The following pages are (most of) Chapter 20 from

Cay Horstmann, Big Java, 3rd ed., Wiley, 2008.

CHAPTER GOALS

®

Chapter 2 O

Multithreading

To understand how multiple threads can execute in parallel

To learn how to implement threads

To understand race conditions and deadlocks

To be able to avoid corruption of shared objects by using locks
and conditions

To be able to use threads for programming animations

ltis often uscful for a program to carry out two or more tasks at the same time. For
example, a web browser can load multiple images of a web page at the same time.
Or an animation program can show moving figures, with separate tasks computing
the positions of each separate figure.

In this chapter, you will see how you can implement this behavior by running
tasks in multiple threads, and how you can ensure that the tasks access shared data

in a controlled fashion.

846 CHAPTER 20 = Multithreading

CHAPTER CONTENTS

20.1 Running Threads 846
QUALITY TIP 20.1: Use the Runnable Interface 851
ADVANCED TopPIC 20.1: Thread Pools 851

20.2 Terminating Threads 852
QuALITY TiP 20.2: Check for Thread Interruptions in
the run Method of a Thread 854

20.3 Race Conditions 855
20.4 Synchronizing Object Access 861
20.5 Avoiding Deadlocks 864

20.1 Running Threads

A thread is a program unit
that is executed
independently of other
parts of the program.

ComMMON ERROR 20.1: Calling await Without
Calling signalAll 869

COMMON ERROR 20.2: Calling signalAll Without
Locking the Object 869

ADVANCED TopiC 20.2: Object Locks and
Synchronized Methods 870

ADVANCED Toric 20.3: The Java
Memory Model 871

20.6G Case Study: Algorithm
Animation 871
RANDOM FACT 20.1: Embedded Systems 880

A thread is a program unit that is executed independently of other
parts of the program. The Java virtual machine executes each thread
for a short amount of time and then switches to another thread.
This gives the illusion of executing the threads in parallel to each

other. Actually, if a computer has multiple central processing units
(CPUs), then some of the threads can run in parallel, one on each processor.
Running a thread is simple in Java—follow these steps:

1. Implement a class that implements the Runnable interface. That interface has a

single method called run:

public interface Runnable

void runQ;

}

2. Place the code for your task into the run method of your class.

public class MyRunnable implements Runnable

{

public void run()

// Task statements go here

The start m
Thread class
thread that e
run method
associated Ri
object.

20.1 = Running Threads 847

3. Create an object of your subclass.
Runnable r = new MyRunnable();

4. Construct a Thread object from the runnable object.
Thread t = new Thread(r);

5. Call the start method to start the thread.
t.start(Q);

Let us look at a concrete example. We want to print ten greetings of
The start method of the «pye]lo, World!”, one greeting every second. We will add a time

Thread class starts anew g5 6 cach greeting to see when it is printed.
thread that executes the

run method of the Thu Dec 28 23:12:03 PST 2006 Hello, World!
associated Runnable Thu Dec 28 23:12:04 PST 2006 Hello, World!
object. Thu Dec 28 23:12:05 PST 2006 Hello, World!

Thu Dec 28 23:12:06 PST 2006 Hello, World!
Thu Dec 28 23:12:07 PST 2006 Hello, World!
Thu Dec 28 23:12:08 PST 2006 Hello, World!
Thu Dec 28 23:12:09 PST 2006 Hello, World!
Thu Dec 28 23:12:10 PST 2006 Hello, World!
- Thu Dec 28 23:12:11 PST 2006 Hello, World!
Thu Dec 28 23:12:12 PST 2006 Hello, World!

Using the instructions for creating a thread, define a class that implements the
Runnable interface:

public class GreetingRunnable implements Runnable

{
public GreetingRunnable(String aGreeting)

{

greeting = aGreeting;

public void run()

// Task statements go here

}
// Fields used by the task statements
private String greeting;

}
The run method should loop ten times through the following task actions:

e Print a time stamp.

e Print the greeting.

o Wait a second.

Get the time stamp by constructing an object of the java.util.bate class. Tts default
constructor produces a date that is set to the current date and time.

Date now = new Date();
System.out.printin(now +

+ greeting);

 ——

848 CHAPTER 20 ® Multithreading

The sTleep metheod puts i 1
the current thread to sleep The ca

for a given number of

milliseconds.

When a thread is

interrupted, the most

common response is to
terminate the run method.

The simplest way to handle thread interruptions is to give your run method the fol-
lowing form:

public void runQ)

{

}

We follow that structure in our example. Here is the complete code for the runnable

class:

ch20/greeting/GreetingRunnable.java

1

try

}
catch (InterruptedException exception)

{
}
Clean up, if necessary

i

*

P
{

To wait a second, we use the static sleep method of the Thread class.

Thread.sleep(milliseconds)
puts the current thread to sleep for a given number of milliseconds.
In our case, it should sleep for 1,000 milliseconds, or one second.

