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Abstract

Selecting a set of features which is optimal for a given
task is a problem which plays an important role in a wide
variety of contexts including pattern recognition, adaptive
control, and machine learning. Our experience with
traditional feature selection algorithms in the domain of
machine learning lead to an appreciation for their
computational efficiency and a concern for their brittleness.
This paper describes an alternate approach to feature
selection which uses genetic algorithms as the primary
search component. Results are presented which suggest
that genetic algorithms can be used to increase the
robustness of feature selection algorithms without a
significant decrease in computational efficiency.

1. Introduction

Finding an optimal set of features from a large

be several hundred candidate features and complex
interactions among the features. On such problems
conventional features selection algorithms run fast, but
produce results which vary dramatically in quality from
quite good to poor. As a consequence, we have explored
the use of genetic algorithms (GAs) as a means for
improving the robustness of such algorithms without
sacrificing too much in speed. We present our initial
results in the following sections.

2. Feature Selection Techniques

Since each feature used can increase the cost and
running time of a system, there is strong motivation to
design and implement systems with small feature sets. At
the same time there is a potentially opposing need to
include a sufficient set of features to achieve acceptably
high performance. This has led to the development of a
variety of search techniques for finding an "optimal" subset
of features from a larger set of possible features.

set of candidate features is a problem which occurs inExhaustively trying all the subsets is computationally
many contexts. In modeling one would like to identify prohibitive when there are a large number of features.
and exploit minimal models of the phenomena underThere are two main approaches to avoiding the
study. In control theory, minimizing the number of combinatorial explosion as the number of candidate
control parameters is an important part of the designfeatures grows. The first involves developing problem
process. In image understanding and machine learningspecific strategies (heuristics) which use domain
finding a minimal set of features necessary for recognitionknowledge to prune the feature space to a manageable size
and classification is a key part of designing efficient and[5]. The second approach is to use generic heuristics
implementable systems. (primarily hill-climbing algorithms) when domain
In recent years there has been a significantknowledge is costly to exploit or unavailable [8].
increase in the size and complexity of the problems In the case of texture recognition, we found
undertaken in these and other areas. Along with this hasurselves in the second camp: lots of possible features, but
come an increase in the size and complexity of thelittle in the way of domain knowledge to assist the search
corresponding feature selection problems, resulting inprocess. We adopted a feature selection algorithm from
renewed efforts to automate the process of featurghe literature which involved the basic components
selection, and in some cases, the additional requiremenitlustrated in Figure 1. The search procedure is a classic
that feature selection occur "on line" because of"greedy" hill-climbing algorithm, sequential backward
dynamically changing environments. selection (SBS), which removes one feature at a time until
The work presented here was motivated by ourno improvement in the criterion function is obtained. The
experiences in using conventional feature selectioncriterion function is problem specific and can vary from
algorithms for difficult machine learning problems simple performance measures to complex multistage
involving texture recognition. In our case there can easilyevaluation procedures.
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Figure 2: Feature Set Lattices

Genetic algorithms typically maintain a constant- Genetic algorithms have demonstrated substantial
sized population of individuals which represent samples ofimprovement over a variety of random and local search
the space to be searched. Each individual is evaluated omethods [2]. This is accomplished by their ability to
the basis of its overall fitness with respect to the givenexploit accumulating information about an initially
application domain. New individuals (samples of the unknown search space in order to bias subsequent search
search space) are produced by selecting high performingnto promising subspaces. Since GAs are basically a
individuals to produce "offspring” which retain many of domain independent search technique, they are ideal for
the features of their "parents”. This eventually leads to aapplications where domain knowledge and theory is
population that has improved fitness with respect to thedifficult or impossible to provide [3].
given goal. The main issues in applying GAs to any

