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Abstract
Cross-domain recommendation (CDR) has emerged as a
promising solution to alleviating the cold-start problem by
leveraging information from an auxiliary source domain
to generate recommendations in a target domain. Most
CDR techniques fall into a category known as bridge-
based methods, but many of them fail to account for the
structure and rating behavior of target users from the source
domain into the recommendation process. Therefore, we
present a novel framework called Vietoris-Rips Complex for
Cross-Domain Recommendation (VRCDR), which utilizes
the Vietoris-Rips Complex (a technique from computational
geometry) to understand the underlying structure in user
behavior from the source domain, and includes the learned
information into recommendations in the target domain to
make the recommendations more personalized to users’ niche
preferences. Extensive experiments on large, real-world
datasets demonstrate that VRCDR consistently improves
recommendations compared to state-of-the-art bridge-based
CDR methods.

1 Introduction

Considering the exponential surge in online data, find-
ing desired information for users can become nearly
insurmountable[19, 2]. E-commerce websites, known for
collecting vast amounts of data, rely on recommender
systems to help users discover information that aligns
with their individual preferences [21]. Researchers have
spent significant effort in improving the state of rec-
ommender systems over the past few years [1]. How-
ever, most of the existing methods struggle to make
relevant recommendations to new users—the so-called
“cold-start problem” [10]—and fail to leverage available
information outside the domain of interest to improve
the overall accuracy of recommendations.

Recently, cross-domain recommender (CDR) sys-
tems have emerged as a promising solution to alleviate
the cold-start problem [22, 25]. They transfer infor-
mation from a dense source domain to a sparse target
domain, with a goal of providing more relevant recom-
mendations in the target domain. The state-of-the-art
CDR methods fall into a category known as bridge-based
methods [9, 23, 24, 27], and the Embedding and Map-
ping Approach for CDR (EMCDR) [11] is known to be
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one of the most effective bridge-based methods for cross-
domain recommendation. EMCDR uses an embedding-
based mapping function to create new representations
for users in the target domain, using information from
the source domain [11]. Given the success of this tech-
nique, many bridge-based methods have been proposed
over the past few years [27, 9, 28, 24, 23].

While these methods are encouraging, there are
three major drawbacks that can affect their perfor-
mance. First, existing methods fail to utilize users’ in-
teraction history from the source domain effectively to
make more personalized recommendations [26, 23, 11].
Existing methods can capture the major preferences of
users, but they often overlook niche preferences. This
is because they do not directly leverage information
about users’ interactions in the source domain during
the mapping process. In addition, they learn one bridge
function shared by all users, which lacks the ability
to capture distinct personal preferences of users, espe-
cially for those niche users. Second, existing bridge-
based methods cannot work for extreme cold-start users
(i.e., users who have no interactions in the target do-
main), because current methods minimize the distance
between the ground truth target user embedding and
the mapped embedding. However, these representations
are inaccurate for users without target domain interac-
tions [9, 11, 23]. Finally, existing methods fail to use
item information from the source domain when map-
ping source users to the target domain [22, 25]. The
content of source domain items that are interacted by
the target users can help improve personalized recom-
mendations.

Addressing these challenges, we present a novel
framework called Vietoris-Rips Complex for Cross-
Domain Recommendation, called VRCDR. The
framework first learns user and item representations
separately in the source and target domains, using a
neural network model that incorporates item informa-
tion. It then creates a characteristic vector for each user
using the Vietoris-Rips complex (Rips Complex)[6], a
technique from computational geometry, to understand
the geometry behind each user’s rating patterns, and
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uses the vector as input to the bridge mapping function.
Finally, it adopts a task-oriented loss, which updates the
weights of the non-linear mapping function based on rat-
ing prediction, rather than minimizing the distance be-
tween embeddings. Our implementation is available at
https://github.com/ajaykv1/VRCDR. In sum, the con-
tributions in this paper are as follows:

• We present a novel framework named VRCDR
that leverages unique user preferences from a source
domain to provide personalized recommendations
in a target domain.