There is, however, one technical problem. Putting a thread to sleep
is potentially risky —a thread might sleep for so long that it is no
longer useful and should be terminated. As you will see in Section
20.2, to terminate a thread, you interrupt it. When a sleeping thread
is interrupted, an TnterruptedException is generated. You need to
catch that exception in your run method and terminate the thread.

_ lask statements

mport java.util.Date;

A runnable that repeatedly prints a greeting.
/

ublic class GreetingRunnable implements Runnable

/‘k\':
Constructs the runnable object.
@param aGreeting the greeting to display

E
public GreetingRunnable(String aGreeting)
{
greeting = aGreeting;
}
pubTic void run()
{
try
{

TWWNNNROM O e

20.1 = Running Threads 849

21 for (int i = 1; 1 <= REPETITIONS; i++)
22 {

23 Date now = new Date();

24 System.out.printin(now + " " + greeting);
25 Thread.sleep (DELAY) ;

26 }

27

28 catch (InterruptedFxception exception)
29 {

30 1

31 }

32

33 private String greeting;

34

35 private static final int REPETITIONS = 10;
36 private static final int DELAY = 1000;

37 %

To start a thread, first construct an object of the runnable class.
Runnable r = new GreetingRunnable("Hello, World!");
Then construct a thread and call the start method.

Thread t = new Thread(r);
t.start();

Now a new thread is started, executing the code in the run method of your runnable
in parallel with any other threads in your program.

In the GreetingThreadRunner program, we start two threads: one that prints
“Hello, World!” and one that prints “Goodbye, World!”

ch20/greeting/GreetingThreadRunner.java

1 /fc*
2 This program runs two greeting threads in parallel.
3 =
4 public class GreetingThreadRunner
5
6 pubTic static void main(String[] args)
7 {
8 GreetingRunnable rl = new GreetingRunnable('Hello, World!");
9 GreetingRunnable r2 = new GreetingRunnable('Goodbye, World!");
10 Thread tl = new Thread(rl);
11 Thread t2 = new Thread(r2);
12 tl.start();
13 t2.start();
14 }

850 CHAPTER 20 = Multithreading

Qutput

Tue Dec 19 12:04:46 PST 2006 Hello, World!
Tue Dec 19 12:04:46 PST 2006 Goodbye, World!
Tue Dec 19 12:04:47 PST 2006 Hello, World!
Tue Dec 19 12:04:47 PST 2006 Goodbye, World!
Tue Dec 19 12:04:48 PST 2006 Hello, World!
Tue Dec 19 12:04:48 PST 2006 Goodbye, World!
Tue Dec 19 12:04:49 PST 2006 Hello, World!
Tue Dec 19 12:04:49 PST 2006 Goodbye, World!
Tue Dec 19 12:04:50 PST 2006 Hello, World!
Tue Dec 19 12:04:50 PST 2006 Goodbye, World!
Tue Dec 19 12:04:51 PST 2006 Hello, World!
Tue Dec 19 12:04:51 PST 2006 Goodbye, World!
Tue Dec 19 12:04:52 PST 2006 Goodbye, World!
Tue Dec 19 12:04:52 PST 2006 Hello, World!
Tue Dec 19 12:04:53 PST 2006 Hello, World!
Tue Dec 19 12:04:53 PST 2006 Goodbye, World!
Tue Dec 19 12:04:54 PST 2006 Hello, World!
Tue Dec 19 12:04:54 PST 2006 Goodbye, World!
Tue Dec 19 12:04:55 PST 2006 Hello, World!
Tue Dec 19 12:04:55 PST 2006 Goodbye, World!

The thread scheduler runs Because both threads are running in parallel, the W0 message sets are
ST e e interleaved. However, if you look closely, you will find that the two
amount o time, calloda threads aren’t exactly interleaved. Sometimes, the second thread
time slice. seems to jump ahead of the first thread. This shows an important
characteristic of threads. The thread scheduler gives no guarantee
about the order in which threads are executed. Each thread runs for a
short amount of time, called a tzme slice. Then the scheduler activates another
thread. However, there will always be slight variations in running times, especially
when calling operating system services (such as input and output). Thus, you
should expect that the order in which each thread gains control is somewhat

random.

SELF CHECK

1. What happens if you change the call to the sTeep method in the run method to
Thread.sleep(1)?

2. What would be the result of the program if the main method called

rL.runQ);
r2.run();

instead of starting threads?

20.1 = Running Threads 851

QUALITY Tip 20.1

Use the Runnable Interface

In Java, you can define the task statements of a thread in two ways. As you have seen already,
you can place the statements into the run method of a class that implements the RunnabTe
interface, Then you use an object of thar class to construct a Thread object. You can also form
a subclass of the Thread class, and place the task statements into the run method of your

subclass:

public class MyThread extends Thread

pubTic void runO
{
// Task statements go here

}
Then you construct an object of the subclass and call the start method:

Thread t= npew MyThread();
t.start();

This approach is marginally easier than using a Runnable, and it also seems quite intuitive.
However, if a program needs a large number of threads, or if 2 program cxecutes in a resource-
constrained device, such as 3 cell phone, it can be quite expensive to construct a separate thread
for each task. Advanced Topic 20.1 shows how 1o use a thread pool to overcome this problem.
A thread pool uses a small number of threads to execute 4 larger number of runnables,

The Runnabe interface i designed to encapsulate the concept of a sequence of statements
that can run in parallel with other tasks, withour equatng it with the concept of a thread, a
potentially expensive resource that 1s managed by the operating system.

