IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995 265

the points we raise, and it may well be that the information we seek
has become a casualty of the pressure on space in academic journals.
Nevertheless, it is vitally important to precisely specify the mapping
from a language-independent set of metrics to specific programming
languages and sets of observations. Such precision is particularly
important since the source code used in published work is generally
not publicly available. The usefulness of the proposed metrics (and
others) will be limited until their application to specific languages
is clearly specified. Failure to resolve such issues in the near future
may impede the development and validation of effective OO software
metrics. We believe that this is as important as the establishment of
a sound theoretical basis for the metrics.

REFERENCES

[1] E. V. Berard, “Object coupling & object cohesion,” in Essays on Object-
Oriented Software Engineering. Englewood Cliffs, NJ: Prentice-Hall,
1993.

[2] S. R. Chidamber and C. F. Kemerer, “Toward a metric suite for object
oriented design,” in Proc. OOPLSA '91, ACM, 1991.

[3]1 S.R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Software Eng., vol. 20, pp. 476493, 1994.

[4] M. H. Halstead, Elements of Software Science. Amsterdam, The
Netherlands: Elsevier North-Holland, 1977.

[51 J.-L. Lassez et al., “A critical examination of software science,” J. Syst.
Software, vol. 2, no. 2, pp. 105-112, 1981.

[6] W.Liand S. Henry, “Object-oriented metrics that predict maintainabil-
ity,” J. Syst. Software, vol. 23, pp. 111-122, 1993.

{71 V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software science
revisited: A critical analysis of the theory and its empirical support,”
IEEE Trans. Software Eng., vol. 9, pp. 155-165, 1983.

Authors’ Reply?

Shyam Chidamber and Chris F. Kemerer

The main thesis of the Churcher and Shepperd comment is that
it is important that the software metrics be clearly defined in order
that other researchers can replicate the results, a point that we, of
course, completely agree with. Therefore, we view this response to
their comment not as a rebuttal, but merely as an opportunity to
provide additional detail and insight to our thinking about how we
developed the metrics for the readership of the IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING who may have interest in object-oriented
metrics.

Churcher and Shepperd focus on the calculation of the number of
methods per class, and suggest approximately half a dozen binary
questions about what methods should either be included or not in the
count. They then note that a potentially large number of different
possible answers can be generated by combining all the possible
combinations of answers to these questions

2Manuscript received July 1994. Recommended by S. H. Zweben.

The authors are with the Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, MA 02142 USA.

IEEE Log Number 9409035.

In our view, the entire list of questions can be answered by
reference to a simple principle that methods which required additional
design effort and are defined in the class should be counted, and
those that do not should not. Therefore, we would count all the
distinct methods and operators in the class even when some share
a name identifier or even when they are not interface methods,
and we would count these prior to preprocessing, consistent with
the role of WMC as a design metric. We would not count indirect
methods available through ancestors, friends, (a C++ construct), or
any inherited methods, as these are defined outside the class. (See the
portion of our definition of WMC on p. 482 of the original article,
as follows: “...Consider a Class C; with methods M, ---, M that
are defined in the class. Let...””) We have provided other metrics in
the suite which directly relate to notions of complexity arising from
inheritance.

We find this principle to be relatively straightforward in its applica-
tion and consistent with designers’ intuitions about the complexity of
a class. Additional evidence for this may be found in the fact that our
value for the Churcher and Shepperd example is 37 methods, which
is the same value that they determine before they begin discussing
some hypothetical options.

We are encouraged that Churcher and Shepperd are exploring
the use of some of our metrics in their own research, and greatly
appreciate their effort in considering alternative formulations for
object-oriented metrics. In fact, we would like to conclude by
emphasizing a point made in our original article: while we propose a
particular suite of six metrics, there is no reason to believe that these
six will ultimately be found to be comprehensive. Further work by
ourselves or others may result in additions, changes, or even possible
deletions from this suite, particularly as at the current time the suite
has been subject to only limited empirical observation. We welcome
questions and comments from the software engineering community
that will enable the further explication and refinement of our metrics
suite.

Correction to “A Practical Approach
to Programming with Assertions”

D. S. Rosenblum

In the above paper,' a printing error resulted in the incorrect
publishing of line 7 of Fig. 3 on p. 22.
The incorrect line read:

&& all (int i=0; i < in size-1; i=i+1) S[i] <= S[i+1] // S is ordered.
The correct line should read:
&& all (int i=0; i < in size-1; i=i+1) S[i} < S[i+1] // S is ordered.

Manuscript received February 6, 1995.

The author is with AT&T Bell Laboratories, Murray Hill, NJ 07974 USA
(e-mail: dsr@research.att.com).

IEEE Log Number 9410122,

'D. S. Rosenblum, IEEE Trans. Software Eng., vol. 21, pp. 19-31, Jan.
1995.

0098-5589/95%04.00 © 1995 IEEE





