
#1

Robust Feature Selection Algorithms

Haleh Vafaie and Kenneth De Jong

Center for Artificial Intelligence
George Mason University

Fairfax, VA 22030

Abstract

Selecting a set of features which is optimal for a given
task is a problem which plays an important role in a wide
variety of contexts including pattern recognition, adaptive
control, and machine learning. Our experience with
traditional feature selection algorithms in the domain of
machine learning lead to an appreciation for their
computational efficiency and a concern for their brittleness.
This paper describes an alternate approach to feature
selection which uses genetic algorithms as the primary
search component. Results are presented which suggest
that genetic algorithms can be used to increase the
robustness of feature selection algorithms without a
significant decrease in computational efficiency.

1. Introduction

Finding an optimal set of features from a large
set of candidate features is a problem which occurs in
many contexts. In modeling one would like to identify
and exploit minimal models of the phenomena under
study. In control theory, minimizing the number of
control parameters is an important part of the design
process. In image understanding and machine learning,
finding a minimal set of features necessary for recognition
and classification is a key part of designing efficient and
implementable systems.

In recent years there has been a significant
increase in the size and complexity of the problems
undertaken in these and other areas. Along with this has
come an increase in the size and complexity of the
corresponding feature selection problems, resulting in
renewed efforts to automate the process of feature
selection, and in some cases, the additional requirement
that feature selection occur "on line" because of
dynamically changing environments.

The work presented here was motivated by our
experiences in using conventional feature selection
algorithms for difficult machine learning problems
involving texture recognition. In our case there can easily

be several hundred candidate features and complex
interactions among the features. On such problems
conventional features selection algorithms run fast, but
produce results which vary dramatically in quality from
quite good to poor. As a consequence, we have explored
the use of genetic algorithms (GAs) as a means for
improving the robustness of such algorithms without
sacrificing too much in speed. We present our initial
results in the following sections.

2. Feature Selection Techniques

Since each feature used can increase the cost and
running time of a system, there is strong motivation to
design and implement systems with small feature sets. At
the same time there is a potentially opposing need to
include a sufficient set of features to achieve acceptably
high performance. This has led to the development of a
variety of search techniques for finding an "optimal" subset
of features from a larger set of possible features.
Exhaustively trying all the subsets is computationally
prohibitive when there are a large number of features.
There are two main approaches to avoiding the
combinatorial explosion as the number of candidate
features grows. The first involves developing problem
specific strategies (heuristics) which use domain
knowledge to prune the feature space to a manageable size
[5]. The second approach is to use generic heuristics
(primarily hill-climbing algorithms) when domain
knowledge is costly to exploit or unavailable [8].

In the case of texture recognition, we found
ourselves in the second camp: lots of possible features, but
little in the way of domain knowledge to assist the search
process. We adopted a feature selection algorithm from
the literature which involved the basic components
illustrated in Figure 1. The search procedure is a classic
"greedy" hill-climbing algorithm, sequential backward
selection (SBS), which removes one feature at a time until
no improvement in the criterion function is obtained. The
criterion function is problem specific and can vary from
simple performance measures to complex multistage
evaluation procedures.

#1

.

goodness
of recog.

Search
technique

Criterion
function

feature
set

Best feature
subset

feature
subset

Selected

Features

Figure 1: Block diagram of the feature selection process

Our experience with the SBS approach suggests

that it is very fast, but also quite brittle in the sense that

the quality of the results varies widely across data sets. In

the following sections we explore in more detail the cause

of the brittleness, and develop a more robust approach by

replacing the given search procedure with a genetic

algorithm.

3. Sources of Brittleness

The SBS algorithm is a search procedure that

starts with the complete set of features, and discards one

feature at a time until the desired number of features have

been reached [4]. At a particular stage, there are m features

remaining. To determine which (if any) feature to remove

next, each of the m features are evaluated as a candidate for

removal by temporarily removing it and computing the

effects via the criterion function. The feature who's

removal leads to the largest improvement (lowest decrease

in the criterion function) is removed permanently. The

process is then repeated for the remaining m-1 features

until no improvements are obtained.

An insightful way to visualize this process is to

represent the entire feature set as a binary string of N

boolean variables, each representing the presence or

absence of the ith feature. As illustrated in Figure 2, the

SBS algorithm starts with the string of all ones, and

moves up the lattice one level at a time by selecting the

node at the next level which results in maximal

improvement.