ADVANCED ToPic 20.1

Thread Pools

A program that creates 2 huge number of short-lived threads can be inefficient. Threads are
managed by the operating system, and there is 5 space and run-time cost for each thread that
is created. This cost can be reduced by using a thread pool. A thread pool creates 2 number of
threads and keeps them alive. When you add a Runnable object to the thread pool, the next
idle thread executes its run method.

For example, the following statements submit two runnables to a thread pool:

Runnable r1 = new GreetingRunnab]e(”He]]o, Worldi™y;

Runnable r2 = new GreetingRunnabTe(”Goodbye, World!™y;
ExecutorService pool = Executor‘s.newFixedThreadPoo] (MAX,THREADS);
pooW.execute(rl);

poo].execute(rZ);

If many runnables are submitted for execution, then the pool may not have enough threads
available. In that €asc, some runnables are placed in o queue until a thread is idle. As 2 result,

852

ViR,

A thread terminates when
its run method terminates.

The run method can check

CHAPTER 20 = Multithreading

the cost of creating threads is minimized. However, the runnables that are run by a particu-
lar thread are executed sequentially, not in parallel.

Thread pools are particularly important for server programs, such as database and web
servers, that repeatedly execute requests from multiple clients. Rather than spawning a new
thread for each request, the requests are implemented as runnable objects and submitted to a
thread pool.

Terminating Threads

A thread terminates when the run method of the associated runnable
object returns. This is the normal way of terminating a thread—
implement the run method so that it returns when it determines that
no more work needs to be done.

However, sometimes you need to terminate a running thread. For example, you
may have several threads try to find a solution to a problem. As soon as the first one
has succeeded, you may want to terminate the other ones. In the initial release of
the Java library, the Thread class had a stop method to terminate a thread. However,
that method is now deprecated—computer scientists have found that stopping a
thread can lead to dangerous situations when multiple threads share objects. (We
will discuss access to shared objects in Section 20.3.) Instead of simply stopping a
thread, you should notify the thread that it should be terminated. The thread needs
to cooperate, by releasing any resources that it is currently using and doing any
other required cleanup. In other words, a thread should be in charge of terminating
itself.

To notify a thread that it should clean up and terminate, you use the interrupt
method.

t.interrupt();

This method does not actually cause the thread to terminate—it

Sy e L merely sets a boolean field in the thread data structure.
been interrupted by calling The run method can check whether that flag has been set, by calling
the interrupted method. the static interrupted method. In that case, it should do any neces-

sary cleanup and exit. For example, the run method of the Greeting-
Runnable could check for interruptions at the beginning of each loop iteration:

public void run()

{
for (int i = 1;
i <= REPETITIONS && !Thread.interrupted();
+4+)
Do work
}
Clean up
}

20.2 = Terminating Threads 853

However, if a thread 1s sleeping, it can’t execute code that checks for interruptions.
Therefore, the sleep method is terminated with an InterruptedException whenever
a sleeping thread is interrupted. The sleep method also throws an Interrupted-
Exception when it is called in a thread that is already interrupted. If your run
method calls sTeep in each loop iteration, simply use the InterruptedException to
find out whether the thread is terminated. The easiest way to do that is to surround
the entire work portion of the run method with a try block, like this:

public void run()
{
try
3
for (int i = 1; 1 <= REPETITIONS; i++)

Do work
}

catch (InterruptedException exception)
{

1

Clean.up

Strictly speaking, there is nothing in the Java language specification that says that a
thread must terminate when it is interrupted. It is entirely up to the thread what it
does when it is interrupted. Interrupting is a general mechanism for getting the
thread’s attention, even when it is sleeping. However, in this chapter, we will always
terminate a thread that is being interrupted.

SELF CHECK

3. Suppose a web browser uses multiple threads to load the images on a web page.
Why should these threads be terminated when the user hits the “Back” button?

4. Consider the following runnable.

pubTlic class MyRunnable implements Runnable
{

public void runQ)
{
try
i
System.out.printin(l);
Thread.sleep(1000) ;
System.out.printin(2);

catch (InterruptedException exception)
System.out.printin(3);

1
System.out.printin(4);

854

CHAPTER 20 = Multithreading

Suppose a thread with this runnable is started and immediately interrupted.

20.3

Thread t = new Thread(new MyRunnable());
t.start(Q);
t.interrupt();

What output is produced?

Quarity Tip 20.2

Check for Thread Interruptions in the run Method of a Thread

By convention, a thread should terminate itself (or at least act in some other well-defined
way) when it is interrupted. You should implement your threads to follow this convention.

Simply put the thread action inside a try block that catches the InterruptedException.
That exception occurs when your thread is interrupted while it is not running, for example
inside a call to sTeep. When you catch the exception, do any required cleanup and exit the
run method.