New individuals (offspring) for the next problem are selecting an appropriate representation and an
generation are formed by using two main genetic adequate evaluation function.  Since GAs require the
operators, crossover and mutation. Crossover operates bsame kind of evaluation function as the SBS algorithm, it
randomly selecting a point in the two selected parents genean be used without modification. The natural
structures and exchanging the remaining segments of theepresentation for the feature selection problem is precisely
parents to create new offspring. Therefore, crossoveithe one described earlier, name a binary string of length N
combines the features of two individuals to create tworepresenting the presence or absence of each of the N
similar offspring. Mutation operates by randomly possible features. The advantage of this representation is
changing one or more components of a selected individualthat the classical GA’s operators as described before
It acts as a population perturbation operator and is a mean@®inary mutation and crossover) can easily be applied to
for inserting new information into the population. This this representation without any modification. This
operator prevents any stagnation that might occur duringeliminates the need for designing new genetic operators,
the search process. or making any other changes to the standard form of

genetic algorithms.



5. Experimental Results
This can be further simplified by letting m=f+2b. Our goal
In performing the experiments reported here, the can then be achieved by requiring:
SBS algorithm was used as described above. For the GA
approach, GENESIS [6], a general purpose genetic a>0,a>hb,a>m (global optimum at 100)
algorithm program, was used with the standard parameteand
settings recommended in [2]: a population size=50, a m > a+b, m > a+m+g (local optimum at 011)
mutation rate= 0.001, and a crossover rate=0.6. The results
presented here show the average performance of ten runs. The constraints a > m and m > a+b imply that b < 0. If
we arbitrarily let b=-4, then m = 2b+f = f-8. For
5.1 Artificial Problem Sets simplicity we can set f=9 resulting in m=1, and assign
g=-5 yielding:
The first set of experiments involved constructing
a family of artificial problems to test our hypotheses about  f(xp X1 X2) = axxQ - 4X1 - 4x2
the sources of brittleness of the greedy feature selection + O X1*X2 - BxXQ*X1*X2 3)
algorithm and to compare its performance with the GA and
approach. The basic idea involved constructing families of

functions in which the degree of interaction among features X0,X1,X2 f(x0x1 x2)
could be controlled so as to make the problem either easier 000 0
or harder for the greedy algorithm. 100 a (global optimum)
As indicated earlier in Figure 2, three features 001 -4
(bits) are the minimal size problem in which non-linear 010 -4
interactions can cause problems. We can construct a 011 1 (local optimum)
function with the desired properties by thinking of it as a 101 a-4
function of 3 boolean variables (one for each feature) and 110 a-4
writing out all the first, second and third order terms: 111 a-4
f(x0,x1,Xx2) = axQ + brx1 + cxx2 By varying the value o& > 0, we can test our hypothesis
+ e XQ*X1 + e X0*X2 + Fex1xx2 (1) about the source of brittleness of the SBS algorithm.
+ gFXO*X1*X2 While 0 <a < 1, the feature set 011 is the global

optimum and should be easily found. When 4 <5,
In general, not all the terms are needed to producehe feature set 011 is the local optimum and the global
sufficient interaction to cause problems. In this example,optimum 100 should never be found. Wrer= 5, the
we seek a function which (referring back to Figure 2) feature set 111 is a local optimum, and the global
assigns the optimal value to 100, but causes the SB®ptimum should never be found.

algorithm to select 011 on the first round. This can be In the first experiment, we added to this minimal
easily achieved in a variety of ways. For example, we carg-feature dependency problem an additional 27 features
let b=c and d=e=0. Then (1) simplifies to: which had no effect on the criterion function, but served to
increase the size of the search space significanﬁ?)(Z
f(x0 X1 X2)= axQ + brx + bex2 Figure 3 presents the results for varymbetween 0 and
+EX1*X2 +0FXQ*X1*X2 2) 10. The behavior of the SBS algorithm was as expected,

finding the global optimum only when a<1. For this
This results in the foIIowing assignments of "value" to all simp|e case, the GA approach Consistenﬂy found the

possible subsets of the 3 features: global optimum.

