
Lab-5 Specification: Building Defensive (AKA – Bullet-Proof) Classes

As we have previously discussed, the particular attribute values of an object define the current state of
that object. The principles of encapsulation and information hiding assist the object in maintaining
control over its state. However, the public interface of an object (i.e., constructors, accessors, mutators
and other behaviors) is designed to allow users to create, access and mutate the object. Because of this
necessary access, these methods (if not properly written) can allow direct access to the internal state of
an object. If this occurs, and any of the attributes are mutable objects, this situation creates what is
termed a brittle class. Brittle essentially means easily broken. Therefore, it is considered good
programming practice to be proactive in this regard and implement what may be termed Defensive or
Bullet-Proof classes.

The purpose of this exercise is to become acquainted with the concept of brittle classes and the
methodology of hardening them to increase system integrity.

1. The first step is to understand the problems associated with brittle classes. The following classes are

needed for this initial phase. They are contained in a package named lab5:

• Main.java
• BrittleComputer.java
• BrittleMotherBoard
• BrittleCpu
• BrittleMemory

2. Compile all of the classes. Execute the Main class with boolean TOGGLE = true. Examine the

output produced by the demo code. Write a detailed explanation as to why the output behaves as it
does.

3. The next step is to modify the four Brittle classes into Defensive classes, using the naming

convention used in the Main class. The Main class should not be modified (with the exception of the
Boolean TOGGLE variable). The Shallow and Deep Cloning techniques discussed in lecture and lab
should be used to implement the defensive nature of the new classes. Use the supplied Main class
(with boolean TOGGLE = true) to test your new classes.

4. The expected output from the Main class, once you have successfully implemented the bullet-

proofing, is provided below.

===== Begin Bullet-Proof Testing =====

Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU

Model: Micron SDRAM (4 GB) - P/N: MD400SD

 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Test #1 ***

Model: Broken (3.2 GHz) - P/N: GX9764CPU

Model: Micron SDRAM (0 GB) - P/N: MD400SD

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Test #2 ***

 - Motherboard Configuration:
 * Processor - Model: Broken (0.0 GHz) - P/N: Broken
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Test #3 ***

 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

 - Motherboard Configuration:
 * Processor - Model: Broken (0.0 GHz) - P/N: Broken
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 3200G (3.2 GHz) - P/N: GX9764CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Test #4 ***

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 5000G (5.0 GHz) - P/N: AZ4500CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

*** Computer Configuration ***
 - Model: Dell PowerEdge 2100
 - Motherboard Configuration:
 * Processor - Model: Intel 5000G (5.0 GHz) - P/N: AZ4500CPU
 * Memory - Model: Micron SDRAM (4 GB) - P/N: MD400SD

Grading Rubric: This assignment is worth 10 points and will be graded based on the following rubric:

Area Exemplary Competent Developing Points
Class Header All header components are

present, with references and
comments that accurately
support the state of the file.

All header components are
present, but references and
comments are incomplete or
nonspecific.

Header is missing or only
partially present, and
references and comments are
vague or unmeaningful.

 __ / 1

Coding Style Code implementation utilizes
appropriate white space, self-
documentation techniques
and non-obvious comments.

Code implementation exhibits
minor alignment or spacing
problems, some comments are
missing or redundant.

Significant alignment and
spacing problems, comments
are generally missing or
sporadic.

__ / 1

Functionality
/ Creativity

All Brittle class source files
have been modified to
properly implement the
Shallow and Deep cloning
techniques.

Brittle class source files have
been modified to implement the
Shallow and Deep cloning
techniques, but some minor
errors or misconceptions exist.

Some Brittle class source
files have been modified to
implement the Shallow and
Deep cloning techniques, but
significant errors or
misconceptions exist.

__ / 5

Discussion Explanation of Brittle class
operation is concise, correct
and pertinent.

Explanation of Brittle class
operation generally outlines the
correct perspective, with some
minor errors or misconceptions.

Explanation of Brittle class
operation vaguely outlines
the correct perspective, or
contains significant errors
and misconceptions.

__ / 3