Notice that for problems with N > 2, committing

to a particular node generally makes other higher level

nodes in the lattice inaccessible. For example,

committing to 011 makes 100 inaccessible at the next

level. This is both the source of the power and the

brittleness of the algorithm. Its running time is clearly no

worse than N2 in terms of the number of different feature

sets evaluated before termination. It achieves this,

however, by ignoring any possible interactions among the

features. Hence, it is possible for no single feature to

yield an improvement (thus terminating the search) while

the simultaneous removal of 2 or 3 features might result

in significant improvements. Similarly, a member of the

optimal feature set can be removed early in the search

process to obtain some initial improvement, but then be

unavailable for later more significant improvements. In

addition, if the criterion function contains any imprecision

or noise, such greedy algorithms become even less

reliable.

Clearly, any attempt at improving the situation

by looking at all second order and possibly third order

feature interactions quickly becomes computationally

prohibitive. An alternative which seemed quite hopeful

was the use of genetic algorithms which are best known

for their ability to efficiently search large spaces about

which little is known, and which are relatively insensitive

to noise. In the next section this approach is described in

more detail.

4. Feature Selection Using Genetic

Algorithms

Genetic algorithms (GAs), a form of inductive

learning strategy, are adaptive search techniques initially

introduced by Holland [7]. Genetic algorithms derive their

name from the fact that their operations are similar to the

mechanics of genetic models of natural systems.

#1

11

01 10

00

a) Two feature lattice

111

011 101 110

001 010 100

000

b) Three feature lattice

Figure 2: Feature Set Lattices

Genetic algorithms typically maintain a constant-
sized population of individuals which represent samples of
the space to be searched. Each individual is evaluated on
the basis of its overall fitness with respect to the given
application domain. New individuals (samples of the
search space) are produced by selecting high performing
individuals to produce "offspring" which retain many of
the features of their "parents". This eventually leads to a
population that has improved fitness with respect to the
given goal.

New individuals (offspring) for the next
generation are formed by using two main genetic
operators, crossover and mutation. Crossover operates by
randomly selecting a point in the two selected parents gene
structures and exchanging the remaining segments of the
parents to create new offspring. Therefore, crossover
combines the features of two individuals to create two
similar offspring. Mutation operates by randomly
changing one or more components of a selected individual.
It acts as a population perturbation operator and is a means
for inserting new information into the population. This
operator prevents any stagnation that might occur during
the search process.

Genetic algorithms have demonstrated substantial
improvement over a variety of random and local search
methods [2]. This is accomplished by their ability to
exploit accumulating information about an initially
unknown search space in order to bias subsequent search
into promising subspaces. Since GAs are basically a
domain independent search technique, they are ideal for
applications where domain knowledge and theory is
difficult or impossible to provide [3].

 The main issues in applying GAs to any
problem are selecting an appropriate representation and an
adequate evaluation function. Since GAs require the
same kind of evaluation function as the SBS algorithm, it
can be used without modification. The natural
representation for the feature selection problem is precisely
the one described earlier, name a binary string of length N
representing the presence or absence of each of the N
possible features. The advantage of this representation is
that the classical GA’s operators as described before
(binary mutation and crossover) can easily be applied to
this representation without any modification. This
eliminates the need for designing new genetic operators,
or making any other changes to the standard form of
genetic algorithms.

5. Experimental Results

In performing the experiments reported here, the
SBS algorithm was used as described above. For the GA
approach, GENESIS [6], a general purpose genetic
algorithm program, was used with the standard parameter
settings recommended in [2]: a population size=50, a
mutation rate= 0.001, and a crossover rate=0.6. The results
presented here show the average performance of ten runs.

5.1 Artificial Problem Sets

The first set of experiments involved constructing
a family of artificial problems to test our hypotheses about
the sources of brittleness of the greedy feature selection
algorithm and to compare its performance with the GA
approach. The basic idea involved constructing families of
functions in which the degree of interaction among features
could be controlled so as to make the problem either easier
or harder for the greedy algorithm.

As indicated earlier in Figure 2, three features
(bits) are the minimal size problem in which non-linear
interactions can cause problems. We can construct a
function with the desired properties by thinking of it as a
function of 3 boolean variables (one for each feature) and
writing out all the first, second and third order terms:

 f(x0,x1,x2) = a*x0 + b*x1 + c*x2
+ d*x0*x1 + e*x0*x2 + f*x1*x2 (1)
+ g*x0*x1*x2

In general, not all the terms are needed to produce
sufficient interaction to cause problems. In this example,
we seek a function which (referring back to Figure 2)
assigns the optimal value to 100, but causes the SBS
algorithm to select 011 on the first round. This can be
easily achieved in a variety of ways. For example, we can
let b=c and d=e=0. Then (1) simplifies to:

 f(x0,x1,x2)= a*x0 + b*x1 + b*x2
 + f* x1*x2 +g* x0*x1*x2 (2)

This results in the following assignments of "value" to all
possible subsets of the 3 features:

x0,x1,x2 f(x0,x1,x2)
 000 0
 100 a (global optimum)
 001 b
 010 b
 011 2b+f (local optimum)
 101 a+b
 110 a+b
 111 a+2b+f+g

