The ECJ] Owner’s Manual

A User Manual for the ECJ Evolutionary Computation Library

Sean Luke
Department of Computer Science
George Mason University

Manual Version 26
July 5,2018

Where to Obtain EC]J
http://cs.gmu.edu/~eclab/projects/ecj/

Copyright 2010-2017 by Sean Luke.

Thanks to cCarlotta Domeniconi.

Get the latest version of this document or suggest improvements here:
http: //cs.gmu.edu /~eclab/projects/ecj/

This document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 United
States License, except for those portions of the work licensed differently as described in the next section. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/3.0/us/ or send a letter to Creative Commons, 171
Second Street, Suite 300, San Francisco, California, 94105, USA. A quick license summary:

* You are free to redistribute this document.

* You may not modify, transform, translate, or build upon the document except for personal use.

* You must maintain the author’s attribution with the document at all times.

* You may not use the attribution to imply that the author endorses you or your document use.
This summary is just informational: if there is any conflict in interpretation between the summary and the actual license,
the actual license always takes precedence.

This document is was produced in part through funding from grants 0916870 and 1317813 from the

National Science Foundation.

Contents

1 Introduction

1.1 About ECJ o e e e
12 Overview
1.3 Unpacking ECJ and Using the Tutorials
1.3.1 The ec Directory, the CLASSPATH, andjarfiles.
1.3.1.1 Theec/display Directory: EC]’sGUI

1.3.1.2 The ec/app Directory: Demo Applications

132 ThedocsDirectory
1321 Tutorials.

2 ec.Evolve and Utility Classes

2.1 The Parameter Database
211 Inheritance.

2.1.2 Kinds of Parameters

2.1.3 Namespace Hierarchies and Parameter Bases

2.1.4 Parameter FilesinJarFiles. L

2.1.5 Accessing Parameters o

2.1.6 Parameter Macros
2161 TheAliasMacro

2.1.7 Debugging Your Parameters

2.1.8 Building a Parameter Database from Scratch

22 Output e
22.1 Creatingand WritingtoLogs

22.2 Quietingthe Program

223 Theecutil.CodeClass. e
2231 DecodingtheHardWay

2232 DecodingtheEasyWay,

23 Checkpointing
2.3.1 Implementing CheckpointableCode

2.4 Threads and Random Number Generation
241 Random Numbers

2.42 Selecting Randomly from Distributions

243 Thread-LocalStorage

244 Multithreading Support

2.5 Jobs ..o e e
2.6 Theec.EvolveTop-level
2.7 Integrating ECJ with other Applications or Libraries
271 Controlby ECJ]

2.7.2 Control by another Application or Library

34

30
36
3/
59
40
40

3 ec.EvolutionState and the ECJ Evolutionary Process

31 CommonPatterns
311 Setup

3.1.2 Singletonsand Cliques

313 Prototypes

3.1.4 TheFlyweightPattern o

315 Groups oo

3.2 Populations, Subpopulations, Species, Individuals, and Fitnesses
3.2.1 Making Large Numbers of Subpopulations

3.22 How Species Make Individuals,

3.2.3 Reading and Writing Populations and Subpopulations

324 AboutIndividuals
3241 Implementing an Individual 0 ..

325 AboutFitnesses

3.3 Initializersand Finishers L L
3.3.1 Population Files and SubpopulationFiles

3.4 Evaluatorsand Problems
341 Problems

3.42 ImplementingaProblem

35 Breeders e
3.5.1 Breeding Pipelines and BreedingSources
3511 AuxiliaryData

3.5.2 SelectionMethods
3.5.2.1 Implementing a Simple SelectionMethod

3522 StandardClasses

3.53 BreedingPipelines
3.5.3.1 Implementing a Simple BreedingPipeline

3.5.3.2 Standard Utility Pipelines

354 SettingupaPipeline L
3541 A Genetic Algorithm Pipeline

3.5.4.2 A Genetic Programming Pipeline

3.6 Exchangers.
3.7 Statistics
3.7.1 CreatingaStatisticsChain L L L

3.7.2 Tabular Statistics e

3.7.3 Quieting the Statistics L

3.7.4 Implementing a StatisticsObject,

3.8 Debugging an Evolutionary Process

4 Basic Evolutionary Processes

4.1 Generational Evolution L
41.1 The Genetic Algorithm (The ec.simple Package)

4.1.2 Evolution Strategies (The ec.esPackage)

42 Steady-State Evolution (The ec.steadystate Package)
421 Steady State Statistics L L L

422 Producing More than One IndividualataTime

4.3 Single-State Methods (The ec.singlestate Package)
43.1 Simple Hill-Climbingand (1+1).

43.2 Steepest Ascent Hill-Climbingand (1+A)

4.3.3 Steepest Ascent Hill-Climbing With Replacementand (1,A)

434 Simulated Annealing L L L L

5 Representations 125

5.1 Vector and List Representations (The ec.vector Package) 125
511 Vectors e e 126
5.1.1.1 Initialization

5.1.1.2 CroSSOVET . . v v v v v e i e e e e e e e e e e 128
5.1.1.3 Multi-Vector Crossover o v v i ittt e e e e e 31
51.1.4 Mutation e 31

5.1.1.5 Heterogeneous Vector Individuals 137

5.1.2 LiStS . o v o e
5121 UtilityMethods 139]

5.1.2.2 Initialization e e 140

5123 CroSSOVEr . . v v v v v i e e e e e e e e e e e e e e e e e 140

5124 Mutation 41

51.3 Arbitrary Genes: ec.vector.Gene Lo [142]
5.2 Genetic Programming (Theec.gpPackage). 144
5.2.1 GPNodes, GPTrees, and GPIndividuals 146}
5211 GPNoOdesot [

5212 GPTIEES . .« o v oot e e 147

5213 GPIndividual 48

5214 GPNodeConstraints i e e 148

5215 GPTreeConstraints v v v v i e 48

52.1.6 GPFunctionSet i 43

522 BasicSetup e 149]
5221 DefiningGPNodes. 150

52.3 Defining the Representation, Problem, and Statistics =1
5231 GPData e e 152]

5232 KozaFitness. e 153

5233 GPProblem e 154]

5234 GPNodeSubclasses e e e 155]

5235 Statistics. 1571

524 Initialization e e e 158
525 Breeding 162
526 ACompleteExample. 169
52.7 GPNodesinDepth
52.8 GPTrees and GPIndividualsinDepth 176
5281 Pretty-Printing Trees

5282 GPIndividuals e 180

529 Ephemeral Random Constants 1801
5.2.10 Automatically Defined Functions and Macros 183
52.10.1 About ADFStacks e 186

52.11 Strongly Typed Genetic Programming 189
52111 InsideGPTypes 194

5.2.12 Parsimony Pressure (The ec.parsimony Package) 195
5.3 Grammatical Evolution (The ec.gp.ge Package)
5.3.1 GEIndividuals, GESpecies, and Grammars 198
5311 Strong Typing i

5312 ADFsandERCs e e 200

5.3.2 Translationand Evaluation 200
533 DPrinting e 202
534 Initializationand Breeding L o oL 203
535 DealingwithGP 204
536 ACompleteExample. L 204

53.6.1 GrammarFiles

537 HowParsingisDone 206

54 Push(Theecgp.pushPackage)
541 Pushand GP 209

5.4.2 Defining the Push InstructionSet 210

543 CreatingaPushProblem 211

544 Building a Custom Instruction L L ..

55 NEAT (Theec.neat Package) P13
551 Buildinga NEAT Application p14
5511 Breeding 214

55.1.2 Evaluation 212

5.6 Rulesets and Collections (The ec.rule Package) P20
5.6.1 Rulelndividuals and RuleSpecies 220

5.6.2 RuleSets and RuleSetConstraints

5.6.3 Rulesand RuleConstraints 224
5.6.4 Initialization

5.65 Mutation

566 CroSsover e 227
Parallel Processes 229
6.1 Distributed Evaluation (The ec.eval Package) P20
6.1.1 TheMaster. e 230

6.1.2 Slaves e 231]

6.1.3 Opportunistic Evolution

6.14 Asynchronous Evolution

6.1.5 TheMasterProblem

6.1.6 Noisy Distributed Problems 238

6.2 Island Models (The ec.exchange Package)
6.21 Islands e

622 TheServer e 241]
6.22.1 Synchronicity L 242

6.2.3 Internallsland Models 243]

624 TheExchanger D44
Additional Evolutionary Algorithms 247
7.1 Coevolution (The ec.coevolve Package)
711 Coevolutionary Fitness P47

712 Grouped Problems 248

7.1.3 One-Population Competitive Coevolution 250

714 Multi-Population Coevolution
7141 Parallel and Sequential Coevolution 254

7142 Maintaining Context

7.1.5 Performing Distributed Evaluation with Coevolution 2506)

7.2 Spatially Embedded Evolutionary Algorithms (The ec.spatial Package)
721 ImplementingaSpace

722 Spatial Breeding 250

7.2.3 Coevolutionary Spatial Evaluation 260

7.3 Particle Swarm Optimization (The ec.pso Package) POT]
74 Differential Evolution (The ec.de Package)
741 Evaluation

742 Breeding e 265]
7421 TheDE/rand/1/binOperator 267

7422 TheDE/best/1/bin Operator

7423 TheDE/rand/1/either-or Operator

7.5 Multiobjective Optimization (The ec.multiobjective Package)
7.5.0.1 The MultiObjectiveFitnessclass

7.5.0.2 The MultiObjectiveStatisticsclass

7.5.0.3 The HypervolumeStatisticsclass

751 Selecting with Multiple Objectives
7511 ParetoRanking

7512 Archives

7.52 NSGA-II/III (ec.multiobjective.nsga2 and ec.multiobjective.nsga3 Packages)

7.5.3 SPEA2 (The ec.multiobjective.spea2 Package)

7.6 Estimation of Distribution Algorithms
761 PBIL

762 CMA-ES
7.6.2.1 Parameters

763 iAMaLGaMIDEA

764 DOVS . ..

7.7 Meta-Evolutionary Algorithms L o
771 TheTwoParameterFiles

7.7.2 Defining the Parameters L.

773 Statisticsand Messages

7.74 Populations Versus Generations

7.7.5 Using Meta-Evolution with Distributed Evaluation

77.6 Customization

7.8 Resets (The ec.evolve Package)

267
268

Chapter 1

Introduction

The purpose of this manual is to describe practically every feature of ECJ, an evolutionary computation
toolkit. It's not a good choice of reading material if your goal is to learn the system from scratch. It's very
terse, boring, and long, and not organized as a tutorial but rather as an encyclopedia. Instead, I refer you to
ECJ’s four tutorials and various other documentation that comes with the system. But when you need to
know about some particular gizmo that ECJ has available, this manual is where to look.

1.1 About ECJ

ECJ is an evolutionary computation framework written in Java. The system was designed for large, heavy-
weight experimental needs and provides tools which provide many popular EC algorithms and conventions
of EC algorithms, but with a particular emphasis towards genetic programming. EC]J is free open-source
with a BSD-style academic license (AFL 3.0).

ECJ is now well over fifteen years old and is a mature, stable framework which has (fortunately) exhibited
relatively few serious bugs over the years. Its design has readily accommodated many later additions, includ-
ing multiobjective optimization algorithms, island models, master/slave evaluation facilities, coevolution,
steady-state and evolution strategies methods, parsimony pressure techniques, and various new individual
representations (for example, rule-sets). The system is widely used in the genetic programming community
and is reasonably popular in the EC community at large. I myself have used it in over thirty or forty
publications.

A toolkit such as this is not for everyone. ECJ was designed for big projects and to provide many facilities,
and this comes with a relatively steep learning curve. We provide tutorials and many example applications,
but this only partly mitigates EC]’s imposing nature. Further, while ECJ is extremely “hackable”, the initial
development overhead for starting a new project is relatively large. As a result, while I feel ECJ is an excellent
tool for many projects, other tools might be more apropos for quick-and-dirty experimental work.

Why ECJ was Made EC]J’s primary inspiration comes from /il-gp [18], to which it owes much. Homage to
lil-gp may be found in ECJ’s command-line facility, how it prints out messages, and how it stores statistics.