• We present a novel area-based triangulation
method called ATE, which uses the Rips Complex
to create characteristic vectors for users, making
our study the first to incorporate the Rips Com-
plex for CDR.

• Through extensive experimentation on 4 CDR
tasks, applied to real-world datasets, we demon-
strate that VRCDR significantly outperforms exist-
ing state-of-the-art bridge-based methods. Specif-
ically, our framework performs significantly and
consistently better over a diverse range of cold-start
situations, where cold-start user percentages are set
to 20%, 50%, and 70%.

2 Preliminaries

In this section, we first introduce the CDR problem set-
ting and notation, then go over the neural network ar-
chitecture, which we use as the base model for VRCDR.

2.1 Notation In cross-domain recommendation, we
have a source and a target domain. Each domain has
a set of users U = {u1, u2, ..., um}, a set of items
I = {i1, i2, ..., in}, and a rating matrix R. Given
that there exist interactions between users and items
in each domain, each domain can be represented as
a collaborative filtering (CF) problem [7]. Using this
information, we can build a rating matrix for the source
domain, Rs ∈ {1, 2, 3, 4, 5}|Us|×|Is|, and a rating matrix
for the target domain, Rt ∈ {1, 2, 3, 4, 5}|Ut|×|It|.

For the rating prediction task, the ratings that users
give to items can be derived from:

(2.1) r̂ui = f(u, i|Θ),

where f is the interaction function [10], r̂ui is the
predicted rating, and Θ are model parameters. For
neural network based collaborative filtering approaches,
the function f is parameterized by a neural network [7],

(2.2) f(xui|P,Q, θ) = ϕo(ϕL(. . . (ϕ1(xui)) . . . )),

where P ∈ Rm×d and Q ∈ Rn×d are embedding
matrices for users and items, respectively, xui is the
concatenated representation of user u’s and item i’s
embeddings, and θ represents the weights and biases..

2.2 Base Model In this paper, we adopt a Multi-
Layer Perceptron (MLP) network as the base model
to learn user and item embeddings from the source
and target domains. In addition to P and Q, which
are user and item embedding matrices, we also use C
and D, which are category and description embedding
matrices that are associated with each item. Each item
is associated with a category and a description, and we
believe that leveraging content information can improve
the overall learned representations for users and items
in the source and target domains. In this paper, we
adopt a pre-trained transformer known as DistilBERT
[16] to retrieve embeddings for the text information.
DistilBERT is a distilled version of BERT, which is 60%
faster and 40% lighter than the original BERT model,
and can achieve similar performances as BERT [16].

The base MLP network is separately trained on the
source and target domain data. For each domain, the
user, item, category, and description embeddings are
concatenated together and passed onto multiple layers,
(2.3)
f(xuicd|P,Q,C,D, θ) = ϕo(ϕL(. . . (ϕ1(xuicd)) . . . )),

where C ∈ Rn×d and D ∈ Rn×d are the embedding
matrices for content and descriptions (retrieved from
DistilBERT), and xuicd is the concatenated representa-
tion of user u’s embedding, item i’s embeddings, and
the content and description embeddings for item i. The
source and target domain are pre-trained individually
using this base model, and the user and item embed-
dings from both domains are retrieved from the respec-
tive pre-trained models.

3 Architecture Overview for VRCDR

In this section, we present a high-level overview of the
architecture for VRCDR. There are three main com-
ponents: (i) The pre-training phase; (ii) The employ-
ment of a non-linear mapping function; (iii) The use of
a task-oriented loss function. Figure 1 shows the overall
architecture of the presented framework.