Some programmers don’t understand the purpose of the Interruptedixception and, out
of ignorance and desperation, muzzle it by surrounding only the call to sTeep inside a try

block.

public void run(}

{
while (. . .)
{
try
Thread.sleep(delay);
}
catch (InterruptedException exception) {} // DON'T
}
¥

Don’t do that. If you do, users of your thread class can’t get your thread’s attention by inter-
rupting it. It is just as casy to place the entire thread action inside a single try block. Then
interrupting the thread terminates the thread action.

public void run()

{
try
while (. . .)
{
Th |;ead.s1eep(delay) H
¥
}

catch (InterruptedException exception) {} // OK

20.3

20.3 = Race Conditions 855

Race Conditions

When threads share access to a common object, they can conflict with each other.
To demonstrate the problems that can arise, we will investigate a sample program in
which multiple threads manipulate a bank account.

We construct a bank account that starts out with a zero balance. We create two
sets of threads:

e Fach thread in the first set repeatedly deposits $100.

e Each thread in the second set repeatedly withdraws $100.
Here is the run method of the DepositRunnable class:

public void runQ)
{
try
{
for (int i = 1; 1 <= count; i++)
s
account.deposit(amount);
Thread.sleep(DELAY);

}
catch (InterruptedException exception)
{
}

}

The withdrawRunnable class is similar —it withdraws money instead.

The deposit and withdraw methods of the BankAccount class have been modified
to print messages that show what is happening. For example, here is the code for the
deposit method:

public void deposit(double amount)

{
System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.printIn(", new balance is
balance = newBalance;

}

You can find the complete source code at the end of this section.
Normally, the program output looks somewhat like this:

"

+ newBalance);

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
withdrawing 100.0, new balance is 100.0

Withdrawing 100.0, new balance is 0.0

856

CHAPTER 20 = Multithreading

In the end, the balance should be zero. However, when you run this program
repeatedly, you may sometimes notice messed-up output, like this:

Depositing 100.0Withdrawing 100.0, new balance is 100.0

, new balance is -100.0
And if you look at the last line of the output, you will notice that the final balance is
not always zero. Clearly, something problematic is happening.

You may have to try the program several times to see this effect.

Here is a scenario that explains how a problem can occur.

1. A deposit thread executes the lines
System.out.print("Depositing " + amount);
double newBalance = balance + amount;

in the deposit method of the BankAccount class. The value of the balance field
is still 0, and the value of the newBalance local variable is 100.

2. Immediately afterwards, the deposit thread reaches the end of its time slice,

and the second thread gains control.

3. A withdraw thread calls the withdraw method, which prints a message and

withdraws $100 from the balance variable. It is now —10C.

The withdraw thread goes to sleep.

@

The deposit thread regains control and picks up where it was interrupted. It
now executes the lines

System.out.println(", new balance is " + newBalance);

balance = newBalance;

The value of balance is now 100 (see Figure 1).

Thus, not only are the messages interleaved, but the balance is wrong. The balance
after a withdrawal and deposit should again be 0, not 100. Because the deposit
method was interrupted, it used the old balance (before the withdrawal) to compute
the value of its local newBalance variable. Later, when it was activated again, it used
that newBalance value to overwrite the changed balance field.

As you can see, each thread has its own local variables, but all

A race condition occurs if) eqds share access to the balance instance field. That shared access

the effect of multiple
threads on shared data
depends on the order in
which the threads are

scheduled.

creates a problem. This problem is often called a race condition. All
threads, in their race to complete their respective tasks, manipulate a
shared field, and the end result depends on which of them happens to
win the race.

You might argue that the reason for this problem is that we made
it too easy to interrupt the balance computation. Suppose the code
for the deposit method is reorganized like this:

public void deposit(double amount)
{
balance = balance + amount;
System.out.print("Depositing " + amount
+ ", new balance is " + balance);

20.3 = Race Conditions 857

Deposit thread Withdraw thread

Print
"Depositing..."

newBalance =

Deposit thread reaches
balance + amount

the end of its time slice;
local variable
newBalance is 100
Print
"Withdrawing..."

newBalance =
balance - amount

Print ", new
balance is..."

balance

is now —100
balance =
newBalance

Print ", new
balance is..."

balance

is now 100
balance =

newBalance

Figure 1 Corrupting the Contents of the balance Field

Suppose further that you make the same change in the withdraw method. If you run
the resulting program, everything seems to be fine.

However, that is a dangerous illusion. The problem hasn’t gone away; it has
become much less frequent, and, therefore, more difficult to observe. It is sull pos-
sible for the deposit method to reach the end of its time slice after it has computed
the right-hand-side value

balance + amount

858 CHAPTER 20 = Multithreading

but before it performs the assignment
balance = the right-hand-side valne

When the method regains control, it finally carries out the assignment, putting the
wrong value into the balance field.

ch20/unsynch/BankAccountThreadRunner.java

1 /».H.-
2 This program runs two threads that deposit and withdraw
3 money from the same bank account.
4 =
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();
10 final double AMOUNT = 100;
11 final int REPETITIONS = 104;
12 final int THREADS = 100;
13
14 — for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);
23
24 dt.startQ;
25 wt.startQ;
26 }
27 }
28 3

/‘k}'{
A deposit runnable makes periodic deposits to a bank account.