Work on ECJ] commenced in Fall 1998 after experiences with lil-gp in evolving simulated soccer robot teams
[6]. This project involved heavily modifying lil-gp to perform parallel evaluations, a simple coevolutionary
procedure, multiple threading, and strong typing. Such modifications made it clear that /il-gp could not be
further extended without considerable effort, and that it would be worthwhile developing an “industrial-
grade” evolutionary computation framework in which GP was one of a number of orthogonal features. I
intended ECJ to provide at least ten years of useful life, and I believe it has performed well so far.

Pre-Initialization Statistics

Recover

from Initializer

Checkpoint Post-Initialization Statistics

Initialize Exchanger, Evaluator

Reinitialize Exchanger, Evaluator
Pre-Evaluation Statistics

Evaluator

Post-Evaluation Statistics

Out of time or

\want to quit?

NO

YES

Pre-Pre-Breeding Exchange Statistics

Pre-Breeding
Exchange
Post-Pre-Breeding Exchange Statistics

YES Want to quit?

~—
NO

Pre-Finishing Statistics
g Pre-Breeding Statistics

Finisher Breeding

Post-Breeding Statistics
Shut Down Exchanger, Evaluator

Pre-Post-Breeding Exchange Statistics

Post-Breeding
Exchange

Post-Post-Breeding Exchange Statistics

Increment Generation
Optional Pre-Checkpoint Statistics

Optionally
Checkpoint

Optional Post-Checkpoint Statistics

Figure 1.1 Top-Level Loop of ECJ’s SimpleEvolutionState class, used for basic generational EC algorithms. Various sub-operations are
shown occurring before or after the primary operations. The full population is revised each iteration.

1.2 Overview

EC]J is a general-purpose evolutionary computation framework which attempts to permit as many valid
combinations as possible of individual representation and breeding method, fitness and selection procedure,
evolutionary algorithm, and parallelism.

Top-level Loop EC] hangs the entire state of the evolutionary run off of a single instance of a subclass of
EvolutionState. This enables ECJ to serialize out the entire state of the system to a checkpoint file and to
recover it from the same. The EvolutionState subclass chosen defines the kind of top-level evolutionary loop
used in the ECJ process. We provide two such loops: a simple generational loop with optional elitism, and a
steady-state loop.

Figure[L.1]shows the top-level loop of the simple generational EvolutionState. The loop iterates between
breeding and evaluation, with an optional “exchange” period after each. Statistics hooks are called before
and after each period of breeding, evaluation, and exchanging, as well as before and after initialization of
the population and “finishing” (cleaning up prior to quitting the program).

Breeding and evaluation are handled by singleton objects known as the Breeder and Evaluator respectively.
Likewise, population initialization is handled by an Initializer singleton, and finishing is done by a Finisher.
Exchanges after breeding and after evaluation are handled by an Exchanger. The particular versions of these
singleton objects are determined by the experimenter, though we provide versions which perform common
tasks. For example, we provide a traditional-EA SimpleEvaluator, a steady-state EA SteadyStateEvaluator, a
“single-population coevolution” CompetitiveEvaluator, and a multi-population coevolution MultiPopCoevolu-
tionaryEvaluator, among others. There are likewise custom breeders and initializers for different functions.
The Exchanger provides an opportunity for other hooks, notably internal and external island models. For ex-
ample, post-breeding exchange might allow external immigrants to enter the population, while emmigrants
might leave the population during post-evaluation exchange. These singleton operators comprise most of
the high-level “verbs” in the ECJ system, as shown in Figure

Parameterized Construction EC] is unusually heavily parameterized: practically every feature of the
system is determined at runtime from a parameter. Parameters define the classes of objects, the specific
subobjects they hold, and all of their initial runtime values. ECJ does this through a bootstrap class called
Evolve, which loads a ParameterDatabase from runtime parameter files at startup. Using this database, Evolve
constructs the top-level EvolutionState and tells it to “setup” itself. EvolutionState in turn calls subsidiary
classes (such as Evaluator) and tells them to “setup” themselves from the database. This procedure continues
down the chain until the entire system is constructed.

State Objects In addition to “verbs”, EvolutionState also holds “nouns” — the state objects representing
the things being evolved. Specifically, EvolutionState holds exactly one Population, which contains some
N (typically 1) Subpopulations. Multiple Subpopulations permit experiments in coevolution, internal island
models, etc. Each Subpopulation holds some number of Individuals and the Species to which the Individuals
belong. Species is a flyweight object for Individual: it provides a central repository for things common to many
Individuals so they don’t have to each contain them in their own instances.

While running, numerous state objects must be created, destroyed, and recreated. As ECJ only learns the
specific classes of these objects from the user-defined parameter file at runtime, it cannot simply construct
them using Java’s new operator. Instead such objects are created by constructing a prototype object at startup
time, and then using this object to stamp out copies of itself as often as necessary. For example, Species
contains a prototypical Individual. When new Individuals must be created for a given Subpopulation, they are
copied from the Subpopulation’s Species and then customized. This allows different Subpopulations to use
different Individual representations.

In keeping with its philosophy of orthogonality, ECJ defines Fitnesses separate from Individuals (represen-
tations), and provides both single-objective and multi-objective Fitness subclasses. In addition to holding a
prototypical Individual, Species also hold the prototypical Fitness to be used with that kid of Individual.

0..n

1
Parameter
Database

Mersenne Twister

RNG
Evolve
1 n
: Output O Log
makes
* Initializer I~ — makes — J»| Population
1 1
EvolutionState updates ~
- -
Breeder - — applies — P Breeding Pipeline
1 1
Evaluator k>— prototype —— Problem - -
|
I
. I 4
updates |
Exchanger | I
v evaluates
|
Finisher Fitness |
|
1 |
Statistics |
1 1 I n
Q I
- Individual = |

Figure 1.2 Top-Level operators and utility facilities in EvolutionState, and their relationship to certain state objects.

Breeding A Species holds a prototypical breeding pipeline which is cloned by the Breeder and used per-thread
to breed individuals and form the next-generation population. Breeding pipelines are tree structures where
a node in the tree filters incoming Individuals from its child nodes and hands them to its parents. The leaf
nodes in the tree are SelectionMethods which simply choose Individuals from the old subpopulation and
hand them off. There exist SelectionMethods which perform tournament selection, fitness proportional
selection, truncation selection, etc. Nonleaf nodes in the tree are BreedingPipelines, many of which copy and
modify their received Individuals before handing them to their parent nodes. Some BreedingPipelines are
representation-independent: for example, MultiBreedingPipeline asks for Individuals from one of its children at
random according to some probability distribution. But most BreedingPipelines act to mutate or cross over
Individuals in a representation-dependent way. For example, the GP CrossoverPipeline asks for one Individual
of each of its two children, which must be genetic programming Individuals, performs subtree crossover on
those Individuals, then hands them to its parent.

A tree-structured breeding pipeline allows for a rich assortment of experimenter-defined selection and
breeding proceses. Further, EC]’s pipeline is copy-forward: BreedingPipelines must ensure that they copy
Individuals before modifying them or handing them forward, if they have not been already copied. This
guarantees that new Individuals are copies of old ones in the population, and furthermore that multiple
pipelines may operate on the same Subpopulation in different threads without the need for locking. ECJ may
apply multiple threads to parallelize the breeding process without the use of Java synchronization at all.

10

EvolutionState

[

Population
T 1
1.
| n
| Subpopulation |- ———————— — uses — — — |
|
1.n 1 !
- — chidof, !
1 v 1 | :
1 1 1 1 .
Individual - prototype =& Species [— prototype —| Breeding Pipeline [~ < |
0..n
T |
SRR W o
- — flyweight » = = = = . |
1.n 1 prototype child of |
|
1 0..n
1 1 | 1 :
Fitness @ — uses — - Selection Method |
|
|

Figure 1.3 Top-Level data objects used in evolution.

Evaluation The Evaluator performs evaluation of a population by passing one or (for coevolutionary
evaluation) several Individuals to a Problem subclass which the Evaluator has cloned off of its prototype.
Evaluation may too be done in multithreaded fashion with no locking, using one Problem per thread.
Individuals may also undergo repeated evaluation in coevolutionary Evaluators of different sorts.

In most projects using ECJ, the primary task is to construct an appropriate Problem subclass. The task
of the Problem is to assess the fitness of the Individual(s) and set its Fitness accordingly. Problem classes also
report if the ideal Individual has been discovered.

Utilities In addition to its ParameterDatabase, ECJ also uses a checkpointable Output convenience facility
which maintains various streams, repairing them after checkpoint. Output also provides for message logging,
retaining in memory all messages during the run, so that on checkpoint recovery the messages are printed
out again as before. Other utilities include population distribution selectors, searching and sorting tools, etc.
The quality of a random number generator is important for a stochastic optimization system. As such,
ECJ’s random number generator was the very first class written in the system: it is a Java implementation
of the highly respected Mersenne Twister algorithm [12] and is the fastest such implementation available.
Since ECJ’s release, the ECJ MersenneTwister and MersenneTwisterFast classes have found their way in a
number of unrelated public-domain systems, including the popular NetLogo multiagent simulator [26].
MersenneTwisterFast is also shared in ECJ’s sister software, the MASON multiagent simulation toolkit [§].

Representations and Genetic Programming ECJ allows you to specify any genome representation you
like. Standard representation packages in ECJ provide functionality for vectors of all Java data types;
arbitrary-length lists; trees; and collections of objects (such as rulesets).

EC]J is perhaps best known for its support of “Koza”-style tree-structured genetic programming repre-
sentations. EC] represents these individuals as forests of parse-trees, each tree equivalent to a single Lisp

11

tree

int, float
1
float
bool int, float
/ int, float
\
bool float float
bool bool int, float int, float
V \ V4 \
bool bool float int
int int
. ' . '
int int

Figure 1.4 A typed genetic programming parse tree.

s-expression. Figure[l.4shows a parse-tree for a simple robot program, equivalent to the Lisp s-expression
(if (and on-wall (tick> 20) (* (ir 3) 6) 2.3). In C this might look like (onWall && tick > 20) ? ir(3) * 6 : 2.3.
This notionally says “If I'm on the wall and my tick-count is greater than 20, then return the value of my
third infrared sensor times six, else return 2.3”. Such parse-trees are typically evaluated by executing their
programs in a test environment, and modified via subtree crossover (swapping subtrees among individuals)
or various kinds of mutation (replacing a subtree with a randomly-generated one, perhaps).

ECJ allows multiple subtrees for various experimental needs: Automatically Defined Functions (ADFs —
a mechanism for evolving subroutine calls [4]), or parallel program execution, or evolving teams of programs.
Along with ADFs, EC] provides built-in support for Automatically Defined Macros (ADMs) [20] and
Ephemeral Random Constants (ERCs [3]], such as the numbers 20, 3, 6, and 2.3 in Figure .

Genetic programming trees are constructed out of a “primorial soup” of function templates (such as
on-wall or 2.3. Early forms of genetic programming were typeless: though such templates had a predefined
arity (number of arguments), any node could be connected to any other. Many genetic programming needs
require more constraints than this. For example, the node if might expect a boolean value in its first argument,
and integers or floats in the second and third arguments, and return a float when evaluated. Similarly and
might take two booleans as arguments and return a boolean, while * would take ints or floats as arguments
and return a float.

Such types are often associated with the kinds of data passed from node to node, but they do not have
to be. Typing might be used to constrain certain nodes to be evaluated in groups or in a certain order: for
example, a function type-block might insist that its first argument be of type foo and its second argument be
of type ar to make certain that a foo node be executed before a ar node.

EC]J permits a simple static typing mechanism called set-based typing, which is suitable for many such
tasks. In set-based typing, the return type and argument types of each node are each defined to be sets of
type symbols (for example, {ool} or {foo, bar, baz}, or {int, float}. The desired return type for the tree’s root is

12

similarly defined. A child node is permitted to fit into the argument slot of a parent node if the child node’s
return type and type of the that argument slot in the parent are compatible. We define types to be compatible
if their set intersection is nonempty (that is, they share at least one type symbol).