3.1 Pre-training Phase In Section 2.2, we intro-
duced an MLP as our base model. Leveraging this base
model, we pre-trained two distinct CF models, one for
the source domain data (Ms) and one for the target do-
main data (Mt). The main objective of this pre-training
phase is to derive robust embeddings for users and items
across these domains. From Ms, we extract Us and
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Figure 1: VRCDR has three components. First, user and item embeddings are inferred from the base source and
target models. Next, the target user’s interacted items and content information from the source domain are passed
into ATE (Algorithm 1) to retrieve the characteristic vectors. Then, the outputs, along with the target user’s
corresponding source domain embedding (us), are fed into the mapping function. Finally, the transformed user
embedding is passed to Mt. Along with this, the original target item embedding (vt) and its content information
(dt and ct) are provided for rating prediction, which is used to update weights of the mapping function.

Vs representing the user and item embeddings of the
source domain. Similarly, from Mt, we obtain Ut and
Vt. These embeddings can be simply extracted from the
embedding layers of both base models (Ms and Mt).

In order to understand the unique preferences of
target domain users, we believe it is important to lever-
age their rating information from the source domain.
Therefore, for each target user u ∈ Ut, we gather
the list of their interacted items from the source do-
main. This list is denoted as Xu = {Is1, Is2, . . . , Isn},
where Is

n represents the nth item interacted with by
user u in the source domain. Along with the interacted
items, we retrieve the category and description embed-
dings that are associated with each item from Xu. The
category list is denoted as Ci = {Cs

1, Cs
2, . . . , Cs

n}.
Similarly, the description list is represented as Di =
{Ds

1, Ds
2, . . . , Ds

n}. Here, Cs
n and Ds

n correspond to
the category and description embeddings of the nth item
interacted with by user u from the source domain.

3.2 Nonlinear MLP mapping function For each
list gathered during the pre-training phase (Xu, Ci,
Di), we construct a characteristic vector by employing
the Rips Complex. The characteristic vectors preserve
geometrical and structural information from the embed-
dings within the lists, which can provide additional in-
formation about the target user’s rating behavior in the
source domain. Therefore, by employing the Rips Com-
plex, we obtain three distinct characteristic vectors that
correspond to each list: RX , RC , and RD. The details
of how this is done are provided later in Section 4, where
we introduce a novel algorithm called ATE (Algorithm

1). Once the characteristic vectors for each list are com-
puted, we employ a non-linear mapping function to out-
put new embeddings for the user in the target domain.
We adopt the MLP mapping function from EMCDR,
due to its effectiveness in modeling the non-linear rela-
tionships between the input data [11]. In EMCDR, the
user embedding from the source domain is used as the
only input to the mapping function. We believe that
solely using the user embedding as the input is not ef-
fective. We also believe that by providing additional
information as input to the MLP network, the outputs
can be more accurate representations for users in the
target domain. Therefore, the modified MLP mapping
function can be defined as:

(3.4) ût = fmlp([u,RX ,RC ,RD]; θ),

where u ∈ Us represents the user embedding from
the source domain for the corresponding target user,
RX , RC and RD represents the characteristic vectors
obtained from using the Rips Complex on Xu, Ci,
and Di, ût represents the transformed target user
embedding, and θ represents the model parameters. We
can use ût for the rating prediction task.

3.3 Task oriented Loss Function For our frame-
work, we adopt a task oriented loss function for opti-
mizing the weights of the the mapping function. Many
existing works utilize the MSE loss to minimize distance
between transformed user embeddings and ground truth
target user embeddings. The MSE loss function is de-
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fined as follows [11]:

(3.5) L =
∑

ut∈OU

||ût − ut||2,

where ût is the transformed target user embedding, ut

is the ground truth target user embedding, and OU
represents the overlapping users between the source
and target domains. The ground truth embeddings
for extreme cold-start users in the target domain will
not be accurate, since users will have no interactions.
To address this issue, we adopt a task oriented loss
function, which has been adopted recently in CDR [28]:

(3.6) L =
1

N

∑
rij∈ROU

t

[rij − (ûi · vj)]2

where rij represents the ground truth rating for which
user i gave item j, ûi represents the transformed
target user embedding from the mapping function, vj
represents the ground truth target item from Mt, where
vj ∈ Vt, and ROU

t represents the rating matrix for
user and item interactions in the target domain, where
the users overlap between both domains. This loss
function relies only on rating information as ground
truth information, which alleviates the shortcomings
faced by unstable user embeddings.