1

2

3

4 public class DepositRunnable implements Runnable

5 1

6 /=

7 Constructs a deposit runnable.

8 @param anAccount the account into which to deposit money
9 @param anAmount the amount to deposit in each repetition

10 @param aCount the number of repetitions

11 */

12 public DepositRunnable(BankAccount anAccount, double anAmount,
13 int aCount)

14 {

15 account = anAccount;

20.3 = Race Conditions 859

16 amount = anAmount;

17 count = aCount;

18 }

19

20 public void runQ

24 {

22 try

23 {

24 for (int 1 = 1; 1 <= count; i++)
25 i

26 account.deposit(amount);
27 Thread.sleep(DELAY);

28 ¥

29

30 catch (InterruptedException exception) {}
31 }

32

33 private static final int DELAY = 1;
34 private BankAccount account;

35 private double amount;

36 private int count;

37 .} =

ch20/unsynch/WithdrawRunnable.java

1 /1:’\—

2 A withdraw runnable makes periodic withdrawals from a bank account.
3 =

4 public class WithdrawRunnable implements Runnable

5 1

6 J

7 Constructs a withdraw runnable.

8 @param anAccount the account from which to withdraw money

9 @param anAmount the amount to deposit in each repetition

10 @param aCount the number of repetitions
11 L4

12 public WithdrawRunnable(BankAccount anAccount, double anAmount,
13 int aCount)

14 {

15 account = anAccount;

16 amount = anAmount;

17 count = aCount;

18 }

19

20 public void run()

21 {

22 try

23 {

24 for (int i = 1; i <= count; i++)
25 {

26 account.withdraw(amount);

27, Thread.sleep(DELAY);

860

CHAPTER 20 = Multithreading

catch (InterruptedException exception) {}
}

private static final int DELAY = 1;
private BankAccount account;
private double amount;

private int count;

¢ch20/unsynch/BankAccount.java
/‘.‘.".“‘

*

A bank account has a balance that can be changed by
deposits and withdrawals.

/

public class BankAccount

{

/:’: *
Constructs a bank account with a zero balance.

~ public BankAccount()

{
balance = 0;

}

/:'\“.":))
Deposits money into the bank account.
@param amount the amount to deposit

:’r/

public void deposit(double amount)

{
System.out.print('Depositing " + amount);
double newBalance = balance + amount;
System.out.printin(", new balance is " + newBalance);
balance = newBalance;

}

Withdraws money from the bank account.
@param amount the amount to withdraw

public void withdraw(double amount)

{
System.out.print("Withdrawing " + amount);
double newBalance = balance - amount;
System.out.printin(", new balance is " + newBalance);
balance = newBalance;

Gets the current balance of the bank account.
@return the current balance

2

T ——

20.

20.4 = Synchronizing Object Access 861

43 public double getBalance()
44 {

45 return balance;

46 }

48 private double balance;
49 1}

OQutput

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

Withdrawing 100.0, new balance is 400.0
Depositing 100.0, new balance is 500.0
Withdrawing 100.0, new balance is 400.0
Withdrawing 100.0, new balance is 300.0

SELF CHECK

5. Give a scenario in which a race condition causes the bank balance to be ~100
after one iteration of a deposit thread and a withdraw thread.

6. Suppose two threads simultaneously insert objects into a linked list. Using the
implementation in Chapter 15, explain how the list can be damaged in the
process.

20.4 synchronizing Object Access

To solve problems such as the one that you observed in the preceding section, use a
lock object. The lock object is used to control the threads that want to manipulate a
shared resource.

The Java library defines a Lock interface and several classes that implement this
interface. The ReentrantLock class is the most commonly used lock class, and the
only one that we cover in this book. (Locks are a feature added in Java version 5.0.
Farlier versions of Java have a lower-level facility for thread synchronization—sce
Advanced Topic 20.2)

Typically, a lock object is added to a class whose methods access shared
resources, like this:

public class BankAccount
{
public BankAccount()
{

balanceChangelock = new ReentrantLock();

862 CHAPTER 20 ®m Multithreading

}

private Lock balanceChangelLock;

}

All code that manipulates the shared resource is surrounded by calls to lock and
unlock the lock object:

balanceChangelock.Tock();
Code that manipulates the shared resource
balanceChangelock.unlock();

However, this sequence of statements has a potential flaw. If the code between the
calls to Tock and unTock throws an exception, the call to unlock never happens. This
is a serious problem. After an exception, the current thread continues to hold the
lock, and no other thread can acquire it. To overcome this problem, place the call to
unlock into a finally clause:

balanceChangelock.lock();
try

Code that manipulates the shaved resource

finally
{

balanceChangeLock.unlock();
}

For example, here is the code for the deposit method:

public void deposit(double amount)

balanceChangelock.lock();

try

{
System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.printin(", new balance is " + newBalance):
balance = newBalance;

}
finally
{
balanceChangelock.unlock();
}

}

When a thread calls the Tock method, it owns the lock until it calls the
unlock method. If a thread calls Tock while another thread owns the
A LoeK Bbjectmher i lock, it is temporarily deactivated. The thread scheduler periodically
LT) e v reactivates such a thread so that it can again try to acquire the lock. If
the lock until the first the lock is still unavailable, the thread is again deactivated. Eventu-
thread releases the lock. ally, when the lock is available because the original thread unlocked
it, the waiting thread can acquire the lock.