Set-based typing is sufficient for the typing requirements found in many programming languages,
including ones with type hierarchies. It allows, among other things, for nodes such as * to accept either
integers or floats. However there are considerable restrictions on the power of set-based typing. It’s often
useful for the return type of a node to change based on the particular nodes which have plugged into it as
arguments. For example, * might be defined as returning a float if at least one of its arguments returns floats,
but returning an integer if both of its arguments return integers. if might be similarly defined not to return a
particular type, but to simply require that its return type and the second and third argument types must all
match. Such “polymorphic” typing is particularly useful in situations such as matrix multiplication, where
the operator must place constraints on the width and height of its arguments and the final returned matrix.
In this example, it’s also useful to have an infinite number of types (perhaps to represent matrices of varying
widths or heights).

EC]J does not support polymorphic typing out of the box simply because it is difficult to implement
many if not most common tree modification and generation algorithms using polymorphic typing: instead,
set-based typing is offered to handle as many common needs as can be easily done.

Out of the Box Capabilities EC] provides support out-of-the-box for a bunch of algorithm options:

* Generational algorithms: (y,A) and (¢ + A) Evolution Strategies, the Genetic Algorithm, Genetic
Programming variants, Grammatical Evolution, PushGP, and Differential Evolution

* Steady-State evolution

¢ Parsimony pressure algorithms

¢ Spatially-embeded evolutionary algorithms

* Random restarts

¢ Multiobjective optimization, including the NSGA-II and SPEA?2 algorithms.

¢ Cooperative, 1-Population Competitive, and 2-Population Competitive coevolution.

¢ Multithreaded evaluation and breeding.

¢ Parallel synchronous and asynchronous Island Models spread over a grid of computers.
¢ Internal synchronous Island Models internally in a single ECJ process.

* Massive parallel generational fitness evaluation of individuals on remote slave machines.

* Asynchronous Evolution, a version of steady-state evolution with massive parallel fitness evaluation
on remote slave machines.

¢ Opportunistic Evolution, where remote slave machines run their own mini-evolutionary processes for
a while before sending individuals back to the master process.

¢ Internal synchronous Island Models internally in a single ECJ process.
* Meta-Evolution
¢ A large number of selection and breeding operators

EC]J also has a GUI, though in truth I nearly universally use the command-line.

Idiosyncracies EC] was developed near the introduction of Java and so has a lot of historical idiosyncra-
cies.! Some of them exist to this day because of conservatism: refactoring is disruptive. If you code with ECJ,

1t used to have a lot more —I've been weeding out ones that I think are unnecessary nowadays!

13

you'll definitely have to get used to one or more of the following:

1.3

No generics at all, few iterators or enumerators, no Java features beyond 1.4 (including annotations),
and little use of the Java Collections library. This is part historical, and part my own dislike of Java’s
byzantine generics implementation, but it’s mostly efficiency. Generics are very slow when used with
basic data types, as they require boxing and unboxing. The Java Collections library is unusually badly
written in many places internally: and anyway, for speed we tend to work directly with arrays.

Hand-rolled socket code. With one exception (optional compression), ECJ’s parallel facility doesn’t
rely on other libraries.

EC]J loads nearly every object from its parameter database. This means that you'll rarely see the new
keyword in ECJ, nor any constructors. Instead ECJ’s usual “constructor” method is a method called
setup(...), which sets up an object from the database.

A proprietary logging facility. EC] was developed before the existence of java.util.logging. Partly out of
conservatism, I am hesitant to rip up all the pervasive logging just to use Sun’s implementation (which
isn’t very good anyway).

A parameter database derived from Java’s old java.util.Properties list rather than XML. This is historical
of course. But seriously, do I need a justification to avoid XML?

Mersenne Twister random number generator. java.lang.Random is grotesquely bad, and systems which
use it should be shunned.

A Makefile. EC] was developed before Ant and I've personally never needed it.

Unpacking ECJ and Using the Tutorials

EC] is designed to be built either with maven or with make. If you build EC] with maven, then it will
package all of ECJ into a single jar file. If you build with make, you have the option of packaging into a
single jar file or into a directory of class files and resources. Building to a directory is how EC]J classically
was constructed, but nowadays a jar file is more useful. However even if you build to a jar file, it’s still useful
to have the resources and java files on-hand so you know what various ECJ applications can do and how to
run them.

After unpacking ECJ, you're left with one directory called ecj where you will find several items:

A top-level README.md file, which should be self-explanatory in its importance.

ECJ’s LICENSE file, which describes the primary license (AFL 3.0, a BSD-style academic license).
A CHANGES log, which lists all past changes to all versions (including the latest).

A Makefile for building via make.

A pom.xml for building via Maven.

The docs directory. This contains most of the ECJ] documentation.

The start directory. This contains various scripts for starting up ECJ: though in truth we rarely use
them.

The lib directory. This contains any additional libraries that maven (not make) will need to build ECJ
(to build with make, you'll use a different mechanism).

The classes directory. This contains the class files, and possibly other resources (see next bullet), for ECJ
after it has been built.

14

¢ The src directory, which contains the main Java code and the internal library test code. Of particular
interest to you will be the directories src/main/java/ec/, which is the top-level package for ECJ, and
src/main/java/resources/ec/. The src/main/java/ec/ directory holds the top-level package for ECJ,
ec. The src/main/java/resources/ec directory is an identical-structured directory containing various
resources (notably parameter files). If you build with make, then these resources will get merged into
the classes directory.

1.3.1 The ec Directory, the CLASSPATH, and jar files

The ec (ecj/src/main/java/ec/) directory is EC]’s top-level package. Every subdirectory is a subpackage,
and most of them are headed by helpful README files which describe the contents of the directory. Most
packages contain not only Java files and class files but also parameter files and occasional data files: EC]
was designed originally for the class files to be compiled and stored right alongside the Java files in these
directories, though it can be used with the separate-build-area approach taken by IDEs like Eclipse.

Because ec is the top-level package, you can compile EC]J, more or less, by just sticking its parent directory
(the ecj directory), in your CLASSPATH. You will also need to add certain jar files in order to compile EC]’s
distributed evaluation and island model facilities, and its GUI. You can get these jar files from the ECJ
main website (http://cs.gmu.edu/~eclab/projects/ecj/). Note that none of these libraries is required. For
example, if the libraries for the distributed evaluator and island model are missing, ECJ will compile but will
complain if you try to run those packages with compression turned on (a feature of the packages). The GUI
library is optional to EC]J, so if you don’t install its libraries, you can still compile EC] by just deleting the
ec/display directory.

1.3.1.1 The ec/display Directory: ECJ’s GUI

This directory contains ECJ]’s GUL It’s in a state of disrepair and I suggest you do not use it. EC] is really best
as a command line program. In fact, as mentioned above, you can simply delete the directory and ECJ will
compile just fine.

1.3.1.2 The ec/app Directory: Demo Applications

This directory contains all the demo applications. We have quite a number of demo applications, many
sharing the same subdirectories. Read the provided README file for some guidance.

1.3.2 The docs Directory

This directory contains all top-level documentation of ECJ except for the various README files scattered
throughout the package. The index.html file provides the top-level entry point to the documentation.
The documentation includes:

¢ Introduction to parameters in ECJ
¢ Class documentation

e ECJ’s four tutorials and post-tutorial discussion. The actual tutorial code is located in the ec/app
directory.

¢ An (old) overview of ECJ
¢ An (old) discussion of ECJ’s warts
¢ Some (old) graph diagrams of ECJ’s structure

e This manual

15

1.3.2.1 Tutorials

ECJ has four tutorials which introduce you to the basics of coding on the system. I strongly suggest you go
through them before continuing through the rest of this manual. They are roughly:

1. A simple GA to solve the MaxOnes problem with a boolean representation.
2. A GA to solve an integer problem, with a custom mutation pipeline.

3. An evolution strategy to solve a floating-point problem, with a custom statistics object and reading
and writing populations.

4. A genetic programming problem, plus some elitism.

As should be obvious from the rest of this manual, this barely scratches the surface of EC]. No mention
is given of parallelism, differential evolution, coevolution, multiobjective optimization, list and ruleset
representations, grammatical encoding, spatial embedding, etc. But it’ll get you up to speed.

16

Chapter 2

ec.Evolve and Utility Classes

ECJ is big. Let us begin.

ECJ’s entry point is the class ec.Evolve. This class is little more than bootstrapping code to set up the ECJ
system, construct basic datatypes, and get things going.
To run an ECJ process, you fire up ec.Evolve with certain runtime arguments.

java ec.Evolve -file myParameterFile.params -p param=value -p param=value (etc.)

EC]J sets itself up entirely using a parameter file. To this you can add additional command-line parame-
ters which override those found in the parameter file. More on the parameter file will be discussed starting

in Section 211
For example, if you were presently in the ecj directory, you could do this:

java ec.Evolve -file ec/app/ecsuite/ecsuite.params

This all assumes that the parameter file is a free-standing file in your filesystem. But it might not be:
you might want to start up from a parameter file stored within a Jar file (for example if your ECJ library is
bundled up into a Jar file like ecj.jar). To do this you can specify the parameter file as a file resource relative
to the .class file of a class (a-la Java’s Class.getResource(...) method):

java ec.Evolve -from myParameterFile.params -at relative.to.Classname -p param=value (efc.)

... for example:

java ec.Evolve -from ecsuite.params -at ec.app.ecsuite.ECSuite

You can also say:

java ec.Evolve -from myParameterFile.params -p param=value (etc.)

In which case ECJ will assume that the class is ec.Evolve. In this situation, you’d probably need to specify
the parameter file as a path away from ec.Evolve (which is in the ec directory), for example:

java ec.Evolve -from app/ecsuite/ecsuite.params

(Note the missing ec/...). See Section2.1|for more discussion about all this.

17

EC]J can also restart from a checkpoint file it created in a previous run:

java ec.Evolve -checkpoint myCheckpointFile.gz

Checkpointing will be discussed in Section[2.3]
Last but not least, if you forget this stuff, you can always type this to get some reminders:

java ec.Evolve -help

The purpose of ec.Evolve is to construct an ec.EvolutionState instance, or load one from a checkpoint file;
then get it running; and finally clean up. The ec.EvolutionState class actually performs the evolutionary
process. Most of the stuff ec.EvolutionState holds is associated with evolutionary algorithms or other
stochastic optimization procedures. However there are certain important utility objects or data which are
created by ec.Evolve prior to creating the ec.EvolutionState, and are then stored into ec.EvolutionState after it
has been constructed. These objects are:

¢ The Parameter Database, which holds all the parameters ec.EvolutionState uses to build and run the
process.

The Output, which handles logging and writing to files.

The Checkpointing Facility to create checkpoint files as the process continues.

The Number of Threads to use, and the Random Number Generators, one per thread.

¢ A simple declaration of the Number of Jobs to run in the process.

The remainder Section [2] discusses each of these items. It's not the most exciting of topics: but it's
important in order to understand the rest of the ECJ process.

2.1 The Parameter Database

To build and run an experiment in ECJ, you typically write three things:

¢ (InJava) A problem which evaluates individuals and assigns fitness values to them.

¢ (InJava) Depending on the kind of experiment, various components from which individuals can be
constructed — for example, for a genetic programming experiment, you'll need to define the kinds of
nodes which can be used to make up the individual’s tree.

¢ (In one or more Parameter Files) Various parameters which define the kind of algorithm you are using,
the nature of the experiment, and the makeup of your populations and processes.

Let’s begin with the third item. Parameters are the lifeblood of ECJ: practically everything in the system
is defined by them. This makes ECJ highly flexible; but it also adds complexity to the system.

ECJ loads parameter files and stores them into the ec.util. ParameterDatabase object, which is available
to nearly everything. Parameter files are an extension of the files used by Java’s old java.util.PropertyList
object. Parameter files usually end in " . params", and contain parameters one to a line. Parameter files may
also contain blank (all whitespace) lines, which are ignored, and also lines which start with "#", which are
considered comments and also ignored. An example comment:

This is a comment
The parameter lines in a parameter file typically look like this:

parameter.name = parameter value

18

A parameter name is a string of non-whitespace characters except for "=". After this comes some optional
whitespace, then an "=", then some more optional whitespace.! A parameter value is a string of characters,
including whitespace, except that all whitespace is trimmed from the front and end of the string. Notice the
use of a period the parameter name. It’s quite a common convention to use periods in various parameter
names in ECJ. We’ll get to why in a second.

