
Pickling and Shelves
Dan Fleck

Coming up: What is pickling?

What is pickling?
Pickling - is the process of preserving food by

anaerobic fermentation in brine (a solution of salt in
water), to produce lactic acid, or marinating and
storing it in an acid solution, usually vinegar (acetic
acid). The resulting food is called a pickle. This
procedure gives the food a salty or sour taste.

 – Wikipeadia

Do we really need to know that?
No… but pickling is done to preserve food for later eating.
Pickling in Python is done to preserve data for later usage.
(And without the salty or sour taste!)

Pickling in Python
• The pickle module implements an algorithm for
serializing and de-serializing a Python object
structure.

•  ‘Pickling’ is the process whereby a Python object
hierarchy is converted into a byte stream

•  ‘Unpickling’ is the inverse operation, whereby a byte
stream is converted back into an object hierarchy.

• Alternatively known as serialization or marshalling, to
avoid confusion, the terms used here are pickling and
unpickling. – Python Docs

Simply Put
Pickling is a way to store and retrieve data

variables into and out from files.

Data variables can be lists, ints, classes,
etc… There are some rules, but mostly

these all work.

How does it work Pickle-Master?
To pickle something you must:

import pickle

Then to write a variable to a file:

pickle.dump(myString, outfile)

Always remember, Pickle-chips, that the outfile needs to
be opened first!

This will store your data into a file

It works with lists and objects also!!

Unpickling
To un-pickle something (read the file back into a variable)

you must:

import pickle

Then to write a variable to a file:

myString = pickle.load(inputfile)

Always remember, Pickle-chips, that the inputfile needs to
be opened first!

This will recreate the myString data from the file!

Example
import pickle

def pickler(name1, name2):
 output = open('pickle_jar', 'w')
 pickle.dump(name1, output)
 pickle.dump(name2, output)
 output.close()

def unpickler():
 input = open('pickle_jar', 'r')
 name1 = pickle.load(input)
 name2 = pickle.load(input)
 input.close()
 return name1, name2

def main():
 nm1 = 'Vlassic'
 nm2 = 'Heinz'

 pickler(nm1, nm2)
 nm1, nm2 = unpickler()

 print 'NM1 is %s, NM2 is %s' %(nm1,
nm2)

main()

>>> Output: NM1 is Vlassic, NM2 is
Heinz

Notice: You can add multiple variables into a
pickle file, but you must read and write them in

the exact same order!

Lets try it!
•  See example

•  Can we read in the variables from the
list_pickler.py file?

Example with a list
import pickle

def pickler(name1, lst):
 output = open('pickle_jar', 'w')
 pickle.dump(name1, output)
 pickle.dump(lst, output)
 output.close()

def unpickler():
 input = open('pickle_jar', 'r')
 name1 = pickle.load(input)
 myList = pickle.load(input)
 input.close()
 return name1, myList

def main():
 nm1 = 'Vlassic’
 types = ['sweet', 'hot', 'dill', 99]

 pickler(nm1, types)
 nm1, types = unpickler()

 print 'NM1 is %s, types is %s' %(nm1,
types)

main()

>>> NM1 is Vlassic, types is ['sweet',
'hot', 'dill', 99]

Pickling is great… but…
•  Two problems with pickling:

–  Pickle files are not backward compatible
•  The format of the pickle file is not defined by you, so if

you change your data (for example, you want to store an
additional variable…. you must create new pickle file, all
existing pickle files will be broken

–  Pickle files must be accessed in sequential order
•  You cannot say “give me the 3rd variable stored in the file”
•  The solution to this problem is ‘shelves’. I can store many

pickle jars on a shelf!

Shelves
•  Shelves let you store and retreive variables

in any order using pickling.

•  Shelves need a name to get the
data. So, it works like a dictionary…
given a name, lookup the data

pickles = shelve.open(‘pickle_jar’, writeback=True)
pickles[“variety”] = [“sweet”, “hot”, “dill”]
pickles[“shape”] = [“whole”,”spear”,”chip”]

pickles.sync() # make sure data is stored to the file
pickles.close()

In the pickle
dictionary,

under the name
“shape” store

this info!

Shelves Example

Cool!

import pickle
import shelve

pickles = shelve.open('pickle_jar.dat’, writeback=True)
pickles['variety'] = ['sweet', 'hot', 'dill']
pickles['shape'] = ['whole','spear','chip']
pickles.sync()
pickles.close()

pickles = shelve.open('pickle_jar.dat')
shapes = pickles['shape']
pickles.close()
print 'SHAPES:', shapes

>>> SHAPES: ['whole', 'spear', 'chip']

In the pickle
dictionary,

lookup the data
in under
“shape”

Shelve Writeback
•  shelve.open(filename, writeback=True) :

–  By default, when you open a shelf any changes to
the dictionary you make are NOT written back into
the file.

–  writeback=True means that when you close the
file, all changes WILL be written back into the file

–  shelve.sync() means writeback data from the
cache to the file immediately. This is automatically
called during the close() operation

Shelve.open(file, flag=‘c’)
•  The optional flag argument:

–  'c' to create the database if it doesn’t exist (default)

–  'r' to open an existing database for reading only,

–  'w' to open an existing database for reading and writing,

–  'n', which will always create a new empty database.

What is pickling really doing?
•  The real power in the pickling is converting

data into a formatted string automatically.

•  This is what you did manaully converting
things into:
–  john~smith~G001212~12~124

•  Pickling just standardizes this for Python

Why?
•  The most common use for a string

representation of a data structure is to
store and retrieve it in files

•  However you can also convert it to a
string and store it in a database or send
it across a network

•  All of these help support persistance

cPickle or Pickle?
•  cPickle is a version of the Pickle module

written in “C” instead of Python.
•  You can use it in the same way, and it is

much faster – thus, always use it!

Persistence
•  In computer science, persistence refers to the

characteristic of data that outlives the execution
of the program that created it. Without this
capability, data only exists in memory, and will
be lost when the memory loses power, such as
on computer shutdown. – Wikipedia

•  So, pickling supports persistence by allowing
you to easily write data to a persistent data
store (e.g. a file, or database)

Why is Python so cool?
•  Because it uses fun words like pickling.
•  Other languages do the same thing as

pickling but call it
– object serialization and deserialization
– marshalling and unmarshalling

Summary
•  Pickling and unpickling let you store/retreive

data (lists, int, string, objects, etc..) from files.
This is helps you persist data.

•  This is called serialization or marshaling in
other languages (Java for example)

•  Shelves let you store and retrive pickled data
in any order (they allow random access – any
data can be read/written at any time)

