function, use

simultaneous assignment.

•  num1, num2 = input("Please enter two numbers (num1, num2) ")
s, d = sumDiff(num1, num2)
print "The sum is", s, "and the difference is", d

•  As before, the values are assigned
based on position, so s gets the first
value returned (the sum), and d gets the
second (the difference).

Secretly -- all functions return a value
•  One “gotcha” – all Python functions

return a value, whether they contain a
return statement or not. Functions
without a return hand back a special
object, denoted None.

•  A common problem is writing a value-
returning function and omitting the
return!

•  Watch out!

Python Programming, 1/e 11

Function Libraries
•  Functions can be defined in one file and

used in another. These are function
libraries

•  Like the math library. To use it:
–  import math
– val = math.sqrt(300)

Note: you preface the function defined in
math.py with “math” (the filename)

Create our own function library

•  Lets create a function library with
function to get the area and perimeter of
a square.

Python passes parameter values
def addToVar(x):

 x = x + 2

def main():
 x = 10
 addToVar(x)
 print x

Output:
10

Why? Python passes
copies of the value,
so changing the
copy doesn’t
do anything!!
(This is called
 “pass by value”)

Lets explain

Picture all variables as boxes with a data
in them. Calling a function simply
makes a copy of the box.

1000

0.05

amount

rate

1000

0.05

balance

rate

make some copies

Python Programming, 1/e 12

Pass by value
•  Executing the first

line of
addInterest
creates a new
variable,
newBalance.

•  balance is then
assigned the value
of newBalance.

def addInterest(balance, rate):
 newBalance = balance * (1 +

rate)
 balance = newBalance

def test():
 amount = 1000
 rate = 0.05
 addInterest(amount, rate)
 print amount

Pass by value
•  balance now refers

to the same value as
newBalance, but
this had no effect on
amount in the test
function.

def addInterest(balance, rate):
 newBalance = balance * (1 + rate)
 balance = newBalance

def test():
 amount = 1000
 rate = 0.05
 addInterest(amount, rate)
 print amount

Pass by value
•  Execution of
addInterest has
completed and control
returns to test.

•  The local variables,
including the
parameters, in
addInterest go
away, but amount and
rate in the test
function still refer to
their initial values!

def addInterest(balance, rate):
 newBalance = balance * (1 +

rate)
 balance = newBalance

def test():
 amount = 1000
 rate = 0.05
 addInterest(amount, rate)
 print amount

Changing rate in addInterest,
what changes in test?

Pass by value
•  To summarize: the formal parameters of

a function only receive copies of the
values of the actual parameters.

•  Python is said to pass all parameters by
value.

Python Programming, 1/e 13

But…
def func1(input):

 for i in range(3):
 input[i] = input[i] + 10

def main():
 myList = [1, 2, 3]
 func1(myList)
 print myList

Output:

11, 12, 13

Why why
why? Anger
rising….

Answers
A.  Python is just messed up
B.  Mr. Fleck lied to us and some things

are not passed by value
C.  Who cares, I’m going to change to a

history major.. Python annoys me now
D.  Something different happens with

mutable data types

Mutable types hold addreses

You’ll find the data
at 196 RAM Lane

aList

def main():
 aList = [1,2,3]
 func1(aList)
 print aList

1

2

3

Your computer’s memory (RAM)

196 RAM Lane

abc

“SecretPassword”

563

0x200 RAM Court
1

2

3

0x210 RAM Blvd
Is this what
people mean
by “a walk
down
memory lane?”

Mutable types hold addreses

You’ll find the data
at 196 RAM Lane

aList You’ll find the data
at 196 RAM Lane

someList

make some copies

def main():
 aList = [1,2,3]
 func1(aList)
 print aList

1

2

3

Your computer’s memory (RAM)

196 RAM Lane

abc

“SecretPassword”

563

0x200 RAM Court
1

2

3

0x210 RAM Blvd
Is this what
people mean
by “a walk
down
memory lane?”

def func1(someList):
 someList[1] = 23

Python Programming, 1/e 14

Mutable types hold addreses

You’ll find the data
at 196 RAM Lane

aList Find house [1] and set
THAT value to 23

def main():
 aList = [1,2,3]
 func1(aList)
 print aList

1

2

3

Your computer’s memory (RAM)

196 RAM Lane

abc

“SecretPassword”

563

0x200 RAM Court
1

2

3

0x210 RAM Blvd

def func1(someList):
 someList[1] = 23

Go to 196 RAM Lane

Mutable types hold addreses

You’ll find the data
at 196 RAM Lane

aList Find house [1] and set
THAT value to 23

def main():
 aList = [1,2,3]
 func1(aList)
 print aList

1

23

3

Your computer’s memory (RAM)

196 RAM Lane

abc

“SecretPassword”

563

0x200 RAM Court
1

2

3

0x210 RAM Blvd

def func1(someList):
 someList[1] = 23

Go to 196 RAM Lane

Mutable types hold addreses

You’ll find the data
at 196 RAM Lane

aList

def main():
 aList = [1,2,3]
 func1(aList)
 print aList

1

23

3

Your computer’s memory (RAM)

196 RAM Lane

abc

“SecretPassword”

563

0x200 RAM Court
1

2

3

0x210 RAM Blvd

So now, what prints after all this is done?

Did the value of aList change?
Did the contents of aList change?