Here are some legal parameter lines:

generations = 400
pop.subpop.0.size =1000
pop . subpop= ec.Subpopulation

Here are some illegal parameter lines:

generations
= 1000
pop subpop = ec.Subpopulation

2.1.1 Inheritance

Parameter files may be set up to derive from one or more other parameter files. Let’s say you have two
parameter files, a.params and b.params. Both are located in the same directory. You can set up a.params to
derive from b.params by adding the following line as the very first line in the a.params file:

parent.0 = b.params
This says, in effect: “include in me all the parameters found in the b.params file, but any parameters I
myself declare will override any parameters of the same name in the b.params file.” Note that b.params may
itself derive from some other file (say, c.params). In this case, a.params receives parameters from both (and

parameters in b.params will likewise override ones of the same name in c.params).
Let’s say that b.params is located inside a subdirectory called foo. Then the line will look like this:

parent.0 = foo/b.params

Notice the forward slash: ECJ was designed on UNIX systems. Likewise, imagine if b.params was stored
in a sibling directory called bar: then we might say:

parent.0 = ../bar/b.params

You can also define absolute paths, UNIX-style:

parent.0 = /tmp/myproject/foo.params

Long story short: parameter files are declared using traditional UNIX path syntax.
A parameter file can also derive from multiple parent parameter files, by including each at the beginning
of the file, with consecutive numbers, like this:

parent.0 = b.params
parent.1l = yo/d.params
parent.2 = ../z.params

This says in effect: “first look in a.params for the parameter. If you can’t find it there, look in b.params and,
ultimately, all the files b.params derives from. If you can’t find it in any of them, look in d.params and all the

1Actually, you can omit the "=", but it’s considered bad style.

19

files it derives from. If you can’t find it in any of them, look in z.params and all the files it derives from. If
you've still not found the parameter, give up.”

This is essentially a depth-first search through a tree or DAG, with parents overriding their children
(the files they derive from) and earlier siblings overriding later siblings. Note that this multiple inheritance
scheme is not the same as C++ or Lisp/CLOS, which use a distance measure!

Parent parameter files can be explicit files on your file system (as shown above) or they can be files located
in JAR files etc. But how do you refer to a file inside a JAR file? It’s easy: refer to it using a class relative
path (see the next Section, , which defines the path relative to the class file of some class. For example,
suppose you're creating a parameter file whose parent is ec/app/ant/ant.params. But you're not using ECJ in
its unpacked form, but rather bundled up into a JAR file. Thus ec/app/ant/ant.params is archived in that JAR
file. Since this file is right next to ec/app/ant/Ant.class— the class file for the ec.app.ant.Ant class—you can
refer to it as:

parent.0 = Qec.app.ant.Ant ant.params

If your parameter file is already in a JAR file, and it uses ordinary relative path names to refer to its
parents (like ../z.params), these will be interpreted as other files in the archived file system inside that JAR
file. To escape the JAR file you have to use an absolute path name, such as

parent.0 = /tmp/foo.params

It’s pretty rare to need that though, and hardly good style. The whole point of JAR files is to encapsulate
functionality into one package.

Overriding the Parameter File When you fire up ECJ, you point it at a single parameter file, and you can
provide additional parameters at the command-line, like this:

java ec.Evolve -file parameterFile.params -p command-line-parameter=value \
-p command-line—-parameter=value ...

Furthermore, your program itself can submit parameters to the parameter database, though it’s very
unusual to do so. When a parameter is requested from the parameter database, here’s how it’s looked up:

1. If the parameter was declared by the program itself, this value is returned.
2. Else if the parameter was provided on the command line, this value is returned.

3. Else the parameter is looked up in the provided parameter file and all derived files using the inheritance
ordering described earlier.

4. Else the database signals failure.

2.1.2 Kinds of Parameters
ECJ supports the following kinds of parameters:
¢ Numbers. Either long integers or double floating-point values. Examples:
generations = 500

tournament.size = 3.25
minimum-fitness = -23.45e15

e Arbitrary Strings trimmed of whitespace. Example:

crossover-type = two-point

20

* Booleans. Any value except for "false" (case-insensitive) is considered to be true. It’s best style to use
lower-case "true" and "false". The first two of these examples are false and the second two are true:

print-params = false
die-a-painful-death = fAlSe
pop.subpop.0.perform-injections = true
quit-on-run-complete = whatever

* Class Names. Class names are defined as the full class name of the class, including the package.
Example:

pop.subpop.0.species = ec.gp.GPSpecies

¢ File or Resource Path Names. Paths can be of four types.

— Absolute paths, which (in UNIX) begin with a "/", stipulate a precise location in the file system.

- Relative paths, which do not begin with a "/", are defined relative to the parameter file in which
the parameter was located. If the parameter file was an actual file in the filesystem, the relative
path will also be considered to point to a file. If the parameter file was in a jar file, then the relative
path will be considered to point to a resource inside the same jar file relative to the parameter file
location. You've seen relative paths already used for derived parameter files.

— Execution relative paths are defined relative to the directory in which the ECJ process was
launched. Execution relative paths look exactly like relative paths except that they begin with the
special character "$".

— Class relative paths define a path relative to the class file of a class. They have two parts: the
class in question, and then the path to the resource relative to it. If the class is stored in a Jar file,
then the path to the resource will also be within that Jar file. Otherwise the path will point to an
actual file. Class relative paths begin with "@", followed by the full class name, then spaces or
tabs, then the relative path.

Examples of all four kinds of paths:

stat.file = $out.stat

eval.prob.map-file = ../dungeon.map
temporary-output-file = /tmp/output.txt

image = Qec.app.myapp.MyClass images/picture.png

If the parameter is for a file meant to be opened read-only, any of the four approaches above will
work fine. But if the parameter is for a writable file, then you have an issue. As discussed in Section
the parameter in question could refer to a file in your operating system, or it could refer to a file
bundled inside a Java jar file. In this second case, the file cannot be written to.

The only kinds of paths which can refer to things inside jar files are relative paths and class-relative
paths. Thus if you stick with absolute paths or execution-relative paths, you know you’ll be referring
to a writable file. For this reason we recommend:

— Read-only Files should use class-relative paths or relative paths, and should only be accessed

using getResource(...) (see Section2.1.5).
— Read-Write Files should use absolute paths or (in most cases) execution-relative paths, and
should only be accessed using getFile(...) (see Section [2.1.5).

e Arrays. ECJ supports loading arrays of doubles,? but does not have direct support for loading arrays
of other types. However it has a convention you should be made aware of. It's common for arrays to

2See the various “getDoubles” methods in Section

21

be loaded by first stipulating the number of elements in the array, then stipulating each array element
in turn, starting with 0. The parameter used for the number of elements differs from case to case. Note
the use of periods prior to each number in the following example:

gp.fs.0.size = 6

gp.fs.0.func.0 = ec.app.ant.func.Left
gp.fs.0.func.1 = ec.app.ant.func.Right
gp.fs.0.func.2 = ec.app.ant.func.Move
gp.fs.0.func.3 = ec.app.ant.func.IfFoodAhead
gp.fs.0.func.4 = ec.app.ant.func.Progn2
gp.fs.0.func.5 = ec.app.ant.func.Progn3

The particulars vary. Here’s another, slightly different, example:

exch.num-islands = 8
exch.island.0.id = SurvivorIsland
exch.island.1.id = GilligansIsland
exch.island.2.id = FantasyIsland
exch.island.3.id = TemptationIsland
exch.island.4.id = Rhodelsland
exch.island.5.id = EllisIsland
exch.island.6.id = ConeyIsland
exch.island.7.id = Treasurelsland

~No 0k W= O

Anyway, you get the idea.

2.1.3 Namespace Hierarchies and Parameter Bases

ECJ has lots of parameters, and by convention organizes them in a namespace hierarchy to maintain some
sense of order. The delimiter for paths in this hierarchy is— you guessed it — the period.

The vast majority of parameters are used by one Java object or another to set itself up immediately after it
has been instantiated for the first time. EC] has an important convention which uses the namespace hierarchy
to do just this: the parameter base. A parameter base is essentially a path (or namespace, what have you) in
which an object expects to find all of its parameters. The prefix for this path is typically the parameter name
by which the object itself was loaded.

For example, let us consider the process of defining the class to be used for the global population. This
class is found in the following parameter:

pop = ec.Population

EC]J looks for this parameter, expects a class (in this case, ec.Population), loads the class, and creates one
instance. It then calls a special method (setup(...), we'll discuss it later) on this class so it can set itself up
from various parameters. In this case, ec.Population needs to know how many subpopulations it will have.
This is defined by the following parameter:

pop.subpops = 2

ec.Population didn’t know that it was supposed to look in pop . subpops for this value. Instead, it only
knew that it needed to look in a parameter called subpops. The rest (in this case, pop) was provided
to ec.Population as its parameter base: the text to be prepended —plus a period —to all parameters that
ec.Population needed to set itself up. It’s not a coincidence that the parameter base also happened to be the
very parameter which defined ec.Population in the first place. This is by convention.

Armed with the fact that it needs to create an array of two subpopulations, ec.Population is ready to load
the classes for those two subpopulations. Let’s say that for our experiment we want them to be of different
classes. Here they are:

22

pop.subpop.0 = ec.Subpopulation
pop.subpop.l = ec.app.myapp.MySpecialSubpopulation

The two classes are loaded and one instance is created of each of them. Then setup(...) is called on each of
them. Each subpopulation looks for a parameter called size to tell it how may individuals will be in that
subpopulation. Since each of them is provided with a different parameter base, they can have different sizes:

pop.subpop.0.size = 100
pop.subpop.1.size 512

Likewise, each of these subpopulations needs a “species”. Presuming that the species are different classes,
we might have:

pop.subpop.0.species = ec.vector.VectorSpecies
pop.subpop.1l.species = ec.gp.GPSpecies

These species objects themselves need to be set up, and when they do, their parameter bases will be
pop . subpop.0.species and pop.subpop.1.species respectively. And so on.

Now imagine that we have ten subpopulations, all of the same class (ec.Subpopulation), and all but the first
one has the exact same size. We’d wind up having to write silly stuff like this:

pop.subpop.0.size = 1000
pop.subpop.1l.size = 500
pop.subpop.2.size = 500
pop.subpop.3.size = 500
pop.subpop.4.size = 500
pop.subpop.5.size = 500
pop.subpop.6.size = 500
pop.subpop.7.size = 500
pop.subpop.8.size = 500
pop.subpop.9.size = 500

That’s a lot of typing. Though I am saddened to report that EC]’s parameter files do require a lot of typing,
at least the parameter database facility offers an option to save our fingers somewhat in this case. Specifically,
when the ec.Subpopulation class sets itself up each time, it actually looks in not one but two path locations for
the size parameter: first it tacks on its current base (as above), and if there’s no parameter at that location,
then it tries tacking on a default base defined for its class. In this case, the default base for ec.Subpopulation
is the prefix ec. subpop. Armed with this we could simply write:

ec.subpop.size = 500
pop.subpop.0.size = 1000

When EC]J looks for subpopulation 0s size, it’ll find it as normal (1000). But when it looks for subpopula-
tion 1 (etc.), it won't find a size parameter in the normal location, so it'll look in the default location, and use
what it finds there (500). Only if there’s no parameter to be found in either location will ECJ signal an error.

It’s important to note that if a class is loaded from a default parameter, this doesn’t mean that the default
parameter will become its parameter base: rather, the original expected location will continue to be the base.
For example, imagine if both of our Species objects were the same class, and we had defined them using the
default base. That is, instead of

pop.subpop.0.species = ec.vector.VectorSpecies
pop.subpop.1l.species = ec.vector.VectorSpecies

...we simply said

23

ec.subpop.species = ec.vector.VectorSpecies

When the species for subpopulation 0 is loaded, its parameter base is not going to be ec . subpop. species.
Instead, it will still be pop . subpop.0.species. Likewise, the parameter base for the species of subpopulation
1 will still be pop.subpop.1.species.

Keep in mind that all of this is just a convention. You can use periods for whatever you like ultimately.
And there exist a few global parameters without any base at all. For example, the number of generations is
defined as

generations = 200

...and the seed for the random number generator the fourth thread is

seed.3 = 12303421

...even though there is no object set up with the seed parameter, and hence no object has seed as its parameter
base. Random number generators are one of the few rare objects in ECJ which are not specified from the
parameter file.