4 The Rips Complex for VRCDR

In order to understand more about a target user’s
preferences, we analyze their rating behavior from the
source domain, and include the learned information
into the recommendation process as a characteristic
vector. To do this, we gather the target user’s interacted
items in the source domain, and analyze the geometrical
relationship between them using the Rips Complex.
We argue that the geometrical relationship between
items can provide additional information about how
items relate to each other in higher dimensional spaces,
which can help uncover the unique preferences for each
target user. Therefore, we present a novel algorithm
called ATE (Algorithm 1) that uses the Rips Complex
to compute the characteristic vectors. ATE takes in
a list of embeddings as input, and outputs a single
characteristic vector that captures the geometrical and
structural information among them. In this section, we
first introduce the concept and notations for the Rips
Complex. Then, we describe our novel approach, ATE.

4.1 The Rips Complex A key tenet of computa-
tional geometry is that data has shape and shape has
meaning, and the Rips Complex is a tool used to gener-
ate and study the shape of data [6]. Now, we introduce

the notations and concepts for the Rips Complex. Geo-
metrically, a k-simplex is interpreted as a generalization
of triangles, shown in Figure 2. For any k-simplex, its
boundary is the set of (k − 1)-simplices that encompass
it. For instance, the boundary of a 1-simplex are its
two 0-simplices, the boundary of a 2-simplex are the
bordering three 1-simplices, etc. We often denote the
boundary of a simplex [σ] by ∂[σ]. A k-simplex is open,
denoted (s), if it does not contain its boundary (i.e.
[σ]− ∂[σ]) and closed if the boundary is contained.

Figure 2: Visualization of simplices up to 3 dimensions.

Definition 4.1. A simplicial complex K is a finite set
of open simplices in some Rn such that:

(1) if (s) ∈ K then all open faces of [s] ∈ K;

(2) if (s1) ∩ (s2) ̸= ∅ then (s1) = (s2).

A simplicial complex defines a set of rules that allow
us to combine simplices of various dimensions in a way
that is geometrically intuitive. To reference the set of
n dimensional simplicies of a complex K we define the
n-skeleton, denoted by skeln(K), to be the set of all of
the simplices in K of dimension n. In practice we tend
to only compute up to the 2-skeleton.

Definition 4.2. Given a set of points X =
{x1, x2, . . . , xk} ⊂ Rn and an ϵ > 0, an k-simplex
σ = [xi1 , xi2 , . . . xik ] is in the Vietoris-Rips Complex
Rips ϵ(X ) if and only if:

Bϵ(xij ) ∩ Bϵ(xij′ ) ̸= ∅

where Bϵ(xij ) is an open ball at xij .

Although there are a plethora of methods that can be
used to create a simplicial complex from a point cloud,
we use the Rips Complex due to the existence of fast
implementations relative to other methods [30].

Given that the Rips Complex can find underlying
shapes from embedded data, we adopt this method to
understand the niche preferences of target domain users.
To give an example, lets say a target user interacted
with a few items from the source domain. Figure 3
shows the Rips Complex for the target user’s interacted
source domain items. We can see that there are two 2-
simplices created. The first 2-simplex is formed around
the items Twilight, Avatar, and Inception, while the
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Figure 3: Example Rips Complex for user’s interactions

second is formed around Jaws, Rocky, and Titanic.
Using this triangulation, we can derive the preferences
for the user based on the items that form each 2-simplex.
The first 2-simplex contains items from the fantasy
genre, while the second contains items from the realistic
fiction genre. This structure reveals that the two genres
are closely linked with the target user’s preferences. In
general, we are computing the Rips Complex to possibly
find these implicit (niche) preferences within the data.