This can be further simplified by letting m=f+2b. Our goal
can then be achieved by requiring:

 a > 0, a > b, a > m (global optimum at 100)
and
 m > a+b, m > a+m+g (local optimum at 011)

The constraints a > m and m > a+b imply that b < 0. If
we arbitrarily let b=-4, then m = 2b+f = f-8. For
simplicity we can set f=9 resulting in m=1, and assign
g=-5 yielding:

 f(x0,x1,x2) = a*x0 - 4*x1 - 4*x2
 + 9* x1*x2 - 5* x0*x1*x2 (3)
and

 x0,x1,x2 f(x0,x1,x2)
 000 0
 100 a (global optimum)
 001 -4
 010 -4
 011 1 (local optimum)
 101 a-4
 110 a-4
 111 a-4

By varying the value of a > 0, we can test our hypothesis
about the source of brittleness of the SBS algorithm.
While 0 < a < 1, the feature set 011 is the global
optimum and should be easily found. When 1 < a < 5,
the feature set 011 is the local optimum and the global
optimum 100 should never be found. When a >= 5, the
feature set 111 is a local optimum, and the global
optimum should never be found.

In the first experiment, we added to this minimal
3-feature dependency problem an additional 27 features
which had no effect on the criterion function, but served to
increase the size of the search space significantly (230).
Figure 3 presents the results for varying a between 0 and
10. The behavior of the SBS algorithm was as expected,
finding the global optimum only when a<1. For this
simple case, the GA approach consistently found the
global optimum.

To make things more difficult, we changed the
problem slightly by replicating the 3-feature dependency 3
times and then included 21 additional bits as before to
create a total search space of 230. Figure 4 shows the
results of applying both algorithms to this problem with a
again ranging from 0 to 10. In this case the GA did not
always find the global optimum (it's a heuristic as well),
but again significantly outperformed SBS when a > 1.

0

2.5

5

7.5

10

12.5
f(

x
0
,x

1
,x

2
)

0

2
.5 5

7
.5 1
0

1
2

.5
Coefficient a

SBS

GA

Figure 3: The comparison results of varying a

0

2.5

5

7.5

10

12.5

 3 ∑
f(

x
0
i,x

1
i,x

2
i)

i=
1

0

2
.5 5

7
.5 1
0

1
2

.5

Coefficient a

SBS

GA

Figure 4: The comparison results of varying a

To see more clearly the effects of increasing the
number of 3-feature dependencies would have on the two
algorithms, we fixed a = 4 and varied the number of 3-
feature dependencies from 1 to 10, in each case filling in as
before with additional extraneous bits to keep the search
space at 230. The results are shown in Figure 5 and
indicate quite clearly that the advantage of a GA approach
increases with the number of such dependencies.

0

10

20

30

40

 n ∑
f(

x
0

i,
x

1
i,

x
2

i)
i=

1

0
.0

2
.5

5
.0

7
.5

1
0

.0

1
2

.5

repetition

SBS

GA

Figure 5: Varying the number of repetitionsof
3-feature dependencies

As a final experiment in this artificial domain, we
constructed m-feature dependencies by overlapping 3-
feature problems (i.e., shared features). Figure 6 presents
the results of this experiment. Again, as expected, the GA
approach performs significantly better as the number of
dependencies grows.

0

5

10

15

20

 3 ∑
f(

x
0

i+
x

1
i+

x
2

i)
i=

1

0
.0

2
.5

5
.0

7
.5

1
0

.0

 dependencies

SBS

GA

Figure 6: Varying the number of
interdependencies

These initial results served to clarify our
understanding of the two algorithms and provided insight
into the kinds of behavior seen in earlier experiments
using real data, namely, that the high variance in the
performance of the greedy algorithm was due to feature
interdependencies, and that a GA approach would be more
robust in general, but less efficient when there were few or
no such interactions. In the following section we describe
two classes of experiments that support this view.

5.2 Realistic Problem Sets

The first example is based on texture images that
were randomly selected from Brodatz album of textures [1].
These images are depicted in Figure 7. One hundred
feature vectors, each containing 18 features were then
randomly extracted from an arbitrary selected area of 30 by
30 pixels from each of the chosen textures.The goal of this
experiment was to find an optimal set of features to be
used by AQ15 in order to induce texture classification rules
(for a detailed description, see [9]). In order to obtain
precise measurements of the classification accuracy
associated with a particular feature set, AQ15 had to be run
to produce the rules, and then the rules had to be tested for
accuracy. Since this can be a computationally expensive
process for large data sets, a heuristic evaluation function
taken from the feature selection literature was used instead.
The heuristic involves selecting feature subsets which
maximally separate classes using a Euclidean distance