One way to visualize this behavior is to imagine that the lock object is the lock of

an old-fashioned telephone booth and the threads are people wanting to make tele-

phone calls (see Figure 2). The telephone booth can accommodate only one person

By calling the Tock
method, a thread acquires

e

20.4 = Synchronizing Object Access 863

Figure/Z
Visualizing Object Locks

at one time. If the booth is empty, then the first person wanting to make a call goes
inside and closes the door. If another person wants to make a call and finds the
booth occupied, then the second person needs to wait until the first person leaves
the booth. If multiple people want to gain access to the telephone booth, they all
wait outside. They don’t necessarily form an orderly queue; a randomly chosen
person may gain access when the telephone booth becomes available again. (Some
computer programmers think of a rest-room stall instead of a telephone booth in
order to visualize object locks. However, in the interest of good taste, we will not
develop that analogy any further.) ‘

With the ReentrantLock class, a thread can call the Tock method on a lock object
that it already owns. This can happen if one method calls another, and both start by
locking the same object. The thread gives up ownership if the unlock method has
been called as often as the Tock method.

By surrounding the code in both the deposit and withdraw methods with lock
and unlock calls, we ensure that our program will always run correctly. Only one
thread at a time can execute either method on a given object. Whenever a thread
acquires the lock, it is guaranteed to execute the method to completion before the
other thread gets a chance to modify the balance of the same banls account object.

SELF CHECK

7. 1f you construct two BankAccount objects, how many lock objects are created?
8. What happens if we omit the call unlock at the end of the deposit method?

§

864

CHAPTER 20 = Multithreading

20.5 Avoiding Deadlocks

A deadlock occurs if no

You can use lock objects to ensure that shared data are in a consistent

thread can proceed state when several threads access them. However, locks can lead to
Because eachithraad ic another problem. It can happen that one thread acquires a lock and
waiting for another to do then waits for another thread to do some essential work. If that other
some work first. thread is currently waiting to acquire the same lock, then neither of

the two threads can proceed. Such a situation is called a deadlock or
deadly embrace. Let’s look at an example.
Suppose we want to disallow negative bank balances in our program. Here’s a
naive way of doing that. In the run method of the withdrawRunnable class, we can
check the balance before withdrawing money:

if (account.getBalance() >= amount)
account.withdraw(amount) ;

This works if there is only a single thread running that withdraws money. But sup-
pose we have multple threads that withdraw money. Then the time slice of the cur-
rent thréad may expire after the check account.getBalance() >= amount passes, but
before the withdraw method is called. If, in the interim, another thread withdraws
more money, then the test was useless, and we still have a negative balance.

Clearly, the test should be moved inside the withdraw method. That ensures that
the test for sufficient funds and the actual withdrawal cannot be separated. Thus,
the withdraw method could look like this:

public void withdraw(double amount)

{
balanceChangelock.lock();
try
{
while (balance < amount)
Watt for the balance to grow
}
finally
{
balanceChangeLock.unTock();
}

But how can we wait for the balance to grow? We can’t simply call sleep inside the
withdraw method. If a thread sleeps after acquiring a lock, it blocks all other threads
that want to use the same lock. In particular, no other thread can successfully exe-
cute the deposit method. Other threads will call deposit, but they will simply be
blocked until the withdraw method exits. But the withdraw method doesn’t exit until
it has funds available. This is the deadlock situation that we mentioned earlier.

To overcome this problem, we use a condition object. Condition objects allow a
thread to temporarily release a lock, so that another thread can proceed, and to
regain the lock at a later time.

Calling i
conditio
the curm
and allo
to acgu

20.5 = Avoiding Deadlocks 865

In the telephone booth analogy, suppose that the coin reservoir of the telephone
is completely filled, so that no further calls can be made until a service technician
removes the coins. You don’t want the person in the booth to go to sleep with the
door closed. Instead, think of the person leaving the booth temporarily. That gives
another person (hopefully a service technician) a chance to enter the booth.