2.1.4 Parameter Files in Jar Files

Parameter files don’t have to be just in your file system: they can be bundled up in jar files. If a parameter
file is being read from a jar file, its parents will be generally assumed to be from the same jar file as well if
they’re relative paths (they don’t start with "’ /" in UNIX).

So how do you point to a parameter file in a jar file to get things rolling? You can run ECJ like this:

java ec.Evolve -from parameterFile.params -at relative.class.Name

This instructs ECJ to look for the .class file of the class relative.class.Name, be it in the file system or in a Jar
file. Once ECJ has found it, it looks for the path parameterFile.params relative to this file. You can omit the
classname, which causes ECJ to assume that the class in question is ec.Evolve. For example, to run the Ant
demo from EC]J (in a Jar file or unpacked into the file system), you could say:

java ec.Evolve -from app/ant/ant.params

Notice it does not say ec/app/ant/ant.params, which is probably what you’d expect if you used "-file"
rather than "-from". This is because ECJ goes to the ec/Evolve.class file, then from there it searches for the
parameter file. The path of the parameter file relative to the ec/Evolve.class file is app/ant/ant.params.

There are similar rules regarding file references (such as parent references) within a parameter file. Let’s
say that your parameter file is inside a jar file. If you say something like:

parent.0 = ../path/to/the/parent.params

... then ECJ will look around inside the same Jar file for this file, rather than externally in the operating
system’s file system or in some other Jar file.

You can escape this however. For example, once your parameter file is inside a Jar file, you can still define
a parent in another Jar file, or in the file system, if you know a another class file it’s located relative to. You
just need to specify another class for ECJ to start at, and a path relative to it, like this:

parent.0 = Qec.foo.AnotherClass relative/path/to/the/parent.params
See the next section for more explanation of that text format.

Last but not least, once your parameter file is in a Jar file, you can refer to a parent in the file system if
you use an absolute path (that is, one which (in UNIX anyway) starts with "’/ "). For example:

24

parent.0 = /Users/sean/myexperiment/other.params

Absolute path names aren’t very portable and aren’t recommended.

2.1.5 Accessing Parameters

Parameters are looked up in the ec.util.ParameterDatabase class, and parameter names are specified using
the ec.Parameter class. The latter is little more than a cover for Java strings. To create the parameter
pop.subpop.0.size, we say:

Parameter param = new Parameter ("pop.subpop.0.size");
Of course, usually we don’t want to just make a direct parameter, but rather want to construct one from a

parameter base and the remainder. Let’s say our base (pop. subpop. 0) is stored in the variable base, and we
want to look for size. We do this as:

Parameter param = base.push("size");
Here are some common ec.util.ParameterDatabase methods. Note that all of them look in two places to
find a parameter value. This is what we use to handle “standard” and “default” bases. Typically you'd pass

in the parameter in its standard location, and also (in the “default parameter”) parameter with its default
base configuration. You can pass in null for either, and it'll get ignored.

ec.util.ParameterDatabase Methods

public boolean exists(Parameter parameter, Parameter default)
If either parameter exists in the database, return true. Either parameter may be null.

public String getString(Parameter parameter, Parameter default)
Look first in parameter, then failing that, in default parameter, and return the result as a String, else null if not found.
Either parameter may be null.

public File getFile(Parameter parameter, Parameter default)
Look first in parameter, then failing that, in default parameter, and return the result as a File, else null if not found.
Either parameter may be null. Important Note. You should generally only use this method if you are writing to a
file. Otherwise it’s best if you used getResource(...).

public InputStream getResource(Parameter parameter, Parameter default)

Look first in parameter, then failing that, in default parameter, and open an InputStream to the result, else null if not
found. Either parameter may be null. Important Note. This is distinguished from getFile(...) in that the object
doesn’t have to be a file in the file system: it can for example be a location in a jar file. If the parameter specifies an
absolute path or an execution relative path, then a file in the file system will be opened. If the parameter specifies
a relative path, and the parameter database was itself loaded as a file rather than a resource (in a jar file say), then
a file will be opened, else a resource will be opened in the same jar file as the parameter file. You can also specify a
resource path directly.

public Object getInstanceForParameterEq(Parameter parameter, Parameter default, Class superclass)
Look first in parameter, then failing that, in default parameter, to find a class. The class must have superclass as a
superclass, or can be the superclass itself. Instantiate one instance of the class using the default (no-argument)
constructor, and return the instance. Throws an ec.util.ParamClassLoadException if no class is found.

public Object getInstanceForParameter(Parameter parameter, Parameter default, Class superclass)
Look first in parameter, then failing that, in default parameter, to find a class. The class must have superclass as a
superclass, but may not be superclass itself. Instantiate one instance of the class using the default (no-argument)
constructor, and return the instance. Throws an ec.util.ParamClassLoadException if no class is found.

25

public int getBoolean(Parameter parameter, Parameter default, double defaultValue)
Look first in parameter, then failing that, in default parameter, and return the result as a boolean, else defaultValue if
not found or not a boolean. Either parameter may be null.

public int getIntWithDefault(Parameter parameter, Parameter default, int defaultValue)
Look first in parameter, then failing that, in default parameter, and return the result as an int, else defaultValue if not
found or not an int. Either parameter may be null.

public int getInt(Parameter parameter, Parameter default, int minValue)
Look first in parameter, then failing that, in default parameter, and return the result as an int, else minValue—1 if not
found, not an int, or < minValue. Either parameter may be null.

public int getIntWithMax(Parameter parameter, Parameter default, int minValue, int maxValue)
Look first in parameter, then failing that, in default parameter, and return the result as an int, else minValue—1 if not
found, not an int, < minValue, or > maxValue. Either parameter may be null.

public long getLongWithDefault(Parameter parameter, Parameter default, long defaultValue)
Look first in parameter, then failing that, in default parameter, and return the result as a long, else defaultValue if not
found or not a long. Either parameter may be null.

public long getLong(Parameter parameter, Parameter default, long minValue)
Look first in parameter, then failing that, in default parameter, and return the result as a long, else minValue—1 if not
found, not a long, or < minValue. Either parameter may be null.

public long getLongWithMax(Parameter parameter, Parameter default, long minValue, long maxValue)
Look first in parameter, then failing that, in default parameter, and return the result as a long, else minValue—1 if not
found, not a long, < minValue, or > maxValue. Either parameter may be null.

public float getFloatWithDefault(Parameter parameter, Parameter default, float defaultValue)
Look first in parameter, then failing that, in default parameter, and return the result as a float, else defaultValue if not
found or not a float. Either parameter may be null.

public float getFloat(Parameter parameter, Parameter default, float minValue)
Look first in parameter, then failing that, in default parameter, and return the result as a float, else minValue—1 if not
found, not a float, or < minValue. Either parameter may be null.

public float getFloatWithMax(Parameter parameter, Parameter default, float minValue, float maxValue)
Look first in parameter, then failing that, in default parameter, and return the result as a float, else minValue—1 if not
found, not a float, < minValue, or > maxValue. Either parameter may be null.

public double getDoubleWithDefault(Parameter parameter, Parameter default, double defaultValue)
Look first in parameter, then failing that, in default parameter, and return the result as a double, else defaultValue if
not found or not a double. Either parameter may be null.

public double getDouble(Parameter parameter, Parameter default, double minValue)
Look first in parameter, then failing that, in default parameter, and return the result as a double, else minValue—1 if
not found, not a double, or < minValue. Either parameter may be null.

public double getDoubleWithMax(Parameter parameter, Parameter default, double minValue, double maxValue)
Look first in parameter, then failing that, in default parameter, and return the result as a double, else minValue—1 if
not found, not a double, < minValue, or > maxValue. Either parameter may be null.

public double getDoubles(Parameter parameter, Parameter default, double minValue)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values, and
return the result as an array of doubles, else null if they are improperly formatted or if any of them is < minValue,
or if the list is zero in length, or if it has garbage at the end of it. Either parameter may be null.

public double getDoubles(Parameter parameter, Parameter default, double minValue, int expectedLength)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values, and
return the result as an array of doubles, else null if they are improperly formatted or if any of them is < minValue,
or if the list is not expectedLength (> 0) long, or if it has garbage at the end of it. Either parameter may be null.

26

public double getDoublesWithMax(Parameter parameter, Parameter default, double minValue, double maxValue)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values, and
return the result as an array of doubles, else null if they are improperly formatted or if any of them is < minValue,
or > maxValue, or if the list is zero in length, or if it has garbage at the end of it. Either parameter may be null.

public double getDoublesWithMax(Parameter parameter, Parameter default, double minValue, double maxValue,
int expectedLength)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values, and
return the result as an array of doubles, else null if they are improperly formatted or if any of them is < minValue,
or > maxValue, or if the list is not expectedLength (> 0) long, or if it has garbage at the end of it. Either parameter
may be null.

public double getDoublesUnconstrained(Parameter parameter, Parameter default)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values, and
return the result as an array of doubles, else null if they are improperly formatted, or if the list is zero in length, or
if it has garbage at the end of it. Either parameter may be null.

public double getDoublesUnconstrained(Parameter parameter, Parameter default, int expectedLength)
Look first in parameter, then failing that, in default parameter, for a space- or tab-delimited list of double values,
and return the result as an array of doubles, else null if they are improperly formatted, or if the list is not
expectedLength (> 0) long, or if it has garbage at the end of it. Either parameter may be null.

2.1.6 Parameter Macros

The get() method can also handle special macro parameters. Macro parameter names will end in alias, which
means you cannot have any parameter names which end with this word. The idea behind a macro parameter
is that it can substitute one substring for another among your parameter names, making your parameters
potentially much simpler. Macros work along period boundaries.

2.1.6.1 The Alias Macro
The alias parameter macro works as follows. Let’s say that you have:

hello.there.alias = foo

This means to replace hello.there with foo and continue looking up the parameter. For example, when
When query for the parameter

hello.there.mom.how.are.you

it is converted to the parameter

foo.mom.how.are.you

which is then looked up in the database. Furthermore

hello.there.partner

is converted to the parameter

foo.partner

and

hello.there

27

is converted to just the parameter

foo

Which are then looked up in the database. Conflicting rules are handled in order of specificity. For example,
if you had

hello.there.alias = foo
hello.there.mom.alias = bar
hello.there.mom.how.are.you = whoa
hello.there.brother = hey

Now let’s say we queried

hello.there.dad

This would get converted to

foo.dad

which would then get looked up. But if we queried

hello.there.mom.42

Then our second rule would take precedence, because it’s more specific, and instead of converting to
foo.mom.42 we would instead convert to

bar.42
which would then get looked up. Finally, if we queried

hello.there.mom.how.are.you

Then this would take precedence and the system would immediately return whoa. Furthermore, if we
queried

hello.there.brother

This would immediately return hey, because exact parameters take precedence over macros.
Additionally note that the substitution is delimited by the periods. So querying

hello.therewhoa

will not get translated. And furthermore the substitution must start at the start of the parameter name, so
querying
my.hello.there.mom

will also not get translated.
Beware of cycles! For example, if you have

foo
a.b

a.b.alias
foo.alias

... and you query

a.b.yo

28

... you should get an error reported and null returned.

2.1.7 Debugging Your Parameters

Your ECJ experiment is loading and running, but how do you know you didn’t make a mistake in your
parameters? How do you know EC]J is using the parameters you stated rather than some default values? If
you include the following parameter in your collection:

print-params = true

...then ECJ will print out all the parameters which were used or tested for existence. For example, you might
get things like this printed out:

!P: pop.subpop.0.file

P: pop.subpop.0.species = ec.gp.GPSpecies

<P: ec.subpop.species

P: pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline
<P: gp.species.pipe

'E: pop.subpop.0.species.pipe.prob

P: pop.subpop.0.species.pipe.num-sources = 2

<P: breed.multibreed.num-sources

P: pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
<P: breed.multibreed.source.0

E: pop.subpop.0.species.pipe.source.0.prob = 0.9

<E: gp.koza.xover.prob

A P means that a parameter value was accessed (or attempted to). An E means that a parameter was
tested for existence. An ! means that the parameter did not exist. A < means that the parameter existed in
the default base as well as the primary base, but the value of the primary base was the one used. In this last
case, the primary base is printed out on the line immediately prior.

