
CS 211 Project 1 Assignment

Instructor: Dan Fleck, Ricci Heishman
Project: JMortarWar using JGame

Overview
In this project you will use JGame to create a small game. This game consists of
two players firing at each other over a hill. This is an example of one of the
earliest types of computer games. See
http://en.wikipedia.org/wiki/Artillery_(computer_game) for more examples of
these types of games from very early to recent.

In our game we’ll have a simple flat ground and a hill in the middle. The hill will
be drawn at different heights each round. Additionally, wind will be present that
changes how the mortars (bullets) move through the air.

This project will build upon labs 2,3,4 which you have completed. You may (and
should) reuse code from those labs to complete this assignment.

In this project we will give you many of the classes you will need to complete the
project.

Game Play
This is a turn based game where each player sets a specific force and angle.
Once both are set the tanks fire. During each round both players may score, one
may score, or neither score. As seen in lab 4, JGame moves through a series of
states. Each state does something and eventually transitions to a new state.

Game States

Start
This state begins the game. All it should do is wait 30 milliseconds and transition
to the player 1 state. You could put up a nice message here if you want, but it’s
not needed.

Player1
Left-Right arrow keys adjust the angle.
Up-down arrow keys adjust the force.
Space bar locks in settings and moves to player2 state

Player2
Similar to Player1 except the space bar locks in settings and moves to the firing
state.

Firing
At the beginning of the firing state two MortarRounds are created using the
settings for each tank. Every frame should update the mortar rounds’ positions.
After both MortarRounds are no longer alive, the game moves to either the
NewRound state or Player1 state if no one was hit.

NewRound
A new round is begun by creating a new Hill and changing the wind speed then
moving to the Player1 state.

Requirements

1. JMortarEngine

a. You must have at least the 5 required states as described
above.

b. You must have one class JMortarEngine that extends
JGEngine. This is the class that manages game states

c. You must have a GUI that looks like the one shown above.
This is composed of two parts. The bottom panel from Lab
3 and the top panel is your JMortarEngine.

d. Quit and Restart buttons should work as designed in Lab 3.

e. Space bar should end the player’s turn and move either to the next
player or to the firing state (as appropriate)

f. The wind speed must affect the projectile as described in
Lab 2.

g. The wind speed must change randomly everytime a new
round begins. The wind speed should be between -50 and
50.

h. Audio should play when the mortar rounds are fired. An
audio file will be given.

i. Force text should update for each player during their turn
as they press up/down arrow keys.

2. MortarRound

a. Mortar rounds must stop if they contact the hill

3. Tank – This is given to you, so do not worry about it

a. The turret on the tank should be centered on the tank and
rotate as the player holds down the left or right arrow keys
during their move.

b. The turret should have a minimum angle of 0 and a
maximum of 180. (It must not be able to point “down” for
example.

c. The tank on the left side of the screen must be facing
RIGHT and the tank on the right side must be facing LEFT

d. The tanks must be position randomly. Left tank between 0
and 40% of the playing field width (pfwidth). Right tank
must be between 60% and 100% of the playing field
width.

e. Audio must fire when a tank is hit

Hints
Notes: See the JGame notes posted to Blackboard. You’ll also find files to
download for setting up the media and a Main.java file that is complete if you
want to use it. (It is from Prof. Fleck’s implementation… use it if it helps.)

The FULL source framework in Netbeans can be downloaded from here.
This fully runs, BUT does not include much of the code you need to do to
make this work! You must un-Jar it into the appropriate place in your
Netbeans project.

http://cs.gmu.edu/~dfleck/classes/cs211/fall08/projects/project1/src.jar

Classes: You can use however many file you need. I had these classes:
JMortarEngine – the engine. You need to develop.
MortarRound --- This is the bullet. You need to develop
ProjectileVelocity – from lab 2. You need to modify (most likely)
GameState – from lab 3. You may need to modify.

Files given

Main.java – Given in download
media.tbl – Given in download
Hill – Given in download
Player – Given in download

Turret – Given in download

Bonus Points
Bonus points will be awarded for each feature you add from the list below:

1. Display the windspeed graphically as an arrow at the top of the screen
where the length of the arrow is determined by the wind speed and the
direction of the arrow is the wind direction.

2. Restart button actually creates a new round (changes hill and windspeed)
3. Create a game mode where the bullets “bounce” off the left/right/top of the

screen. (This must be selectable… I want to play the game with and
without this feature.)

4. Any cool features from the best artillery game ever – Scorched Earth --
http://www.dosgamesarchive.com/download/game/144 (WARNING: Prof
Fleck lost all of 10th grade due to this game). Seriously though, if you see
fun features… let me know and we’ll probably give you credit for
implementing them. There is also a new 3D version, but I’ve never played
it.

What to turn in:
1. A Jar file containing all Java source code and compiled code. All files you

create must contain the standard class header for CS211.
2. A list of any resources you used. This should include any sample files you got

from the JGame website. It’s okay to use them, but I want to know which ones
you reference and copied code from. (I assume you will use all the resources
provided in this assignment document and the JGame notes posted by Prof.
Fleck. No need to reference those.)

3. A list of any discrepancies between your code and the requirements. What
could you not complete?

4. A list of any bonus features you completed

NOTE: This is an individual project. You must work alone on this and should not
consult any unapproved resources. If you have the slightest doubt about what is
allowed, please ASK YOUR PROFESSOR! Don’t take a chance! Cheating will
be dealt with harshly!

Approved resources:

- JGame website (http://www.13thmonkey.org/~boris/jgame/)
- Blackboard for CS211
- Any files/information posted on Prof. Fleck or Prof. Heishman’s

websites
- Discussions with CS211 TAs or professors are allowed and

encouraged.
- Sun’s Javadoc’s API
- Our textbook

Grading Rubric: This assignment is worth 10 points and will be graded based on
the following rubric:

Area Exemplary Competent Developing Points
Class
Header

All header components are
present, with references
and comments that
accurately support the
state of the file.

All header components are
present, but references and
comments are incomplete or
nonspecific.

Header is missing or only
partially present, and
references and comments
are vague or
unmeaningful.

 __ / 2

Coding Style Code implementation
utilizes appropriate white
space, self-documentation
techniques and non-
obvious comments.

Code implementation
exhibits minor alignment or
spacing problems, some
comments are missing or
redundant.

Significant alignment and
spacing problems,
comments are generally
missing or sporadic.

__ / 2

GUI Layout The GUI looks exactly as
described in the
assignment with no visible
differences.

The GUI has some visible
differences from the
assignment, but does
contain all required
components.

The GUI does not look like
the assignment states or is
missing components.

__ / 10

Game Play The game has all required
functionality and does not
have unintended
functionality due to errors
in implementation.

The game mostly works, but
there are some missing
/non-working features.

Examples of non-working
features are things like the
projectile doesn’t move
correctly. The windspeed
does not change every
round, etc…

Or there are parts of the
game that should not
happen (e.g. bullet goes
through hill, etc…)

Major game features are
missing or function
incorrectly. Overall the
game is generally
unplayable.

For example, the screen is
able to be shown, but
nothing happens, no game
states are entered, etc…

__ / 24

Supporting
information

Everything from the
section “What to
turn in:“ above is
present and clearly
written.

Parts of “What to turn in” are
missing or incomplete.

Most of “What to turn in” is
missing or all of it is
incomplete.

__ / 2