Each condition object belongs to a specific lock object. You obtain a condition
object with the newCondition method of the Lock interface. For example,

public class BankAccount

{
public BankAccount()
{
balanceChangeLock = new ReentrantLock();
sufficientFundsCondition = balanceChangeLock.newCondition(};
}
private Lock bhalanceChangelock;
private Condition sufficientFundsCondition;
}

It is customary to give the condition object a name that describes the condition that
you want to test (such as “sufficient funds”). You need to implement an appropriate
test. As long as the test is not fulfilled, call the await method on the condition

object:
public void withdraw(double amount)
{
balanceChangelock.lock();
try
while (balance < amount)
sufficientFundsCondition.await();
}
finally
1
balanceChangelock.unTock();
}
}

When a thread calls await, it is not simply deactivated in the same
way as a thread that reaches the end of its time slice. Instead, itisina
EE e R blocked state, and it will not be activated by the thread scheduler
and allows another thread until it is unblocked. To unblock, another thread must execute the
to acquire the lock object. SignalAll method on the same condition object. The signalall
method unblocks all threads waiting on the condition. They can then
compete with all other threads that are waiting for the lock object. Eventually, one

of them will gain access to the lock, and it will exit from the await method.

In our situation, the deposit method calls signala1l:

Calling await on a
condition object makes

pubTic void deposit(double amount)
{

866

CHAPTER 20 ® Multithreading

balanceChangelock.Tock();
try
{

sufficientFundsCondition.signalA11Q);
+
finally

halanceChangeLock.unlock();

The call to signalAll notifies the waiting threads that sufficient funds

A waiting thread is may be available, and that it is worth testing the loop condition

blocked until another
thread calls signalAll or
signal on the condition
object for which the
thread is waiting.

again.

In the telephone booth analogy, the thread calling await corre-
sponds to the person who enters the booth and finds that the phone
doesn’t work. That person then leaves the booth and waits outside,
depressed, doing absolutely nothing, even as other people enter and
leave the booth. The person knows it is pointless to try again. At
some pofnt, a service technician enters the booth, empties the coin reservoir, and
shouts a signal. Now all the waiting people stop being depressed and again compete
for the telephone booth.

There is also a signal method, which randomly picks just one thread that is wait-
ing on the object and unblocks it. The signal method can be more efficient, but it is
useful only if you know that every waiting thread can actually proceed. In general,
you don’t know that, and signal can lead to deadlocks. For that reason, we recom-
mend that you always call signalall.

The await method can throw an InterruptedException. The withdraw method
propagates that exception, because it has no way of knowing what the thread that
calls the withdraw method wants to do if it is interrupted.

With the calls to await and signalAll in the withdraw and deposit methods, we
can launch any number of withdrawal and deposit threads without a deadlock. If
you run the sample program, you will note that all transactions are carried out
without ever reaching a negative balance.

ch20/synch/BankAccountThreadRunner.java

1 %
2 This program runs four threads that deposit and withdraw
3 money from the same bank account.
4 =
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();
10 final double AMOUNT = -
11 final int REPETITIONS
12 final int THREADS = 10

13

20.5 = Avoiding Deadlocks 867

14 for (int i = 1; 1 <= THREADS; i++) i
15 { =;
16 DepositRunnable d = new DepositRunnable(1
17 account, AMOUNT, REPETITIONS);
18 withdrawRunnable w = new WithdrawRunnable(

22 R, ANOUWT, REPEITIIONS),

20

21 Thread dt = new Thread(d);

22 Thread wt = new Thread(w);

23

24 dt.start();

25 wt.start(Q;

26 }

27

28 3

¢ch20/synch/BankAccount.java

LN VR WN =

10

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Reentrantlock;

A bank account has a balance that can be changed by
deposits and withdrawals.

public class BankAccount

{
Vess

Constructs a bank account with a zero balance.

%/
public BankAccount(

{
balance = 0;
balanceChangelock = new ReentrantLock();
sufficientFundsCondition = balanceChangelock.newCondition();
}
/e.n,&

Deposits money into the bank account.
@param amount the amount to deposit
public void deposit(double amount)
{
balanceChangelock.lock();
try
{

System.out.print("Depositing " + amount);

double newBalance = balance + amount; |
System.out.printin(", new balance is " + newBalance);
balance = newBalance;

sufficientFundsCondition.signalAl1Q);

868 CHAPTER 20 = Multithreading
36 finally
37 {
38 balanceChangelock.unTlock();
39 ¥
40 }
41
42 / EX
43 Withdraws money from the bank account.
44 @param amount the amount to withdraw
45 */
46 public void withdraw(double amount)
47 throws InterruptedException
48 {
49 balanceChangelLock.lock();
50 try
51 {
52 while (balance < amount)
53 sufficientFundsCondition.await();
54 System.out.print("wWithdrawing " + amount);
55 double newBalance = balance - amount;
56 System.out.printin(", new balance is " + newBalance);
57 — balance = newBalance;
58 ¥
59 finally
60 {
61 balanceChangeLock.unlock();
62 }
63 }
64
6 5 /*'k
66 Gets the current balance of the bank account.
67 @return the current balance
68 */
69 pubTlic double getBalance()
70 {
71 return balance;
72 }
73
74 private double balance;
75 private Lock balanceChangelock;
76 private Condition sufficientFundsCondition;
77 %}
Output

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance 1is 200.0

Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

20.5 = Avoiding Deadlocks 869

SELF CHECK

9. What is the essential difference between calling s1eep and await?

10. Why is the sufficientFundsCondition object a field of the BankAccount class and
not a local variable of the withdraw and deposit methods?