There are a few other debugging parameters of less value. At the end of a run, ECJ can dump all the
parameters in the database; all the parameters accessed (retrieved or tested for existence); all the parameters
used (retrieved); all the parameters not accessed; and all the parameters not used. Pick your poison. Here are
the relevant parameters:

print-all-params = true
print-accessed-params = true
print-used-params = true
print-unaccessed-params = true
print-unused-params = true

Typically you'd only want to set one of these to true. The most useful one is print-unaccessed-params,
since by examining the results you can see if a parameter you set was used or not: if not, probably because it
wasn’t typed right. It also tells you about old, disused parameters. In fact, as I was writing this manual and
needed print-unaccessed-params examples, I ran the Lawnmower problem (in ec/app/lawnmower) and
got the following:

29

Unaccessed Parameters

(Ignore parent.x references)

gp.fs.2.info = ec.gp.GPFuncInfo
gp.koza.grow.min-depth = 5

gp.tc.0.init.max = 6

gp.koza.mutate.build.0 = ec.gp.koza.GrowBuilder
gp.tc.l.init.max = 6

parent.0 = ../../gp/koza/koza.params
gp.koza.grow.max-depth = 5

gp.tc.2.init.max = 6

gp.koza.mutate.ns.0 = ec.gp.koza.KozaNodeSelector
gp.fs.0.info = ec.gp.GPFuncInfo
gp.koza.half.growp = 0.5

gp.tc.0.init.min = 2

gp.koza.mutate.source.0 = ec.select.TournamentSelection
gp.koza.mutate.tries = 1

gp.tc.1l.init.min = 2

gp.fs.1.info = ec.gp.GPFuncInfo

gp.tc.2.init.min = 2

gp.koza.mutate.maxdepth = 17

Most of these unaccessed parameters are perfectly fine; standard boilerplate stuff for genetic pro-
gramming that didn’t happen to be used by this application. But then there’s the first parameter:
gp.fs.2.info = ec.gp.GPFuncInfo, and two others like it later. I had deleted the GPFuncInfo class from
the ECJ distribution well over a year ago. But apparently I forgot to remove a vestigial parameter which
referred to it. Oops!

By the way, note the request to ignore “parent.x references” —this means to ignore the stuff like
parent.0 = ../../gp/koza/koza.params that gets printed out with everything else.

For more on debugging EC]J, see Section[3.8]

2.1.8 Building a Parameter Database from Scratch

This is starting to get inside-baseball, so you may wish to skip it for now. Normally ParameterDatabase is
constructed from the Evolve class on your behalf. But in some unusual situations you may need to build
one yourself. Most notably, if you're attaching EC]J as a sub-module under some application or toolkit (see
Section[2.7), you may need to make a custom ParameterDatabase with which to run EC]J.

A typical ParameterDatabase is constructed from a file or a resource relative to a class. When this is done,
what you receive is an empty ParameterDatabase which points to another ParameterDatabase, The empty
ParameterDatabase is free for you to modify. For example, if you call...

File file = ...
String[] commandLineArguments = ...
ParameterDatabase db = new ParameterDatabase(file, commandLineArguments);

... you will get back an empty ParameterDatabase whose parent is a ParameterDatabase holding the
commands-line arguments, whose parent is a ParameterDatabase constructed from the file. That final
ParameterDatabase may have further parents as specified in the file itself.

Other ParameterDatabase constructors, particularly ones which do not concern themselves with specific
files, will not have this feature.

The particular chain, if there is one at all, varies depending on the constructor you call. The one in the
example above is the most common constructor.

ec.util.ParameterDatabase Constructor Methods

30

public ParameterDatabase()

Creates a simple empty parameter database with no parents. The database hierarchy is simply:

public ParameterDatabase(Dictionary map)
Creates a parameter database with the given Dictionary. Both the keys and values will be run through toString()
before adding to the database. Keys are parameters. Values are the values of the parameters. If parents are defined
in the map’s parameters, they will be attempted to be loaded: only parents which are absolute path names are
permitted. Beware that a ParameterDatabase is itself a Dictionary; but if you pass one in here you will only get the

lowest-level elements. The database hierarchy is : —> .-+ Note that unlike other methods, this method

does not create an empty base parameter database. If you want a hierarchy like —>—> -+ - youcan
achieve this with new ParameterDatabase().addParent (new ParameterDatabase (myMap))

public ParameterDatabase(InputStream stream)
Creates a parameter database by reading parameters from the provided stream. If parents are defined among
the parameters, they will be attempted to be loaded: only parents which are absolute path names are permitted.
Beware that a ParameterDatabase is itself a Dictionary; but if you pass one in here you will only get the lowest-level

elements. The database hierarchy is : —> - -+ Note that unlike other methods, this method does not create

an empty base parameter database. If you want a hierarchy like ’ empty ‘—>’ stream ‘—> -+ you can achieve this

with new ParameterDatabase() .addParent (new ParameterDatabase (myStream))

public ParameterDatabase(File file)
Creates a new parameter database from the given file (and possibly parent files). The database hierarchy is:

public ParameterDatabase(File file, String][] args)
Creates a new parameter database from the given file (and possibly parent files). The database hierarchy is:

|empty | args | file |+ - -

public ParameterDatabase(String pathNameRelativeToClassFile, Class cls)
Creates a new parameter database from the given file (and possibly parent files). The file is located a path
name relative to object (.class) file of the provided class. For example, if the class were Foo, and its object file
was located at /a/b/Foo.class, and the path name relative to the class file was ../c/bar.params, then the file
would be expected to be located at /a/c/bar.params. This also works inside jar files. The database hierarchy is:

’ empty ‘%’ pathNameRelativeToClassFile |— - - -

public ParameterDatabase(String pathNameRelativeToClassFile, Class cls, String[] args)
Creates a new parameter database from the given file (and possibly parent files). The file is located a path
name relative to object (.class) file of the provided class. For example, if the class were Foo, and its object file
was located at /a/b/Foo.class, and the path name relative to the class file was ../c/bar.params, then the file
would be expected to be located at /a/c/bar.params. This also works inside jar files. The database hierarchy is:

’ empty ‘—>’ args ‘—)’ pathNameRelativeToClassFile |— - - -

Once you have created a ParameterDatabase, you can attach parent ParameterDatabases to it. You can
also set values in the ParameterDatabase, and remove values (though you cannot remove values from its
parents without accessing the parents themselves), among other operations.

ec.util.ParameterDatabase Methods

public void addParent(ParameterDatabase database)
Adds a parent database to the parameter database.

31

public void set(Parameter parameter, String value)
Sets a parameter in the immediate parameter database. This overrides settings in parents. The value is first
trimmed of whitespace.

public void remove(Parameter parameter)
Removes a parameter from an immediate parameter database (but not from its parents in the hierarchy).

public ParameterDatabase getLocation(Parameter parameter)
Returns the parameter database in the parent hierarchy which defined the currently-used value for the given
parameter.

public String getLabel()
Returns a string describing the location of the ParameterfDatabase (such as the file name from which it was
loaded), or the empty string if there is nothing appropriate.

2.2 Output

ECJ has its own idiosyncratic logging and output facility called ec.util. Output. This is largely historical: EC]
predates any standard logging facilities available in Java. The facility is in part inspired by a similar facility
that existed in the lil-gp C-based genetic programming system. The system has generally worked out well
so we’ve not seen fit to replace it.

The primary reason for the central logging and output facility is to survive checkpointing and restarting
from checkpoints (see Section[2.3). Except for the occasional debugging statement which we’ve forgotten to
remove, all output in ECJ goes through ec.util. Output.

The output facility has four basic features:

* Logs, attached to Files or to Writers, which output text of all kinds. Logs can be restarted, meaning that
they can be reopened when EC]J is restarted from a checkpoint.

¢ Two dedicated Logs, the Message Logs, which write text out to stdout and stderr respectively.
¢ The ability to print arbitrary text to any Log.

¢ Short Announcements of different kinds. Announcements are different from arbitrary text in that they
are not only written out to Logs (usually the stderr message Log) but are also stored in memory. This
allows them to be checkpointed and automatically reposted after ECJ has started up again from a
checkpoint.

The least important announcements are simple messages. One special kind of message is the system
message generated by ECJ itself. Next in importance are warnings. One special kind of warning, the
once-only-warning, will be written only once to a Log even if it's posted multiple times. Next are
basic errors. Things can be configured such that after a bunch of errors, ECJ will quit. Finally, fatal
errors will cause ECJ to quit immediately rather than wait for more errors to accumulate.

2.21 Creating and Writing to Logs

There are many methods in ec.util.Output for creating or accessing Logs. Here are some common ones:

ec.util.Qutput Methods

public int addLog(File file, boolean appendOnRestart)
Add alog on a given file. If EC] is restarted from a checkpoint, and appendOnRestart is true, then the log will be
appended to the current file contents. Else they will be replaced. The Log is registered with ec.util.Output and its
log number is returned.

32

public int addLog(File file, boolean appendOnRestart, boolean gzip)
Add alog on a given file. If EC] is restarted from a checkpoint, and appendOnRestart is true, then the log will be
appended to the current file contents. Else they will be replaced. If gzip is true, then the log will be gzipped. You
cannot have both appendOnRestart and gzip true at the same time. The Log is registered with ec.util.Output and its
log number is returned.

public Log getLog(int index)
Returns the log indexed at the given location.

public int numLogs()
Returns the total number of logs.

Two logs are always made for you automatically: a log to stdout (log index 0); and another log to stderr
(log index 1). The stderr log prints all announcements, but the stdout log does not.
Logs have various instance variables, but few are important, except for this one:

public boolean silent = false;

If you set this flag to true, the log will not print anything at all. See section[2.2.2)for more information on
how to do this.
To write arbitrary text to a log, here are the most common methods:

ec.util.Output Methods
public void print(String text, int log number)
Prints a string to a log.

public void printIn(String text, int log number)
Prints a string to a log, plus a newline.

Besides stdout (0) and stderr (1), there are two other special log numbers you should be aware of:

public int ALL_MESSAGE_LOGS;
public int NO_LOGS;

NO_LOGS is a special log value meaning “don’t bother printing this”. It's sometimes used to turn off
printing to certain logs temporarily. ALL_LMESSAGE_LOGS will cause printing to be sent to all logs for which
message logging is turned on. By default that’s just stderr (1). This is not commonly used. To post a message
or generate a warning or error (all of which ordinarily go to the stderr log, and are also stored in memory):

ec.util.OQutput Methods

public void message(String text)
Posts a message.

public void warning(String text)
Posts a warning.

public void warning(String text, Parameter parameter, Parameter default)
Posts a warning, and indicates the parameters which caused the warning. Typically used for cautioning the user
about the parameters he chose.

public void warnOnce(String text)
Posts a warning which will not appear a second time.

public void warnOnce(String text, Parameter parameter, Parameter default)
Posts a warning which will not appear a second time, and indicates the parameters which caused the warning.
Typically used for cautioning the user about the parameters he chose.

33

public void error(String text)
Posts an error message. The contract implied in using this method is that at some point in the near future you will
call exitlfErrors().

public void error(String text, Parameter parameter, Parameter default)
Posts an error message, and indicates the parameters which caused the warning. Typically used for cautioning the
user about the parameters he chose. The contract implied in using this method is that at some point in the near
future you will call exitlfErrors().

public void exitlfErrors()
Exits immediately if an error has been posted.

public void fatal(String text)
Posts an error message and exits immediately.

public void fatal(String text, Parameter parameter, Parameter default)
Posts an error message, indicates the parameters which caused the warning, and exits immediately. Typically
used for cautioning the user about the parameters he chose.

2.2.2 Quieting the Program

EC]J prints a lot of stuff to the screen (both stdout and stderr) when doing its work. Perhaps you’d like to
shut ECJ up. It’s easy. If you set the following parameter:

silent = true

... then ECJ will eliminate both of its stdout and stderr logs, so nothing will be printed to the screen.
This parameter doesn’t prevent EC]J statistics objects from writing to various file logs. However many
statistics objects have similar options to quiet them. See Sections[3.7.3]and

2.2.3 The ec.util.Code Class

EC]J Individuals, Fitnesses, and various other components sometimes need to write themselves to a file in a
way which can both be read by humans and be read back into Java resulting in perfect copies of the original.
This means that neither printing text nor writing raw data binary is adequate.

