
CS 211 Project 2 Assignment

Instructor: Dan Fleck, Ricci Heishman
Project: Advanced JMortarWar using JGame

Overview
Project two will build upon project one. In project two you will start with project
one and add four new features and diagram your system.

1. Creating an intro menu screen
2. Tracking and maintaining a high score list
3. Allowing players to move left/right
4. Making the games time based

In addition to the features you must provide a state machine drawing showing all
the states in your game. This can be done in any drawing tool as long as it looks
nice. If you’d like, you can install the UML plugin for Netbeans and use Netbeans
to draw your diagram.

In this project you’re expected to figure out a little more than the last project. A
general specification is given below, but not specific coding guidelines (e.g. you
need to determine any new states that are needed, etc…).

As with all problems, I would break it down into small chunks and try to finish
each one in turn.

Feature Descriptions

Creating an Intro Screen

You should create an intro menu screen that looks like this:

Each option should allow uppercase or lowercase characters.

- P or p should begin a game.
- S or s should show the high score screen
- Q or q should exit the program

High Scores

Using Lab 6 you must create and maintain a high score screen. This mean you
must

- Load the high scores data file when the program starts
- Track which player wins the game and what their score is

- Allow the user to type in a name for the list. They should be able to
actually type, not select a character from a list or something like that.
The typing should be in the game, not on the console window (not like
you did in Lab 6).

- Save the name and score in the data file
- Display the high scores and names with the highest score at the top of

the screen. You should only display the top 10 scores.

HINT: You will need to modify the classes from Lab 6 to implement this feature in
JGame.

Making the games time based

In order to have different scores, the game must now be time based instead of
ending at a specific score. You must implement timer to make the games last
approximately 2 minutes.

At the end of two minutes the game should automatically end. To simplify the
coding, the winner will always enter their name into the high score list and have it
saved in the scores.dat file. It may not show up on the high score screen
because you’re only going to display the top 10 scores.

Allowing players to move left/right

To make the game more interesting, you must also add the ability for players to
move left and right during their turn.

- The players should move left with the ‘,’ (comma) key
- The players should move right with the ‘.’ (period) key
- The players must not be allowed to move through the hill
- The players must not be allowed to move off the left/right of the screen

HINT: You’ll need to modify the Player class for this and use methods in
JGObject to check for collisions and if you are on the screen.

HINT 2: You do not need to be super-accurate with collision detection. Just
checking if the bounding box of the tank hits the bounding box of the hill is fine.

NOTE: The keys were chosen because when you look at the key on the
keyboard, it means left is < and right is > .

State Machine

The state machine diagram should show each state in your system as a box (or
oval). Between the states there should be transition arrows showing when you
move from one state to the next. Transition labels may have a guard condition
explaining why you transitioned and may have an action that is taken while you
transition.

If more than one arrow leaves a state you must add a guard condition onto the
arrows so we can tell which transition is followed.

Guard conditions are in [] and actions taken on the transition are after the
condition. You do NOT need conditions and actions for every transition. Keep it
simple and do what seems to make sense to you.

In JGame actions on the transition would be things in the startXYZ methods and
the states themselves is the general idea of what is happening in
doFrame/paintFrame.

See example for part of an ATM machine:

Bonus Points
Bonus points will be awarded for each feature you add from the list below:

1. Making the game simultaneous instead of turn-based. This means both
players can be moving and firing all at the same time. To do this you’ll
need to use different keys for player 1 and player 2. (+7pts)

2. Make the terrain height random, so the players may be at different heights
each game. They still need to be able to move left/right though! (+10pts)

3. Make the tank be able to either move or fire during a round, but not both,
or in some way limit the ability to move so players are penalized for
movement, to reduce movement every round. (+5)

4. Any cool features from the best artillery game ever – Scorched Earth --
http://www.dosgamesarchive.com/download/game/144 (WARNING: Prof
Fleck lost all of 10th grade due to this game). Seriously though, if you see
fun features… let me know and we’ll probably give you credit for
implementing them. There is also a new 3D version, but I’ve never played
it.

What to turn in:
1. A Jar file containing all Java source code and compiled code. All files you

create must contain the standard class header for CS211.
2. A list of any resources you used. This should include any sample files you got

from the JGame website. It’s okay to use them, but I want to know which ones
you reference and copied code from. (I assume you will use all the resources
provided in this assignment document and the JGame notes posted by Prof.
Fleck. No need to reference those.)

3. A list of any discrepancies between your code and the requirements. What
could you not complete?

4. A list of any bonus features you completed
5. A state machine drawing showing states for your implementation.

NOTE: This is an individual project. You must work alone on this and should not
consult any unapproved resources. If you have the slightest doubt about what is
allowed, please ASK YOUR PROFESSOR! Don’t take a chance! Cheating will
be dealt with harshly!

Approved resources:

- JGame website (http://www.13thmonkey.org/~boris/jgame/)
- Blackboard for CS211
- Any files/information posted on Prof. Fleck or Prof. Heishman’s

websites
- Discussions with CS211 TAs or professors are allowed and

encouraged.
- Sun’s Javadoc’s API
- Our textbook

Grading Rubric: This assignment is worth 40 points and will be graded based on
the following rubric:

Area Exemplary Competent Developing Points
Class
Header

All header components are
present, with references
and comments that
accurately support the
state of the file.

All header components are
present, but references and
comments are incomplete or
nonspecific.

Header is missing or only
partially present, and
references and comments
are vague or
unmeaningful.

 __ / 2

Coding Style Code implementation
utilizes appropriate white
space, self-documentation
techniques and non-
obvious comments.

Code implementation
exhibits minor alignment or
spacing problems, some
comments are missing or
redundant.

Significant alignment and
spacing problems,
comments are generally
missing or sporadic.

__ / 2

Intro Screen The intro screen is present
and the menu works
correctly.

The intro screen is present,
but some menu options don’t
work. (Or menu options do
not support upper and lower
case)

The intro screen is missing
or all menu options don’t
work.

__ / 6

High Score
List

The High score list
functionality is exactly as
specified above.

The High score list
functionality is missing small
parts, but still functions.

The high score
functionality is not able to
complete much (if any) of
the features described.

__ / 13

Left/Right
Movement

Players can move left/right
and are blocked by the
hill/screen edges.

Players can move left and
right, but collisions are not
checked (they can go
through the hill or off the
edge.

Players cannot move left
or right.

__ / 13

Supporting
information

Everything from the
section “What to
turn in:“ above is
present and clearly
written.

Parts of “What to turn in” are
missing or incomplete.

Most of “What to turn in” is
missing or all of it is
incomplete.

__ / 1

State
Machine
drawing

The state machine
drawing is clear and
depicts the game
correctly.

The state machine drawing
is clear, but is missing states
that are present in the
system.

The state machine
drawing is missing, very
unclear or very
incomplete.

__ / 3