X0,X1,X2 f(x0,x1,x2) To make things more difficult, we changed the
000 0 problem slightly by replicating the 3-feature dependency 3
100 a (global optimum)  times and then included 21 additional bits as before to
001 b create a total search space 802 Figure 4 shows the
010 b _ results of applying both algorithms to this problem veith
011 2b+f  (local optimum)  again ranging from 0 to 10. In this case the GA did not
101 atb always find the global optimum (it's a heuristic as well),
110 atb but again significantly outperformed SBS when 1.

111 a+2b+f+g
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As a final experiment in this artificial domain, we

constructedm-feature dependencies by overlapping 3-

feature problems (i.e., shared features). Figure 6 presents
the results of this experiment. Again, as expected, the GA
approach performs significantly better as the number of
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To see more clearly the effects of increasing the
number of 3-feature dependencies would have on the two
algorithms, we fixeda = 4 and varied the number of 3-
feature dependencies from 1 to 10, in each case filling in as
before with additional extraneous bits to keep the search
space at 30, The results are shown in Figure 5 and
indicate quite clearly that the advantage of a GA approach
increases with the number of such dependencies.

dependencies grows.

interdependencies
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These initial results served to clarify our measure [4]. More specifically, the function to be
understanding of the two algorithms and provided insightmaximized is:
into the kinds of behavior seen in earlier experiments

using real data, namely, that the high variance in the c c in
performance of the greedy algorithm was due to feature Je)=1U2 Py P lUnn ¥ 3 o(ek §l)
interdependencies, and that a GA approach would be more i=1 j=1 k=1 1=1

robust in general, but less efficient when there were few or
no such interactions. In the following section we describewhere:

two classes of experiments that support this view. c denotes the number of classes

&k, §l are testing examples from classand;
5.2 Realistic Problem Sets respectively

d( &k, §1) represents the Euclidean distance between
The first example is based on texture images that two elements

were randomly selected from Brodatz album of textures [1]. n, n denote the number of training examples
These images are depicted in Figure 7. One hundred for the clas$ andj respectively
feature vectors, each containing 18 features were then R, B are the probabilities for the clasandj
randomly extracted from an arbitrary selected area of 30 by respectively

30 pixels from each of the chosen textures.The goal of this

experiment was to find an optimal set of features to beFigure 8 shows the results of a typical experiment on this
used by AQ15 in order to induce texture classification rulesdata. J(e) induced relatively little interaction among the
(for a detailed description, see [9]). In order to obtain features, so both algorithms find the optimal subset, but
precise measurements of the classification accuracysBS requires fewer trials (executions of the given criterion
associated with a particular feature set, AQ15 had to be rufunction).

to produce the rules, and then the rules had to be tested for Unfortunately, the heuristic evaluation function is
accuracy. Since this can be a computationally expensivenot all that good, and so the improvement of the actual
process for large data sets, a heuristic evaluation functiomecognition rate of the AQ15-produced rules was not
taken from the feature selection literature was used insteadstrongly correlated with improvements in J(e).

The heuristic involves selecting feature subsets which

maximally separate classes using a Euclidean distance
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Figure 7: The texture images used in this set of experiments.



6. Summary and Conclusions
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The goal of the research reported here was to
understand better the observed brittleness of traditional
feature selection algorithms and to use that knowledge to
develop more robust approaches. The results suggest that
the source of the brittleness is a tendency to get trapped on
local peaks caused by interdependencies among features.
Extending these algorithms directly to avoid such local
minima was viewed as computationally prohibitive.
Rather, a fairly straightforward implementation of genetic
algorithms proved quite effective in improving the
robustness of feature selection over a range of problems
without significant increases in computational complexity.

At the same time, it should be noted that the
. traditional approach is more efficient when the number of
trials interacting features is small. An interesting open question
is whether a multistrategy approach could be developed
which could combine the two approaches since, in general,
information about the degree of interactions is generally

not available a priori.
In our second example we used a smaller data set

(breast cancer data) and used the more Compmaﬂona”)ﬁ\cknowledgments
expensive way to evaluate feature subsets: by running
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