4.2 Characteristic Vectors using the Rips Com-
plex Existing CDR methods fail to leverage the niche
preferences of users effectively, primarily because they
don’t analyze the relationship between items from the
source domain that target users have interacted with
[27, 9, 28, 23]. We aim to fill that gap by applying the
Rips Complex [6] to learn the shape and structure of
item embeddings that target users have interacted with
from the source domain.

To begin, let ϵ be some fixed edge-length. We then
compute the Rips Complex over a list of embeddings L
which we denote:

(4.7) K = Rips ϵ(L)

As stated before, our implementation of the Rips Com-
plex will compute the structure of the simplicial com-
plex up to its 2-skeleton. Once the 2-simplices are
formed, we need a way to accurately capture the struc-
tural information to effectively understand the user pref-
erences. Therefore, we develop a method that cre-
ates a weight coefficient for each two-simplex, which
emphasizes the niche preferences for a particular user.
We call this novel algorithmic approach as Area-based
Triangulated Embedding (ATE) (see Algorithm 1).
The algorithm works by first computing the area of a
given 2-simplex from K using Heron’s formula [20]:

(4.8) Area =
√
S(S −A)(S −B)(S − C)

where S is the semi-perimeter of the 2-simplex and A,B,
and C are the length of the three edges from ∂σ. The
area is then used to scale the averaged embeddings,

which is expressed as:

(4.9) AE =
1

|∂σ|
∑
v∈∂σ

v

We iterate this method with every 2-simplex from
the 2-skeleton until we are left with a set of new
embeddings denoted E. The last step is to then
average the embeddings of E with all the other unused
embeddings fromK to generate the characteristic vector
RL. For each list gathered during the pre-training

Algorithm 1 Area-based Triangulated Embedding

Require: L
Ensure: L ̸= ∅
1: K = Rips ϵ(L)
2: E = [ ]
3: for σ ∈ skel2(K) do
4: wσ = Area(σ)
5: µ = wσ ·AE(∂σ)
6: E.append(µ)
7: end for
8: RL = AE(E,K− skel2(K))

phase (Xu, Ci, Di), we compute their characteristic
vectors (RX , RC , RD) using ATE. This allow us to
incorporate the user’s individual preferences directly
into the recommendation process. In the case of cold-
start and warm-start users, the characteristic vectors
provide additional information about their preferences
from other domains. This can potentially lead to more
personalized recommendations when they don’t have
much rating information in the target domain.

5 Experiments

We conducted extensive experiments to evaluate the
VRCDR framework, and aim to answer the following
research questions: RQ1 How does VRCDR perform
compared to state-of-the-art baselines? RQ2 How
does VRCDR perform in extreme cold-start situations?
RQ3 What impact do hyperparameters from the Rips
Complex have on recommendation performance? RQ4
How effective is the Rips Complex in VRCDR?

5.1 Experimental Setup

5.1.1 Dataset For experimentation, we adopt
the widely used Amazon Review 5-scores dataset [12],
where each user has at least 5 ratings. We chose five cat-
egories to represent domains in our experimental study.
The domains we chose are movies and tv (Movie),
cds and vinyl (Music), Electronics, Video Games
(Games), and Grocery and Gourmet Food (Food).
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CDR Tasks
Domain Combination Item # User # Rating #

Source Target Source Target Source Target Overlap Source Target

Task 1 Movie Electronics 50052 63001 123960 192403 15500 1860253 1785863

Task 2 Movie Music 50052 64443 123960 75258 18031 1860253 1283356

Task 3 Movie Food 50052 8713 123960 14681 3330 1860253 152369

Task 4 Electronics Games 63001 10672 192403 24303 7419 1785863 279769

Table 1: Statistics for domains from the Amazon Review Dataset, along with cross-domain recommendation tasks.

From the selected domains, we define four CDR
tasks: Task 1: Movie→Electronics, Task 2:
Movie→Music, Task 3: Movie→Food, and Task
4: Electronics→Games. Each task has more rating
information in the source domain compared to the
target domain, which mimics real life applications for
CDR. Table 1 shows details for the dataset and tasks.