Lets look at this code
addinterest3.py
Illustrates modification of a mutable parameter (a list).

def addInterest(balances, rate):
 for i in range(len(balances)):
 balances[i] = balances[i] * (1+rate)

def test():
 amounts = [1000, 2200, 800, 360]
 rate = 0.05
 addInterest(amounts, 0.05)
 print amounts

test()

Output:
[1050.0, 2310.0, 840.0, 378.0

Python Programming, 1/e 15

One more question
addinterest3.py
Illustrates modification of a mutable parameter (a list).

def addInterest(balances, rate):
 balances = [1,2,8,3] # Oops! – Bernie Madoff

 for i in range(len(balances)):
 balances[i] = balances[i] * (1+rate)

def test():
 amounts = [1000, 2200, 800, 360]
 rate = 0.05
 addInterest(amounts, 0.05)
 print amounts

test()

One more question
balances = [1,2,8,3] # Oops! – Bernie Madoff

balances[3] = 27

 - Go to address 555 RAM Court
 - Change house [3] to hold 27

You’ll find the data
at 555 RAM Court

balances You’ll find the data
at 898 RAM Way

balances

You’ll find the data
at 555 RAM Court

balances
The variable “balances”
holds the address. When
you index/slice it you are
going to the address.

When you change address held,
you are changing where the
variable data is found

Very different from…

The final answer
•  When you call a function you are always

passing a copy of the data.

•  For immutable types the copy is the data, and
thus changing the copy does not affect the
original value (in the original function)

•  For mutable types you are passing an
address and if you change the contents of the
data, the changes will show up in the original
function

One last time for the cheap seats…
•  Parameters are always passed by

value. However, if the value of the
variable is a mutable object (like a list),
then changes to the state of the object
will be visible to the calling program.

Python Programming, 1/e 16

A Note on Globals
•  Now that you know how to use parameters and return

values you should avoid global variables.

•  Globals should be used sparingly

•  One appropriate use is for constant values you need
throughout your code (like PI or “SALES_TAX”)

•  When defining global constants a coding convention
is to use all capital letters for the variable name.

Types of Arguments
Three types of function arguments can be

used

•  Positional Arguments
•  Default Arguments
•  Keyword Arguments

•  See examples: samplecode/functions/ArgumentTypeExamples.py

Positional Arguments
•  Value of the formal parameter is set

based on the position (left to right):
•  def func(sum, label):

…
•  func(22,”Carl”) # Call the function
•  # Values are assigned by position so:

sum=22 and label=“Carl” when executing func
•  func(22) # Error – not enough arguments!

Default Arguments
•  Value of the formal parameter is set

based on the position, or if not present
based on default:

•  def func(sum=99, label=“Unknown”):
…

•  func(22,”Carl”) # Call the function
•  # Values are assigned by position so:

sum=22 and label=“Carl” when executing func
•  func(22) # Okay! sum=22, and label=Unknown

(default value)

Python Programming, 1/e 17

Default Arguments
•  def func(sum=99, label=“Unknown”):

…
•  func(22,”Carl”)

–  # sum=22, label=“Carl”

•  func(22)
–  # Okay! sum=22, and label=Unknown (default value)
–  Arguments assigned left to right.

•  func()
– Okay, sum=99, label=“Unknown”

•  func(“Carl”)
–  # Also okay, but maybe not what you want:
–  sum=“Carl”, label=“Unknown” --- order matters!

Default Arguments
•  def func(sum=99, label=“Unknown”):

…
•  func(“Carl”)

–  # Also okay, but maybe not what you want:
–  sum=“Carl”, label=“Unknown” --- order matters!

•  When defining a function, all default arguments
must be at the END of the parameter list
–  def func(sum=99, label): # ERROR – Non-default

argument follows default argument.

•  To do something like this use keyword
arguments

Keyword Arguments
Specify argument name during function call,

then position doesn’t matter

•  def func(sum, label):

•  func(sum=99, label=“A label”)
•  func(label=“A label”, sum=99)

•  func(label=“Bob”) # Does this work?

What prints?
def myFunction(a, b, c=4, d=5):

 print a, b, c, d

myFunction(5, 4, 3, 2)
myFunction(3, 4)
myFunction(3, 4, 5)
myFunction(3, 4, d=5)
myFunction(b=1, a=2)

5 4 3 2
3 4 4 5
3 4 5 5
3 4 4 5
2 1 4 5

Python Programming, 1/e 18

If your brain hurts… Lets write a Hangman Game
•  When you write a game you first can

decide what are the core functions and
variables we need.

•  Let think of Hangman… what I want it to
look like is this:

Guesses: s, q, r, e t
Current word: _ _ t _ o n
Enter guess or 1 to quit ->

What information
(variables) do I need to
know to generate this?

Hangman State

Guesses: s, q, r, e t
Current word: _ _ t _ o n
Enter guess or 1 to quit ->

What information
(variables) do I need to
know to generate this?

Hangman
Drawn Here

Hangman State
•  misses = 0 # How many bad guesses have they had?

•  lettersGuessed = [] # Empty list of the letters already
guessed

•  wordToGuess = "python" # Should ask the user for
this

•  Got it… let’s move to the pseudocode

Python Programming, 1/e 19

Hangman Pseudocode
•  What is it?

Hangman Pseudocode
•  print the hangman
•  print the word
•  ask the user for input

–  check if the letter was already used (if so, warn the user and
start over at step 1)

–  update the list of used letters
–  check if the letter is in the word

•  if so, check if the user has won
•  if not, check if the user has lost

•  Not bad.. on to hangman.py!