ECJ provides a utility facility to make doing this task a little simpler. The ec.util. Code class encodes and
decodes basic Java data types (booleans, bytes, shorts, ints, longs, floats, chars, Strings) into Strings which
can be emitted as text. They all have the same pattern:

ec.util.Code Methods

public static String encode(boolean val)
Encodes val into a String and returns it.

public static String encode(byte val)
Encodes val into a String and returns it.

public static String encode(short val)
Encodes val into a String and returns it.

public static String encode(int val)
Encodes val into a String and returns it.

public static String encode(long val)
Encodes val into a String and returns it.

34

public static String encode(float val)
Encodes val into a String and returns it.

public static String encode(double val)
Encodes val into a String and returns it.

public static String encode(char val)
Encodes val into a String and returns it.

public static String encode(String val)
Encodes val into a String and returns it. Obviously encoding a String into a String sounds goofy, but go with us

here.

These methods encode their data in an idiosyncratic way. Here’s a table describing it:

Data Type | Encoding Example
boolean | TorF T
byte | bvalueAsDecimalNumber| b59|
short | svalueAsDecimalNumber| s-321|
int | ivalueAsDecimalNumber| 142391
long | lvalueAsDecimalNumber| 1-342341232|
float | foalueEncodedAsInteger|valuePrintedForHumans| | £-665866527|-9.1340002E14|
double | dwalueEncodedAsLong|valuePrintedForHumans| d4614256656552045848|3.141592653589793|
char | ’characterWithEscapes’ 'w? or >’ or \n’ or ’\’’ or ’\u2FD3’
String | “stringWithEscapes" "Dragon in Chinese is:\n\u2FD3"

These are of course idiosyncratic,® but lacking a Java standard for doing the same task, they do an
adequate job. You're more than welcome to go your own way.

2.2.3.1 Decoding the Hard Way

To decode a sequence of values from a String, you begin by creating an ec.util. DecodeReturn object wrapped
around the String:

DecodeReturn decodeReturn = new DecodeReturn(string);

To decode the next item out of the string, you call:

Code.decode(decodeReturn) ;

The type of the decoded data is stored here:

int type = decodeReturn.type;

... and is one of the following ec.util. DecodeReturn constants:

3The eccentricities in this class stem from it being developed well before Java had any standard way to do such things itself —indeed
Java still doesn’t have a standard way to do most of this. I might improve it in the future, at the very least, by not requiring type
symbols (like b|) in front of integer types. And including methods named things like DecodeReturn.getFloat() which throws exceptions
rather than requiring one to look up type information.

35

public static final byte DecodeReturn. T_ERROR = -1;
public static final byte DecodeReturn. T_-BOOLEAN = O;
public static final byte DecodeReturn. T_BYTE = 1
public static final byte DecodeReturn. T_CHAR = 2
public static final byte DecodeReturn. T_SHORT =
public static final byte DecodeReturn. T_INT = 4;
public static final byte DecodeReturn. T_.LONG = 5;
public static final byte DecodeReturn. T_FLOAT = 6;
public static final byte DecodeReturn. T_.DOUBLE = 7;
public static final byte DecodeReturn. T_STRING = 8;

>

3;

If the type is a boolean (false = 0, true = 1), byte, char, short, int, or long, the result is stored here:

long result = decodeReturn.l;

If the type is a double or float, the result is stored here:

double result = decodeReturn.d;

If the type is a String, the result is stored here:

String result = decodeReturn.s;

To decode the next element out of the String, just call Code.decode(decodeReturn) again. Continue doing
this until you're satisfied or reach a type of T_ERROR.

2.2.3.2 Decoding the Easy Way

One of the most common decoding tasks is reading a decoded number or boolean from a single line, often
preceded with a preamble, such as:

Evaluated: T
.. Or...
Size of Genome: i13|

The Code class has some convenience methods for decoding these lines without having to muck about
with a DecodeReturn:

ec.util.Code Methods

public static float readFloatWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded single floating-point value from the reader, first skipping past an expected
preamble. If the preamble does not exist, or the value does not exist, an error is issued.

public static float readDoubleWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded double floating-point value from the reader, first skipping past an expected
preamble. If the preamble does not exist, or the value does not exist, an error is issued.

public static float readBooleanWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded boolean value from the reader, first skipping past an expected preamble. If the
preamble does not exist, or the value does not exist, an error is issued.

public static byte readByteWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded byte from the reader, first skipping past an expected preamble. If the preamble
does not exist, or the value does not exist, an error is issued.

36

public static short readShortWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded short from the reader, first skipping past an expected preamble. If the preamble
does not exist, or the value does not exist, an error is issued.

public static float readIntegerWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded integer from the reader, first skipping past an expected preamble. If the preamble
does not exist, or the value does not exist, an error is issued.

public static long readLongWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded long from the reader, first skipping past an expected preamble. If the preamble
does not exist, or the value does not exist, an error is issued.

public static char readCharacterWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded character from the reader, first skipping past an expected preamble. If the
preamble does not exist, or the value does not exist, an error is issued.

public static char readStringWithPreamble(String preamble, EvolutionState state, LineNumberReader reader)
Decodes and returns an encoded string from the reader, first skipping past an expected preamble. If the preamble
does not exist, or the value does not exist, an error is issued.

2.3 Checkpointing

ECJ supports checkpointing, meaning the ability to save the state of the stochastic optimization process to a
file at any point in time, and later start a new ECJ process resuming at that exact state. Checkpointing is
particularly useful when doing long processes on shared servers or other environments where the process
may be killed at any time. ECJ’s checkpointing procedure largely consists of applying Java’s serialization
mechanism to the ec.EvolutionState object, which in turn serializes the entire object graph of the current
system.

Turn on checkpointing like this:

checkpoint = true

ECJ typically writes out checkpoint files every n generations (or, in the steady-state evolution situation,
every n generations’ worth of evaluations of individuals). To set n = 4, you'd say:

checkpoint-modulo = 4

ECJ writes to checkpoint files named ec.generation.gz, where generation is the current generation number.
If you don't like the ec prefix for some reason, change it to, say, curmudgeon like this:

checkpoint-prefix = curmudgeon

By default ECJ writes checkpoints to the directory in which you had run Java. But you can set a parameter
to specify a directory to which checkpoints should be written, such as /tmp/:

checkpoint-directory = /tmp/

This directory can be an absolute, relative, execution relative, or class relative path (see Sectionfor a
refresher). But it must be a directory, not a file.

Whenever a checkpoint is written, this fact is also added as an announcement. Here’s the output of a
typical run with checkpointing every two generations.

| ECJ
| An evolutionary computation system (version 19)

37

By Sean Luke

Contributors: L. Panait, G. Balan, S. Paus, Z. Skolicki, R. Kicinger, E. Popovici,
K. Sullivan, J. Harrison, J. Bassett, R. Hubley, A. Desai, A. Chircop,
J. Compton, W. Haddon, S. Donnelly, B. Jamil, and J. 0’Beirne

URL: http://cs.gmu.edu/"eclab/projects/ecj/

Mail: ecj-help@cs.gmu.edu

(better: join ECJ-INTEREST at URL above)

Date: July 10, 2009

Current Java: 1.5.0_20 / Java HotSpot(TM) Client VM-1.5.0_20-141

Required Minimum Java: 1.4

Threads: breed/1 eval/1

Seed: -530434079

Job: O

Setting up

Initializing Generation O

Subpop O best fitness of generation: Fitness: -1542.1932
Generation 1

Subpop O best fitness of generation: Fitness: -1499.354
Checkpointing

Wrote out checkpoint file ec.2.gz

Generation 2

Subpop O best fitness of generation: Fitness: -1497.0482
Generation 3

Subpop O best fitness of generation: Fitness: -1481.9377
Checkpointing

Wrote out checkpoint file ec.4.gz

Generation 4

Subpop O best fitness of generation: Fitness: -1426.816

Imagine that at this point the power failed and we lost the process. We’d like to start again from the
checkpoint file ec.4.gz. We can do that by typing:

java ec.Evolve -checkpoint ec.4.gz

Notice that we don’t provide a parameter file or optional command-line parameters. That’s because
the parameter database has already been built and stored inside the checkpoint file. When ECJ starts up
from a checkpoint file, it starts right where it left off, but first spits out all the announcements that had been
produced up to that point, with one exception. See if you can catch it:

Restoring from Checkpoint ec.4.gz

| ECJ

| An evolutionary computation system (version 19)

| By Sean Luke

| Contributors: L. Panait, G. Balan, S. Paus, Z. Skolicki, R. Kicinger, E. Popovici,
| K. Sullivan, J. Harrison, J. Bassett, R. Hubley, A. Desai, A. Chircop,
| J. Compton, W. Haddon, S. Donnelly, B. Jamil, and J. 0’Beirne

| URL: http://cs.gmu.edu/~eclab/projects/ecj/

| Mail: ecj-help@cs.gmu.edu

| (better: join ECJ-INTEREST at URL above)

| Date: July 10, 2009

| Current Java: 1.5.0_20 / Java HotSpot(TM) Client VM-1.5.0_20-141

| Required Minimum Java: 1.4

38

Threads: breed/1 eval/1
Seed: -530434079

Job: O

Setting up

Initializing Generation O

Subpop O best fitness of generation:

Generation 1

Subpop O best fitness of generation:

Checkpointing
Wrote out checkpoint file ec.2.gz
Generation 2

Subpop O best fitness of generation:

Generation 3

Subpop O best fitness of generation:

Checkpointing
Generation 4

Subpop O best fitness of generation:

Generation 5

Subpop O best fitness of generation:

Checkpointing
Wrote out checkpoint file ec.6.gz
Generation 6

Subpop O best fitness of generation:

Fitness:

Fitness:

Fitness:

Fitness:

Fitness:

Fitness:

Fitness:

-1542.1932

-1499.354

-1497.0482

-1481.9377

-1426.816

-1336.0835

-1302.0063

2.3.1 Implementing Checkpointable Code

ECJ’s checkpoint facility relies on Java’s serialization package. When ECJ checkpoints, it serializes the
EvolutionState. Since everything in an ECJ run is hanging off of the EvolutionState somewhere, the entire EC]

run is serialized out to disk.

Checkpointing is fragile. When you write your code, here are some good practices you should follow:

¢ Add to each of your classes the following instance variable:

private static final long serialVersionUID = 1;

¢ Try to avoid non-static inner classes. But if you must have one, it should also have the aforementioned
instance variable in ifs variables as well.

¢ All static variables should be final and should be simple types, such as Strings, ints, floats, etc. If
you need to store global information, it should be stored as an instance variable in your subclass of

EvolutionState.

* Don't allocate your own threads or locks.

¢ If you make a special object, it must be java.io.Serializable. Most EC]J classes are already serializable, so
you inherit this by just subclassing from them.

Checkpointing is normally done after breeding has occurred, and the generation number has been
incremented. Three things typically happen:

1. The preCheckpointStatistics(...) method is called on the statistics object.

2. The setCheckpoint(...) method is called on the checkpoint object. This causes the checkpoint object to
serialize out the current EvolutionState to a gzipped checkpoint file.

39

3. The postCheckpointStatistics(...) method is called on the statistics object.

When the system is restored from a checkpoint, the following happens:

1. The restoreFromCheckpoint(...) method is called on the Checkpoint class. This method does the
following:

(a) It first unserializes the EvolutionState from the checkpoint file.

(b) It then calls resetFromCheckpoint(...) on the EvolutionState. The resetFromCheckpoint method
normally does two things:

i. restart(...) is called on the Output. This allows it to set up output logs again.

ii. reinitializeContacts(...) is called on the Exchanger, then on the Evaluator, to allow them to
reestablish network connections for distributed evaluation and for island models.

2. Evolution is resumed by calling the run(...) method on the unserialized EvolutionState.

3. startFromCheckpoint(...) is then called on the EvolutionState. This is a simple hook method you can use
to set up things before evolution starts again.

At this point, evolution continues.