CommON ERROR 20.1

Calling awa1it Without Calling signalAll

It is intuitively clear when to call await. If a thread finds out that it can’t do its job, it has to
wait. But once a thread has called await, it temporarily gives up all hope and doesn’t try
again until some other thread calls signalA11 on the condition object for which the thread is
waiting. In the telephone booth analogy, if the service technician who empties the coin reser-
voir doesn’t notify the waiting people, they’ll wait forever.

A common error is to have threads call await without matching calls to signalAll by
other threads. Whenever you call await, ask yourself which call to signalA11 will signal your
waiting thread.

CoMMON ERROR 20.2

Calling signalA11 Without Locking the Object

The thread that calls signala11l must own the lock that belongs to the condition object on
which signalall is called. Otherwise, an I11egalMonitorStateException is thrown.

In the telephone booth analogy, the service technician must shout the signal while inside
the telephone booth after emptying the coin reservoir.

In practice, this should not be a problem. Remember that signalA11 is called by a thread
that has just changed the state of some shared data in a way that may benefit waiting threads.
Thar change should be protected by a lock in any case. As long as you use a lock to protect
all access to shared data, and you are in the habit of calling signalA11 after every beneficial
change, you won’t run into problems. But if you use signalA11 in a haphazard way, you may
encounter the I1TegalMonitorStateException.

870

CHAPTER 20 = Multithreading

ADVANCED ToprIiC 20.2

Object Locks and Synchronized Methods

The Lock and Condition classes were added in Java version 5.0. They overcome limitations of
the thread synchronization mechanism in earlier Java versions. In this note, we discuss that
classic mechanism.

Every Java object has one built-in lock and one built-in condition variable. The lock
works in the same way as a ReentrantLock object. However, to acquire the lock, you call a
synchronized method.

You simply tag all methods that contain thread-sensitive code (such as the deposit and
withdraw methods of the BankAccount class) with the synchronized keyword.

public class BankAccount

{
public synchronized void deposit(double amount)
{

System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.printIn(", new balance is

- balance = newBalance;

}

+ newBalance);

public synchronized void withdraw(double amount)

{
}

}

When a thread calls a synchronized method on a BankAccount object, it owns the lock of that
object until it returns from the method and thereby unlocks the object. When an object is
locked by one thread, no other thread can enter a synchronized method for that object.
When another thread makes a call to a synchronized method for that object, the other thread
is automatically deactivated, and it needs to wait until the first thread has unlocked the object
again.

In other words, the synchronized keyword automatically implements the Tock/try/
finally/unlock idiom for the built-in lock.

The object lock has a single condition variable that you manipulate with the wait,
notifyAll, and notify methods of the Object class. If you call x.wait(), the current thread is
added to the set of threads that is waiting for the condition of the object x. Most commonly,
you will call wait(), which makes the current thread wait on this. For example,

public synchronized void withdraw(double amount)

throws InterruptedException

while (balance < amount)
wait();

¥
The call notifyA11¢) unblocks all threads that are waiting for this:

20.6 = Case Study: Algorithm Animation GRrapHics TRack 871

public synchronized void deposit(double amount)

{

notifyAl10;
3
This classic mechanism is undeniably simpler than using explicit locks and condition vari-
ables. However, there are limitations. Each object lock has one condition variable, and you
can’t test whether another thread holds the lock. If these limitations are not a problem, by all
means, go ahead and use the synchronized keyword. If you need more control over threads,
the Lock and Condi tion interfaces give you additional flexibility.

ADVANCED Toric 20.3

20.6

The java Memory Model

In a computer with multiple CPUs, you have to be particularly careful when multiple
threads access shared data. Since modern processors are quite a bit faster than RAM memory,
each CPU has its own memory cache that stores copies of frequently used memory locations.
If a thread changes shared data, another thread may not see the change until both processor
caches are synchronized. The same effect can happen even on a computer with a single
CPU—occasionally, memory values are cached in CPU registers.

The Java language specification contains a set of rules, called the memory model, that
describes under which circumstances the virtual machine must ensure that changes to shared
data are visible in other threads. One of the rules states the following:

© If a thread changes shared data and then releases a lock, and another thread acquires the
same lock and reads the same data, then it is guaranteed to see the changed data.

However, if the first thread does not release a lock, then the virtual machine is not required
to write cached data back to memory. Similarly, if the second thread does not acquire the
lock, the virtual machine is not required to refresh its cache from memory.

Thus, you should always use locks or synchronized methods when you access data that is
shared among multiple threads, even if you are not concerned about race conditions.

Case Study: Algorithm Animation

One popular use for thread programming is animation. A program that displays an
animation shows different objects moving or changing in some way as time
progresses. This is often achieved by launching one or more threads that compute
how parts of the animation change.

You can use the Swing Timer class for simple animations without having to do
any thread programming—see Exercise P20.12 for an example. However, more
advanced animations are best implemented with threads.

