
2/12/09

1

Boolean Logic, If
statements, While Loops

Coming up: Program Operation

Program Operation
There are three basic modes for

procedural program operation:

•  Sequential Operation
•  Branching Operation
•  Repetition Operation

Program Operation
•  Sequential Operation: normal program flow,

each statement executed one after the other,
in sequence.

•  Branching Operation: deviation from normal
program flow; statements conditionally
executed according to some logical decision.

•  Repetition Operation: deviation from normal
program flow; statements conditionally
repeated according to some logical decision.

Basic Boolean Logic
•  (Boolean) Conditions may be created by

comparing values.

•  Comparison Operators are used to compare
values.

•  The result of this value comparison is one of
two Boolean Logic States (True or False)
–  x = 5 (= is the assignment operator)
–  x == 5 (== is a comparison operator)

2/12/09

2

Comparison Examples

True and False are
reserved words in
Python

Comparison Operators
•  Operation Meaning Example Evaluates To
•  < strictly less than 4 < 10 True
•  <= less than or equal 5 <= 5 True
•  > strictly greater than 4 > 10 False
•  >= greater than or equal 4 >= 10 False
•  == equal 7 == 7 True
•  != not equal 8 != 5 True

From: http://docs.python.org/library/stdtypes.html#comparisons

Works with float, int, long and some with Strings also:
‘dan’ == ‘bob’ evalutes to False

Compound Boolean Operators

•  AND: both conditions in the compound
boolean operation must be True in order for
the result to be True.
–  (condition_1) and (condition_2)

•  OR: one of the two conditions in the
compound boolean operation must be True in
order for the result to be True.
–  (condition_1) or (condition_2)

Truth Table (and)

X Y X and Y
False False False
False True False
True False False
True True True

2/12/09

3

Truth Table (and)

X Y Z X and Y and Z
False False False False
False False True False
False True False False
False True True False
True False False False
True False True False
True True False False
True True True True

And examples

Truth Table (or)

X Y X or Y
False False False
False True True
True False True
True True True

Truth Table (or)

X Y Z X or Y or Z
False False False False
False False True True
False True False True
False True True True
True False False True
True False True True
True True False True
True True True True

2/12/09

4

Truth Table (and / or)

X Y Z X and Y or Z
False False False False
False False True True
False True False False
False True True True
True False False False
True False True True
True True False True
True True True True

Precedence
•  Use parenthesis to set precedence

– False and False or True True
– False and (False or True) False

The Not operator
not(cool) True cool True

NOT: produces the logical opposite of the logical expression
not(condition)

not(True) False not(False) True

Truth Table (not)
X not(X)

False True
True False

2/12/09

5

Example
•  Lets create an example for racquetball

simulation

•  Rules:
– Either players wins at 15
–  If the score is 0-7, the shutout condition is

imposed and the games ends

Program Operation

•  Branching : a program taking one path (or
branch) of code instead of another, based on
a boolean condition

•  Repetition : a program repeating a block of
code, some number of times, based on a
boolean condition

“if” statement
 if <boolean condition>:

 <block>

Condition: logical expression that evaluates to
True or False

Block: code to be executed if the condition
evalutes to True

Note: Indentation is required to define the block

“if else” statement
 if <boolean condition>:

 <Block_1>
 else:
 <Block_2>

Condition: logical expression that evaluates to True or
False

Block_1: code to be executed if the condition evalutes
to True

Block_2: code to be executed if the condition evalutes
to False

2/12/09

6

“if elif else” statement
Block_1: code to be

executed if condition_1
evalutes to True

Block_2: code to be
executed if the condition_2
evalutes to True

Block_n: code to be
executed if the condition_n
evalutes to True

Block_n+1: code to be
executed if no conditions
are True

if <condition_1>:
 <Block_1>

elif <condition_2>:
 <Block_2>

elif <condition_n>:
 <Block_n>

else:
 <Block_n+1>

Examples
•  See ifElseElifExamples.py
• 

Note: In a compound if statement only ONE
BLOCK is ever executed! They are mutually
exclusive.

•  Else and elif blocks are optional

•  If there is no Else block then it is possible that
NO BLOCKs will be executed

“while” loops
(Indefinite Loop)

 while <condition>:
 <block>

Condition: logical expression that evaluates to True or
False

Block: code to be repeated as long as the condition
evalutes to True

Note: condition must contain some sentinel value that is
changed inside the loop. Otherwise, you’ll have an
infinite loop!

While Example

2/12/09

7

While – Guess my number example

•  Lets write a guessing game.
•  Pseudocode:

– Loop until correct number is found
•  Guess a number
•  Ask user for higher/lower or correct
•  If higher set the lowest possible to the current

guess
•  If lower set the highest possible to the current

guess
•  new guess is halfway between highest and

lowest

Creating a CLI menu
•  CLI = Command Line Input
•  Typical pseudocode:

– set sentinel value to dummy value
– Start loop

•  print menu
•  get user’s menu choice
•  do if statement (doing nothing if user wants to

quit, otherwise doing what the user wants

CLI menu example
•  Lets modify the coolness calculator to

have a menu!

Continue Statement

•  Continue says skip the rest of the loop
statements, and start the next iteration
of the loop

2/12/09

8

Continue Example
•  See continueBreakExamples.py

Break Statement

•  Break says exit the loop right now

Break and Continue: Style
•  Note: even though they are included in most

programming languages, using lots of breaks/
continues frequently leads to code that is hard to
understand/debug. (Sometimes called spaghetti code
because it’s all mixed up and hard to follow the flow
of control.)

•  Use Break and Continue sparingly!

Terminology / Concepts

•  Sequential
Operation

•  Branching Operation
•  Repetition Operation
•  Boolean Logic
•  Indefinite Loop

•  Boolean Operator
•  Comparison Operator
•  Control Structure
•  Mutually Exclusive

2/12/09

9

Lab Exercises
•  Acceptable resources for lab exercises (presented in

order of precedence):
–  Lecture/Lab material
–  Textbook (or other Python books) & LIB/LAN
–  Blackboard forums (no specific code)
–  Internet (documented)
–  Study Groups (no code exchange)
–  GTA (lab instructor) / Professor

•  Use of any other resources is a violation of the
GMU Honor Code

Programming Projects
•  Acceptable resources for lab exercises (presented in

order of precedence):
–  Lecture/Lab material
–  Textbook (or other Python books) & LIB/LAN
–  Blackboard forums (no specific code) (* added)
–  GTA (lab instructor) / Professor

•  Use of any other resources is a violation of the
GMU Honor Code

