
2/17/09

1

CS 112
Sequences, Lists and

Tuples
Dan Fleck

Spring 2009
George Mason University

Coming up: Quick Review for
Lab 4

Quick Review for Lab 4

Base Numbering Systems
•  Numbers can be represented by and to

the computer using various base
number systems

•  At this point, we are particularly
interested in:

•  Binary (base 2)
•  Octal (base 8) # Not in lab 4, but common
•  Decimal (base 10)
•  Hexadecimal (base 16)

Base Numbering Systems
•  Python has various mechanisms for

handling different number bases
– Base 10 is recognized implicitly:

2/17/09

2

Base Numbering Systems
– Others are not:

Base Numbering Systems
– Numbers preceded by a zero are interpreted by

Python as octal numbers
–  013 = (1 * 81) + (3 * 80) = 8 + 3 = 11

– Numbers preceded by a zero and the character
x are interpreted by Python as hexadecimal
numbers

–  0x1B = (1 * 161) + (11 * 160) = 16 + 11 = 27

Base Numbering Systems
– There are built-in functions that can handle

some transitions:

eval – convert a string to
number (string can be hex
or octal number)

hex(<number>) – convert
to hex string

oct(<number>) – convert
to octal string

bin(<number>) – convert
to binary string

Base Numbering Systems
•  Binary

– digits 0-1
•  Octal

– digits 0-7
•  Decimal

– digits 0-9
•  Hexadecimal

– digits 0-9 & A(10)-F(15)

2/17/09

3

String as a Sequence
•  String: An immutable sequence of

characters
–  immutable: cannot be changed
– sequence: a particular order in which things

follow each other
•  forward index ⇒ 0 through n-1
•  backward index ⇒ -1 through -n

– character: individual ascii symbols

String Sequence
•  theStr = ‘index’

Indexing example

>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print greet[0], greet[2], greet[4]
H l o
>>> x = 8
>>> print greet[x - 2]
B

H
 e
 l
 l
 o
 B
 o
 b

 0 1 2 3 4 5 6 7 8

Indexing example - from the right

•  In a string of n characters, the last character
is at position n-1 since we start counting with
0.

•  We can index from the right side using
negative indexes.

>>> greet[-1]
'b'
>>> greet[-3]
'B'

H
 e
 l
 l
 o
 B
 o
 b

 0 1 2 3 4 5 6 7 8

2/17/09

4

String Data Structure
•  Immutability:

–  individual elements (characters) can not be
changed once created

–  the string can be recreated
–  the variable can be re-defined

String Immutability

An attempted String
mutation

String re-creation
•  Recreating or reassigning a string is fine:

String Methods
•  Many string methods return a new

string (because they cannot modify
(mutate) the original string).

•  aStr = “hello world”
•  bStr = aStr.capitalize() # Does this change aStr?
•  aStr = aStr.capitalize() # Is this legal?

2/17/09

5

Sequence Operators

You’ve
already seen
these

Sequence Operations

What about a substring?
Slicing a string

•  Slicing:
<string>[<start>:<end>]

•  start and end must both be ints
•  The slice contains the substring

beginning at position start and runs up
to but doesn’t include the position
end.

Slicing Example

>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[5:]
' Bob'
>>> greet[:]
'Hello Bob'

H
 e
 l
 l
 o
 B
 o
 b

 0 1 2 3 4 5 6 7 8 9

Hint: When slicing it helps

to think of the slice indexes

between the characters,

then 0:3 is very clear

2/17/09

6

String Declaration & Initialization

•  Declaring an Empty String
– a_string = empty single or double quotes

•  Note: nothing inherently special about
name (just another identifier) so self-
documenting code helps...
– x = 5 x = “” first_name = “”

MIN & MAX Functions

• min(sequence): returns the element in
the sequence that has the minimum
“value”

• max(sequence): returns the element in
the sequence that has the maximum
“value”

• Based on ASCII code value for string
sequences

ORD & CHR Functions
•  ord(char): converts single character to

corresponding ASCII integer value
•  chr(int): converts integer value to

corresponding character symbol
•  Based on ASCII code value

– American Standard Code for Information
Interchange

– 7 binary bits ⇒ 128 unique symbols
•  Python also supports Unicode (16 bits)

ASCII Table

American Standard Code for Information Interchange

2/17/09

7

ORD & CHR Functions MIN & MAX Functions

Is it alphabetical ordering? Be careful: min(‘abcWXY’) ?