5.1.2 Baseline Models Given that VRCDR falls
into the category of bridge-based methods for CDR,
we choose mainly bridge-based CDR methods for the
baseline approaches. We employ Matrix Factorization
[10] (MF) and Generalized MF (GMF) [17] as the base
embedding models for the CDR baselines to capture the
linear and non-linear performances. As a result, the
baselines chosen for experimentation are as follows:

• TGT [10]: A naive Matrix Factorization model,
which is trained solely on the target domain data.

• CMF [13]: A CDR model which extends matrix
factorization by factorizing rating matrices for mul-
tiple domains simultaneously while maintaining a
shared global user embedding.

• EMCDR [11]: A mapping based approach for
cross-domain recommendation that uses a MLP
network as the general bridge function.

• PTUPCDR [28]: A personalized bridge-based
approach for cross-domain recommendation that
uses a meta-network and a linear mapping function
to create personalized bridges for users.

5.1.3 Evaluation Metrics Given that the Amazon
Review dataset [12] contains numerical ratings, we use
Root Mean Squared error and Mean Absolute Error as
the evaluation metrics for the rating prediction task,
which has been used widely for CDR evaluation [11, 28].

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, MAE =
1

N

N∑
i=1

|yi − ŷi|

(5.10)

5.1.4 Implementation Details We implemented
our framework using Tensorflow, and used the open
source code provided by the authors of PTUPCDR [28]
for the baselines. We tuned the learning rate for the
Adam optimizer using 5-fold cross validation within
{0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005} for
all methods, and set the dropout rate to 0.2. The batch
size is set to 256 and the embedding dimension is set to
16 for all methods. Each model is trained for 50 epochs
or until the validation performance does not improve for
5 epochs. For PTUPCDR, the meta-network is a two-
layer neural network with 2×K hidden units, whereK is
the embedding dimension. For EMCDR and VRCDR,
the mapping function is a one-layer MLP with 2 × K
hidden units, where the hidden layer uses tanh, and the
output layer uses sigmoid as the activation functions.

To test the effectiveness of VRCDR, we remove all
ratings for a fraction of the overlapping users in the tar-
get domain randomly, and use them as test users for
extreme cold-start scenarios. The data points that were
not removed are used as the training set for the mapping
function. We followed the same dataset partitioning as
PTUPCDR in our experimental setup [28]. We set the
proportion of cold-start users (β) as 20%, 50%, 70%,
and report the average results over 10 runs.

5.2 Results

5.2.1 RQ1: Performance against baselines In
this section, we demonstrate the effectiveness of VR-
CDR on 4 CDR scenarios. The results are shown in
Table 2. Several findings can be derived from the ex-
perimental results. (i) Given that TGT is a naive single
domain recommendation model, the poor performance
is expected. All other CDR approaches outperformed
TGT, highlighting the effectiveness of transferring infor-
mation from other domains to improve recommendation
performance. (ii) We employed MF and GMF as the
base models for CMF, EMCDR, and PTUPCDR. CMF
is a linear-based approach, while both EMCDR and
PTUPCDR are deep learning-based approaches. This
allows us to capture the performance when using em-
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Task Metric TGT MF-CMF MF-EMCDR MF-PTUPCDR GMF-CMF GMF-EMCDR GMF-PTUPCDR VRCDR