measure [4]. More specifically, the function to be
maximized is:

 c c ni nj
J(e) = 1/2 ∑ Pi ∑ Pj 1/ni nj ∑ ∑ ∂(eik, ejl)

 i=1 j=1 k=1 l=1

where:
 c denotes the number of classes
 eik, ejl are testing examples from class i and j

respectively
 ∂(eik, ejl) represents the Euclidean distance between

two elements
 ni, nj denote the number of training examples

for the class i and j respectively
 Pi, Pj are the probabilities for the class i and j

respectively

Figure 8 shows the results of a typical experiment on this
data. J(e) induced relatively little interaction among the
features, so both algorithms find the optimal subset, but
SBS requires fewer trials (executions of the given criterion
function).

Unfortunately, the heuristic evaluation function is
not all that good, and so the improvement of the actual
recognition rate of the AQ15-produced rules was not
strongly correlated with improvements in J(e).

Beach pebblesWater

Cotton canvas Handmade paper

Figure 7: The texture images used in this set of experiments.

0

5

10

15
J(

e)

0

2
0

0

4
0

0

6
0

0

8
0

0
trials

SBS

GA

Figure 8: The comparison results of
performance over time

In our second example we used a smaller data set
(breast cancer data) and used the more computationally
expensive way to evaluate feature subsets: by running
AQ15 for each feature set to be evaluated and measuring
the classification accuracy of the rules produced on the test
data. As one might expect, the combination of the rule
induction process and the classification evaluation function
produced rather strong interactions among the features.
Figure 9 show the results of a typical experiment in this
context. The robustness of the GA approach is quite
evident here.

0

10

20

30

40

50

60

R
ec

og
n

it
io

n

p
er

fo
rm

an
ce

 (
A

Q
1

5
 b

a
se

d
)

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

trials

Greedy

GA

 Figure 9: The comparison results of
performance over time

6. Summary and Conclusions

The goal of the research reported here was to
understand better the observed brittleness of traditional
feature selection algorithms and to use that knowledge to
develop more robust approaches. The results suggest that
the source of the brittleness is a tendency to get trapped on
local peaks caused by interdependencies among features.
Extending these algorithms directly to avoid such local
minima was viewed as computationally prohibitive.
Rather, a fairly straightforward implementation of genetic
algorithms proved quite effective in improving the
robustness of feature selection over a range of problems
without significant increases in computational complexity.

At the same time, it should be noted that the
traditional approach is more efficient when the number of
interacting features is small. An interesting open question
is whether a multistrategy approach could be developed
which could combine the two approaches since, in general,
information about the degree of interactions is generally
not available a priori.

Acknowledgments

This research was conducted in the Center for
Artificial Intelligence at George Mason University. The
Center's research are supported in part by Advanced
Research Projects Agency under grant No. N00014-91-J-
1854, administrated by the office of Naval Research, and
under the grant No. F49620-92-J-0549, administered by
the Air Force Office of Scientific Research, and in part by
the Office of Naval Research under grant No.
N00014-91-J-1351, and in part by the National Science
Foundation under grant No. IRI-9020266.

References

[1] Brodatz, P. “A Photographic Album for Arts and Design,”
Dover Publishing Co., Toronto, Canada, 1966.

[2] De Jong, K. “Analysis of the behavior of a class of
genetic adaptive systems,” Ph.D. Thesis, Department of
Computer and Communications Sciences, University of
Michigan, Ann Arbor, MI., 1975.

[3] De Jong, K. “Learning with Genetic Algorithms : An
overview,” Machine Learning Vol. 3, Kluwer Academic
publishers, 1988.

[4] Devijver, P., and Kittler, J. “PATTERN RECOGNITION: A
STATISTICAL APPROACH,” Prentice Hall, 1982.

[5] Dom, B., Niblack, W., and Sheinvald, J. “Feature
selection with stochastic complexity,” Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
Rosemont, IL., 1989.

[6] Grefenstette, John J. Technical Report CS-83-11,
Computer Science Dept., Vanderbilt Univ., 1984.

[7] Holland, J. H.. “Adaptation in Natural and Artificial
Systems,” University of Michigan Press, Ann Arbor, MI.,
1975.

[8] Kittler, J. ” Feature set search algorithms,” in Pattern
Recognition and Signal Processing, C.H. Chen, Ed., Sijthoff
and Noordhoff, The Netherlands, 1978.

[9] Vafaie, H., and De Jong, K.A., “Improving the
performance of a Rule Induction System Using Genetic
Algorithms,” Proceedings of the First International
Workshop on MULTISTRATEGY LEARNING, Harpers Ferry,
W. Virginia, USA, 1991.

