
Notes on Generating Control Structures for Paxi

David Nordstrom
CS 440

George Mason University

Welcome to Program 4! These notes cover only the control structures
part of the assignment. This involves the boolean expressions,
conditionals, and loops.

Boolean stuff

Generating code to leave a boolean on the stack happens in production
42:

42. <boolean_atom> ->(<arithmetic_expression>
 <relational_operator>
 <arithmetic_expression>)
 | (<boolean_expression>)

Generated code from the first RHS should look like (* and ** are
branching targets):

POP // move values from stack to scratch area
POP
SUB // since branch instructions can only compare to 0
branch to * // conditional branch
PUSHI 0
B ** // unconditional branch

* PUSHI 1
**

This code will leave the difference of the two values (from
<arithmetic_expression>) being compared in a scratch area and then
push either 0 or 1 on the stack depending on what the relational
operator is. The relational operator is passed up the parse tree
from production 43 (<relational_operator>). It remains to determine
what the (code store) addresses for * and ** are.

When generating code you keep a (global) variable with the index of
the next available location in the code store. (This variable is
used in your "emit()" function.) Let's call this variable int
current_code. The conditional branch must be to a location three
instructions ahead of current_code, hence to current_code + 9. The
unconditional branch must be to a location two instructions ahead of

- 1 -

current_code: current_code + 6.

The other productions for boolean operations (productions 39 through
41) are handled in a manner similar to the way we handled arithmetic
expressions (but easier).

No code need be generated from the second RHS of production 42 since
the desired boolean value is already on the stack.

If and if ... else

Now we are looking at productions 19 and 20:

19. <conditional> -> if <boolean_expression> <statement_list>
 <else_clause> endif

20. <else_clause> -> else <statement_list> | EMPTY

Code generated from production 19 should look like (the &s represent
places in your code, not target addresses):

POPD // boolean to scratch location
& // save address for backpatching

BEQ * // branch if boolean was false
// code generated from <statement_list> appears here

&& // save address for backpatching
B ** // unconditional branch over <else_clause>

&&& // time to backpatch BEQ
*

// code generated from <else_clause> appears here
&&&& // time to backpatch B
**

We first notice that we need actions embedded in several places in
the RHS: before <statement_list>, between <statement_list> and
<else_clause> and after <else_clause>. Remember that actions occupy
a position in tne $n numbering!

The generated code will test the boolean popped from the stack for
false with the BEQ (jumps over the "true" case) then after the
statement list does an unconditional branch (B) over the else clause.

There are two problems here. The first is determining the target
addresses (* and **) for the branching instructions. At the time we
would like to generate the BEQ we can't know the target address since
it depends on the code from <statement_list> which hasn't been
generated yet. Similarly we don't know the target for B since it

- 2 -

depends on the code generated from <else_clause>.

We could resolve this problem if we had a computer with a clock speed
faster than the speed of light so that we could see into the future.
Failing this we must backpatch.

Backpatching

The idea is that we don't generate the branching instructions from
the actions suggested by the pseudo-code shown above. Instead we
generate a dummy instruction to hold a place open and fill in the
instruction from a later action where we know the target address.
(Hint: for a dummy address generate something you will recognize in
your code like 999, 999, 999 -- this may help in your debugging.)
You will know the target address for the BEQ at &&& and you will know
the target address for B at &&&&. At these points in your program
you will overwrite the dummy instructions with the branching
instructions with their proper target addresses.

The locations where you left the dummy instructions must be saved
somewhere so that when you backpatch you know the location to write
to. We do this at & and &&.

This presents the second problem. Our first thought is to use global
variables in the parser file to store the locations of the dummy
instructions. This won't work because the conditionals can be
nested. These locations must be stored on a stack. Fortunately
there is a stack provided for us: we can piggyback on the parse
stack!

Recall that the symbols from the CFG are stored on a parse stack in
LR parsing. In bison pointers to actions are also stored on the
parse stack (hence occupying positions in the $n numbering) and the
yylval values attached to the symbols are interleaved with them on
the stack. Even if there was nothing assigned to a grammar symbol
the space for "$n" is still allocated and sitting unused on the parse
stack. We can use this space as we like -- in this case to store
backpatching addresses. To store the address for (for example) the
BEQ you must store the value of current_counter just before
generating the dummy instruction. Store the value in $<intval>n
where n indicates a symbol (or action) which we are not using and
which precedes the action we are in. Slick, huh?

You must (for readability of your program) write a backpatch(int,
int, int, int) function which puts an instruction at a location in
the code store. Call this function when backpatching -- do not just
write integers for assignments into your actions.

- 3 -

Very important: Before you generate code for the conditionals make
sure that you thoroughly understand this discussion and know what you
are doing. Don't just formalize the pseudo-code above.

Else

There is no need to generate code from production 20 (<else_clause>).

Loops

You will handle the loops (productions 22 and 23) in a similar
manner. You can figure these out.

- 4 -