1
MAE 4.405 2.2463 1.3633 1.2592 2.0597 1.4051 1.1211 0.9631*

RMSE 4.9675 2.8422 1.6905 1.6275 2.4825 1.6889 1.4771 1.1641*

2
MAE 4.5434 1.8199 2.0693 1.5133 1.6614 2.1542 1.4195 0.8788*

RMSE 5.3371 2.4213 2.4075 2.0242 2.0852 2.4471 1.9132 1.1281*

3
MAE 4.5287 2.5415 3.1997 2.5105 2.2363 3.0202 2.1399 0.9137*

RMSE 5.3501 3.2475 3.5654 3.2813 2.8045 3.3525 2.9305 1.1355*

4
MAE 4.5488 2.4314 3.1371 2.1838 2.5162 2.8393 1.8659 0.9025*

RMSE 5.4177 3.0427 3.4133 2.8388 3.0384 3.1207 2.4465 1.1429*

Table 2: Results for 4 CDR tasks against state-of-the-art baseline methods. Best results are in bold, and *
indicates a p-value less than 0.01 from two-tailed paired t-test between VRCDR and best baseline.

beddings from both linear and non-linear models. We
can see that the MF based CDR approaches performed
poorly compared to the GMF based approaches. This is
expected, as GMF is able to capture nonlinear interac-
tion patterns between users and items, which can lead
to more effective knowledge transfer. The results show
that leveraging deep learning and non-linearity can help
improve performance for CDR tasks. (iii) VRCDR per-
formed significantly better on both evaluation metrics
across all tasks. This demonstrates the effectiveness of
leveraging the structure of users’ interaction patterns
along with item content to improve CDR performance.

5.2.2 RQ2: Cold-start Performance In this sec-
tion, we evaluate the performance of VRCDR in extreme
cold-start scenarios. Figures 4 and 5 show results for
RMSE and MAE for VRCDR, respectively, compared
to the best baseline methods. We choose 20%, 50%,
and 70% to be the values for β, and analyze the ef-
fect of recommendation performance with respect to the
percent of extreme cold-start users. From the results,
we can see that VRCDR significantly outperforms the
baselines across all tasks and β values, except for task 2
when β is 20%. When β is 20% for task 2, we find that
the RMSE between the best baseline and VRCDR is not
significant, which implies similar performance between
the two methods. However, the MAE of the best base-
line is significantly better than the performance of VR-
CDR. This can be considered an outlier, given that all
other tasks performed significantly better with VRCDR
for every value of β. We show that VRCDR can outper-
form the best baselines in most situations, demonstrat-
ing that the it is effective for cold-start recommendation.

5.2.3 RQ3: Hyperparameter Analysis In this
section, we perform additional experiments to under-
stand how the hyperparameter values can impact per-
formance of VRCDR. The results are shown in Table 3.
The Rips Complex is tuned using the edge-length (α)
hyperparameter, which refers to the minimum length

CDR Tasks
Hyperparameters for Edge-Length

α = 0.95 α = 1.0 α = 1.5 α = 2.0 α = 2.5

Task 1 1.16701 1.15907 1.18561 1.16798 1.17047

Task 2 1.13025 1.12145 1.12541 1.13539 1.12725

Task 3 1.12216 1.11583 1.13364 1.12890 1.12299

Task 4 1.14267 1.14155 1.14822 1.14285 1.14670

Table 3: Hyperparameter analysis using RMSE

required between a pair of points in our point cloud to
generate an edge [4]. Following the definition of the
Rips Complex, lower values of the edge-length will iso-
late points as edges cannot be formed between them.
This results in a lack of structure of the embedded data.
Conversely, larger edge length values will trivially con-
nect any two points with an edge. The best choice for
edge-length is usually found somewhere between these
two extremes, where noise is not a factor, and the al-
gorithm can precisely understand the structure of the
embedded data [4]. We choose 5 different values for α,
which are 0.95, 1.0, 1.5, 2.0, and 2.5. We can see that
VRCDR performs best when using 1.0 for α. This re-
sult aligns with the intuition of Rips Complex [6], where
the edge length should not be too low or too high [4].

