CS 483
Homework 2
due Wednesday, June 17

1. The following is a nonsense recursive algorithm:
```
skrunk(array a, int high)
{
        if (high > 0)
        {
            val = a[high/2]
            for (i = 0; i < a.length; i++)
            if (a[i] == val)
                print("whoopie!")
            else
                print("oops!")
            skrunk(a, high/2)
        }
}
```

The initial call is to skrunk(a, a.length - 1)

Choose a representative operation and state your choice. Compute $c(n)$ (the number of times the operation is performed for an array a with $n=a . l e n g t h) ~ a n d ~ g i v e ~ i t s ~ b i g ~ t h e t a ~ c l a s s . ~$ (You do not have to give any proof.)
2. Skip problem \#2.
3. Dijkstra's algorithm for shortest distances from vertex v_{0} is being performed on the weighted graph at the right. At the present moment the set S of completed vertices is $S=\left\{v_{0}, v_{1}\right\}$ and the distances computed are:
$\mathrm{v}_{0} \cdot \mathrm{~d}=0, \mathrm{v}_{1} \cdot \mathrm{~d}=2, \mathrm{v}_{2} \cdot \mathrm{~d}=7$,
$v_{3} \cdot d=8, v_{4} \cdot d=6, v_{5} \cdot d=\infty$,
$\mathrm{v}_{6} \cdot \mathrm{~d}=\infty, \mathrm{v}_{7} . \mathrm{d}=\infty$.

Perform the next step (i.e. the next pass through the main loop)
in Dijkstra's algorithm. Show what the set S is after this step and show what distances v.d have been changed and what their new values are.

