
CS 211 Lab Assignment

Instructor: Dan Fleck, Ricci Heishman
Lab: Using JGame to implement Rock Paper Scissors game

Overview
In this lab you will begin learning about JGame and state machines. JGame uses
states to determine what methods get called and what happens during the each
frame. See the JGame tutorial for information about how to use states in JGame.

In this lab you’ll implement the game “Rock Paper Scissors”. This is a very
simple game with two players who each choose either Rock, Paper or Scissors.
The rules are:
 Rock wins against Scissors,
 Scissors wins against Paper
 Paper wins against Rock

If you both pick the same value, it’s a tie and you play again. If you get good at
this game (and truly I have no idea how anyone is better than anyone else) you
can make it to the world championships! http://www.worldrps.com/ (Please
mention me in your acceptance speech if you win).

In this game you should implement the following state diagram for game play.
Each state is shown in a box, and the action that causes the system to transition
from one state to another is noted on the arrow between states.

Start state: Displays text on the screen “Get ready…”

Player1 state: Displays text on the screen: Player 1: Choose (r)ock (p)aper
(s)cissors

Player2 state: Displays text on the screen: Player 2: Choose (r)ock (p)aper
(s)cissors

ShowWinner state: Displays text on the screen determined by the previous
choices made by the players.

One of the following lines will appear:
 Same answer: no score
Invalid choice: Player1: <<char player 1 chose>> Player2: <<char player 2
chose>>
 Player1 wins: Paper beats rock

Player2 wins: Paper beats rock
(repeat for all possible choice combinations)

In the two lines above,

Player1 wins: Paper beats rock // This means player 1 chose paper
 // and player 2 chose rock

Player2 wins: Paper beats rock // This means player 2 chose paper
 // and player 1 chose rock

For this project you may (and probably should) start with the sample code given
for the project. Some sample screens for some of the game states are below:

Requirements

1. The GUI should look as shown above.

2. The system shall include all states described in the state
machine diagram above.

3. The system shall transition from one state to the next under the
appropriate conditions

4. The system shall display and update the score of both users

5. The system shall tolerate invalid input by displaying a message
to the user and moving back to the player1 state

Hints
- Reading the JGame tutorial will help you (the one posted in Blackboard)
- Using the code from the project will be VERY helpful
- If you can’t see the application for some reason, try changing the boolean

value in Main.java . It will create two windows instead of one but may work
better. Let us know if you need to do that.

What to turn in:
1. A Jar file containing all Java source code and compiled code you used.

(Include code that was given by the professor and your own code. You do
NOT need to include the JGame library code (jgame-all.jar).

Grading Rubric: This assignment is worth 10 points and will be graded based on
the following rubric:

Area Exemplary Competent Developing Point
s

Class
Header

All header components are
present, with references
and comments that
accurately support the
state of the file.

All header components are
present, but references and
comments are incomplete or
nonspecific.

Header is missing or only
partially present, and
references and comments
are vague or
unmeaningful.

 __ / 1

Coding Style Code implementation
utilizes appropriate white
space, self-documentation
techniques and non-
obvious comments.

Code implementation
exhibits minor alignment or
spacing problems, some
comments are missing or
redundant.

Significant alignment and
spacing problems,
comments are generally
missing or sporadic.

__ / 1

Game Play The game functions as
described including states
changing appropriately
and scores being updated
correctly and invalid input
being handled.

States change, but not in the
correct order or correct time.
Scores are missing or not
updated. Invalid input
crashes the program or
allows one user to score.

States are missing. Game
crashes under invalid user
input. States do not
transition.

__ / 5

GUI Layout The GUI looks exactly as
described in the
assignment with no visible
differences.

The GUI has some visible
differences from the
assignment, but does
contain all required
components.

The GUI does not look like
the assignment states or is
missing components.

__ / 3