CDR Tasks
Variations of VRCDR

UA-CA UR-CA UA-CR VRCDR

Task 1 1.16931 1.20075 1.17241 1.16411

Task 2 1.16103 1.15152 1.12123 1.11407

Task 3 1.13804 1.14055 1.12955 1.12322

Task 4 1.18105 1.16623 1.14723 1.14448

Table 4: Ablation study for VRCDR using RMSE

5.2.4 RQ4: Ablation Study To examine the effec-
tiveness of the Rips Complex in VRCDR, we conduct an
ablation study to compare VRCDR with three variants
and report the results in table 4. The variations are:

• UA-CA: In this model, we remove the Rips Com-
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(a) β = 20% (b) β = 50% (c) β = 70%

Figure 4: RMSE comparison over 4 CDR tasks for extreme cold-start users. The * above the bar indicates a
p-value less than 0.01 from the two-tailed paired t-test between VRCDR and the best baseline.

(a) β = 20% (b) β = 50% (c) β = 70%

Figure 5: MAE comparison over 4 CDR tasks for extreme cold-start users. The * above the bar indicates a
p-value less than 0.01 from the two-tailed paired t-test between VRCDR and the best baseline.

plex for computations for the user and item charac-
teristic vectors. Instead, we replace the Rips Com-
plex with a simple average.

• UR-CA: In this model, we keep the Rips Complex
for the user characteristic vector, and use a simple
average for the content characteristic vectors.

• UA-CR: In this model, an average is used for the
user characteristic vector, and the Rips Complex is
used for the content characteristic vectors.

The results in Table 4 show the three variants to per-
form worse compared to VRCDR. In UA-CA, adopting
an average for both users and content information might
oversimplify the underlying structure and information
in the data. Although an average may be computa-
tionally more efficient, the user and item characteristics
might not be adequately captured, which can explain
the poor performance. UR-CA is able to capture the
structure of the user’s interaction patterns using the
Rips Complex, but fails to capture the structure of the
content information. It can be the case that the con-
tent information is complex to understand, and by using
an average, the information is not accurately captured,
leading to poor performance. In UA-CR, the content’s
structure is captured effectively, but an average on the
user side might lead to information loss, resulting in in-

ferior performance to VRCDR. Based on the results of
the ablation study, we conclude that the use of Rips
Complex is essential to achieve competitive results.

6 Related Work

Recently, cross-domain recommender systems have
emerged as promising methods to alleviate the cold-
start issue. By adopting transfer learning techniques,
CDR approaches are able to leverage information from
auxiliary domains to improve recommendations in a
given target domain [15, 22, 14, 29]. The majority of the
proposed CDR models fall into the bridge-based cate-
gory, where they use mapping functions to map embed-
dings for users and items across domains [9, 11, 23, 24].

One of the pioneering efforts for CDR is known as
CMF [18]. This method factorizes matrices for multi-
ple domains simultaneously while maintaining a shared
global user embedding matrix. Recent studies have built
off of CMF, with CST [13] being one of the more ef-
fective methods, where it initializes target domain user
embeddings using the learned user embeddings in the
source domain. This framework introduced the idea of
a bridge-based method, and more algorithms have been
developed over the past few years to try and build off of
the success that those methods have shown [25, 3, 8, 5].

EMCDR [11] has shown the most promise in terms
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of improving recommendations for cold-start users. Nu-
merous new algorithms have been released in the last
five years, which build off of the same idea [9, 23, 24, 27].
Most of these methods develop a shared bridge func-
tion for all users, which can generalize well over large
amounts of data. However, Zhu et al recentley proposed
PTUPCDR [28], which builds off of EMCDR by provid-
ing personalized bridges to each user, making it the first
studies to deviate from the shared bridge methods.

7 Conclusion

In this paper, we presented a novel CDR framework,
called VRCDR, that can leverage geometry of users’ in-
teracted items from the source domain in the recom-
mendation process to improve recommendations in the
target domain. Extensive experiments showed the effec-
tiveness of VRCDR compared to state-of-the-art bridge-
based CDR methods in real-world situations. For future
work, we plan to extend VRCDR to include context
about users in the recommendation process, and utilize
more techniques from computational geometry to better
understand embedded data in the domain of CDR.
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