String Methods Sequence Operators vs. Object Methods

• sequence operators:

•  may be built-in functions

•  operate on various data types

•  example: len len(a_string)

• methods: operate on a single data type

•  string object methods (e.g., capitalize)

•  a_string.capitalize()

2/17/09

8

Comparison Operations Comparison Operations

Sequence Comparison Operations Dissecting Data Streams
–  "FAC50000BC4A01015CC01010"

»  Is there a pattern?

2/17/09

9

Dissecting Data Streams
def main():
 test_str = "FAC50000BC4A01015CC01010”
 print "Address Data"
 print "------------"
 print " " + test_str[0:4] + \
 " " + test_str[4:8]
 print " " + test_str[8:12] + \
 " " + test_str[12:16]
 print " " + test_str[16:20] + \
 " " + test_str[20:24]

main()

Address Data

FAC5 0000
BC4A 0101
5CC0 1010

Terminology / Concepts
•  Binary Number System
•  Octal Number System
•  Hexadcimal Number System
•  ASCII
•  Slicing/Substring

Tuple and Lists Data Structures

•  Tuple: An immutable sequence of valid
Python data types

•  List: A mutable sequence of valid
Python data types

•  Tuples, Lists and Strings are all Python
sequence data types.

Tuple Declaration & Initialization

•  Note: nothing inherently special about name (just another
identifier) so self-documenting code helps...
–  x = 5 x = () employee_tuple = ()

Empty tuple

Tuple with data

Oops… what happened?

2/17/09

10

Tuples are Sequences

Still immutable though

Tuples can contain multiple data types

Tuples can even contain
other tuples!

Tuples as Lookup Tables
•  Tuples are frequently used to created

lookup tables.

•  Requirement: Ask the user for a
number and convert that to an
appropriate month

•  Lets try it!

Lists are also sequences

•  Lists are exactly like tuples, EXCEPT
they are mutable!

2/17/09

11

Lists: Mutable!
I Lists!

These all work with
Strings, Tuples and Lists

Whoa there cowboy…
•  Shouldn’t there be some special

operators that work with mutable data
structures like lists?

•  Yep --- wait till next week!
•  http://docs.python.org/library/

stdtypes.html#mutable-sequence-types

String vs. Tuple vs. List
•  String

– sequence of characters only
–  immutable data structure

•  Tuple
– sequence of valid Python data types
–  immutable data structure

•  List
– sequence of valid Python data types
– mutable data structure

Note on Tuple Initialization

This works, but is
confusing… use parens!

2/17/09

12

Accessing Tuple Elements Repetition & Concatenation

Must be careful with

syntax...

* attention to detail *

Modifying Tuple Elements

While a tuple may be immutable, tuple
elements may contain imbedded
references to mutable data types

Practice with slicing/indexing

•  Slicing and indexing is critical to know

•  aString = ‘abc123’
•  aString [2]
•  aString [0:4]
•  aString [-2]
•  aString [3:]

2/17/09

13

Practice with slicing/indexing

•  Slicing and indexing is critical to know

•  a= [‘abc’, 123, ‘ddd’, 999]
•  a[2]
•  a[0:4]
•  a[-2]
•  a[1:]

Formatted Printing

String Justification
•  Justification

– aligns text within a text field in a particular
fashion:
•  left justified - “text “
•  center justified - “ text “
•  right justified - “ text“

– print “text”.ljust(20)
– print “text”.center(20)
– print “text”.rjust(20)

Terminology / Concepts
•  Indefinite Loop
•  Definite Loop
•  Mutable / Immutable
•  Sequence
•  String Data Type
•  Tuple Data Type
•  Justification

52