In general you have two hooks available to you to set up after resuming from a checkpoint. First, you
can override the method EvolutionState.resetFromCheckpoint(). This method is called before Evolution-
State.run(...) is called to resume running. You would override this method to reopen files or sockets (it
optionally throws an IOException).

Second, you could override the method EvolutionState.startFromCheckpoint(). This method is called
during EvolutionState.run(...), typically immediately before the run resumes. You would typically override
this method to do internal setup that doesn’t involve external communication.

In either case, be sure to call the supermethod first.

2.4 Threads and Random Number Generation

In many cases ECJ supports multiple threads at two stages of the evolutionary process: during breeding and
during evaluation. You can specify the number of threads for each of these processes like this:

breedthreads = 4
evalthreads = 4

Typically, but not always, you’d want to set these numbers to match the number of cores or processors on
your computer. And usually these two numbers should be the same. If you don’t know the number of cores,
you can let ECJ try to figure it out for you by saying:

breedthreads = auto
evalthreads = auto

E(] is still capable of producing replicable results even when threading is turned on: you'll get the
same results if you use the same number of evaluation and breeding threads and the same random number
generator seeds. Which brings us to...

24.1 Random Numbers

As befitting its name, stochastic optimization is stochastic, meaning involving randomness. This means
that a random number generator is central to the algorithms in ECJ, and it’s crucial to have a fairly good
generator. Unfortunately, Java’s default random number generator, java.util.Random, is notoriously bad. It

40

creates highly nonrandom sequences, so much so that websites have been developed to show off how awful
it is.* Never, ever, use java.util.Random in your ECJ code.

ECJ comes with a high quality random number generator ready for you to use: ec.util. MersenneTwisterFast.
This is a fast implementation of a famous random number generator, the Mersenne Twister.> The Mersenne
Twister has a very high period and good statistical randomness qualities.

If you're comfortable with java.util.Random, you'll be fine. ec.util. MersenneTwisterFast has all the methods
that java.util.Random has, plus one or two more.

In ECJ, Mersenne Twister is seeded with a single 32-bit integer other than zero (actually, it’s a long, but
only the first 32 bits are used).® You specify this seed with the following parameter:

seed.0 = -492341

Setting the seed this way gives you control over ECJ’s results: if you set the seed to the same value, ECJ
will produce the exact same results again. But if you like you can also let EC] set the seed to the current wall
clock time in milliseconds, which is almost always different for different runs:

seed.0 = time

One reason ECJ’s Mersenne Twister implementation is fairly fast is that it’s not threadsafe. Thus ECJ
maintains one random number generator for each thread used by the program. This means that if you have
more than one thread, you’ll have more than one random number generator, and each one of them will need
a seed. Let’s say you've settled on two threads. You can set both random number generator seeds like this:

evalthreads = 2
breedthreads = 2
seed.0 = -492341
seed.1 = 93123

You can also use wall clock time. Specifically, if you instead do the following:

evalthreads = 2
breedthreads = 2
seed.0 = time
seed.1 = time

...ECJ will guarantee that the two seeds differ. Last, if you set your threads automatically:

evalthreads = auto
breedthreads = auto

...then ECJ will automatically set all the seeds using wall clock time, except the ones you specify by hand.
After all, you don’t know how many seeds you’ll get!

The Mersenne Twister random number generators are stored in an array, located in a variable called
random in the ec.EvolutionState object. The size of the array is the maximum of the number of breed and
evaluation threads being used. How do you know which random number generator you should use? Many
methods in ECJ are passed a thread number. This number is the index into the random number generator
array for the thread in which this method is being called. For example, to get a random double, you typically
see things along these lines:

double d = state.random[threadnum] .nextDouble();

If you're in a single-threaded portion of the program, you can just use generator number 0.

“See for example http: //alife.co.uk/nonrandom/

Shttp: //www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

6 Actually, Mersenne Twister can be seeded with its full internal state: an array of over 600 integers. But it’s pretty rare to need this,
and you’d have to do it programmatically in the random number generator rather than as an ECJ parameter.

41

Any gotchas? Yes. The standard MT199937 seeding algorithm uses one of Donald Knuth'’s plain-jane linear
congruential generators to fill the Mersenne Twister’s arrays. This means that for a short while the algorithm
will initially be outputting a (very slightly) lower quality random number stream until it warms up. After
about 625 calls to the generator, it'll be warmed up sufficiently. You probably will never notice or care, but if
you wanted to be extra extra paranoid, you could call nextInt() 1300 times or so when your model is initially
started. Perhaps in the future we’ll do that for you.

MersenneTwisterFast (which ECJ uses) and its sibling MersenneTwisterFast have identical methods to
java.util.Random, plus one or two more for good measure. They should look familiar to you:

ec.util.MersenneTwisterFast Constructor Methods

public MersenneTwisterFast(long seed)
Seeds the random number generator. Note that only the first 32 bits of the seed are used.

public MersenneTwisterFast()
Seeds the random number generator using the current time in milliseconds.

public MersenneTwisterFast(int[] vals)
Seeds the random number generator using the given array. Only the first 624 integers in the array are used. If the
array is shorter than 624, then the integers are repeatedly used in a wrap-around fashion (not recommended). The
integers can be anything, but you should avoid too many zeros. MASON does not call this method.

ec.util.MersenneTwisterFast Methods

public void setSeed(long seed)
Seeds the random number generator. Note that only the first 32 bits of the seed are used.

public void setSeed(int[] vals)
Seeds the random number generator using the given array. Only the first 624 integers in the array are used. If the
array is shorter than 624, then the integers are repeatedly used in a wrap-around fashion (not recommended). The
integers can be anything, but you should avoid too many zeros.

public double nextDouble()
Returns a random double drawn in the half-open interval from [0.0, 1.0). That is, 0.0 may be drawn but 1.0 will
never be drawn.

public double nextDouble(boolean includeZero, boolean includeOne)
Returns a random double drawn in interval from 0.0 to 1.0, possibly including 0.0 or 1.0 or both, as specified in the
arguments.

public float nextFloat()
Returns a random float drawn in the half-open interval from [0.0f, 1.0f). That is, 0.0f may be drawn but 1.0f will
never be drawn.

public float nextFloat(boolean includeZero, boolean includeOne)
Returns a random float drawn in interval from 0.0f to 1.0f, possibly including 0.0f or 1.0f or both, as specified in
the arguments.

public double nextGaussian()
Returns a random double drawn from the standard normal Gaussian distribution (that is, a Gaussian distribution
with a mean of 0 and a standard deviation of 1).

public long nextLong()
Returns a random long.

public long nextLong(long n)
Returns a random long drawn from between 0 to n — 1 inclusive.

42

public int nextInt()
Returns a random integer.

public int nextlnt(int n)
Returns a random integer drawn from between 0 to n — 1 inclusive.

public short nextShort()
Returns a random short.

public char nextChar()
Returns a random character.

public byte nextByte()
Returns a random byte.

public void nextBytes(byte[] bytes)
Fills the given array with random bytes.

public boolean nextBoolean()
Returns a random boolean.

public boolean nextBoolean(float probability)
Returns a random boolean which is true with the given probability, else false. Note that you must carefully pass in
a float here, else it'll use the double version below (which is twice as slow).

public boolean nextBoolean(double probability)
Returns a random boolean which is true with the given probability, else false.

public Object clone()
Clones the generator.

public boolean stateEquals(Object o)
Returns true if the given Object is a MersenneTwisterFast and if its internal state is identical to this one.

public void writeState(DataOutputStream stream)
Writes the state to a stream.

public void readState(DatalnputStream stream)
Reads the state from a stream as written by writeState(...).

public static void main(String][] args)
Performs a test of the code.

2.4.2 Selecting Randomly from Distributions

Selecting from distributions is a common task in stochastic optimization.” EC]J has a utility class,
ec.util.RandomChoice, which makes it easy to set up and select from histogram-style (arbitrary) distributions,
such as selecting randomly from a Population by Fitness.

The distributions in question come in the form of arrays of floats, doubles, or special objects which can
provide their own float or double values. The values in these arrays are expected to form a probability
density function (PDF). The objective is to select indexes in this array proportional to their value. To begin,
you call one of the following methods on your array to have RandomChoice convert it into a Cumulative
Density Function (CDF) to make selection easier:

ec.util.RandomChoice Methods

These are just histogram distributions. If what you need is to pick random numbers under some mathematical distribution (Poisson,
say), ECJ doesn’t have support for that. However ECJ’s sister package, MASON, has support for it in its utilities. See MASON's
sim.util.distribution package. You can remove this package from MASON and just use it with ECJ with no problems: it comes with
MASON but is independent of it. See http://cs.gmu.edu/~eclab/projects/mason/

43

public static void organizeDistribution(float[| probabilities, boolean allowAllZeros)
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown, else the array is
converted to all ones. Then the array is converted to a CDF. If the array has negative numbers or is of zero length,
an Arithmetic Exception is thrown.

public static void organizeDistribution(float[| probabilities)
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown. If not, then the array
is converted to a CDE If the array has negative numbers or is of zero length, an Arithmetic Exception is thrown.

public static void organizeDistribution(double[| probabilities, boolean allowAllZeros)
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown, else the array is
converted to all ones. Then the array is converted to a CDEF. If the array has negative numbers or is of zero length,
an Arithmetic Exception is thrown.

public static void organizeDistribution(double[| probabilities)
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown. If not, then the array
is converted to a CDEF. If the array has negative numbers or is of zero length, an Arithmetic Exception is thrown.

public static void organizeDistribution(Object[| objs, RandomChoiceChooser chooser, boolean allowAllZeros)
The objects in objs ae passed to chooser to provide their floating-point values (and to set them if needed). If the array
is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown, else the array is converted to all
ones. Then the array is converted to a CDF. If the array has negative numbers or is of zero length, an Arithmetic
Exception is thrown.

public static void organizeDistribution(Object[] objs, RandomChoiceChooser chooser)
The objects in objs ae passed to chooser to provide their floating-point values (and to set them if needed). If the
array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown. Then the array is converted
to a CDF. If the array has negative numbers or is of zero length, an Arithmetic Exception is thrown.

public static void organizeDistribution(Object[] objs, RandomChoiceChooserD chooser, boolean allowAllZeros)
The objects in objs ae passed to chooser to provide their double-floating-point values (and to set them if needed).
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown, else the array is
converted to all ones. Then the array is converted to a CDF. If the array has negative numbers or is of zero length,
an Arithmetic Exception is thrown.

public static void organizeDistribution(Object[] objs, RandomChoiceChooserD chooser)
The objects in objs ae passed to chooser to provide their double-floating-point values (and to set them if needed).
If the array is all zeros, then if allowAllZeroes is false, then an ArithmeticException is thrown. Then the array is
converted to a CDF. If the array has negative numbers or is of zero length, an Arithmetic Exception is thrown.

These methods rely on two special interfaces, RandomChoiceChooser (ec.util.RandomChoiceChooser) and
RandomChoiceChooserD (ec.util.RandomChoiceChooserD). RandomChoiceChooser requires two method
which map between Objects and floating-point values.

public float getProbability(Object obj);
public void setProbability(Object obj, float probability);

RandomChoiceChooserD is the same, except that it’s used for double values:

public double getProbability(Object obj);
public void setProbability(Object obj, double probability);

Once the array has been modified, you can then select random indexes from it. This is done by first
generating a random floating-point number from 0...1, then passing that number into one of the following
methods.

ec.util.RandomChoice Methods

44

public static int pickFromDistribution(float[| probabilities, float probability)
Selects and returns an index in the given array which contains the given probability.

public static int pickFromDistribution(double[| probabilities, double probability)
Selects and returns an index in the given array which contains the given probability.

public static int pickFromDistribution(Object[] objs, RandomChoiceChooser chooser, float probability)
Selects and returns an index in the given array which contains the given probability. The chooser will provide the
floating-point values of each element in the array.

public static int pickFromDistribution(Object[| objs, RandomChoiceChooserD chooser, double probability)
Selects and returns an index in the given array which contains the given probability. The chooser will provide the
floating-point values of each element in the array.

2.4.3 Thread-Local Storage

In certain rare cases you might need your threads to be able to stash away temporary information on a
per-thread basis. To do this, ECJ has an array of hash tables, one per thread number (indexed just like the
random number generators are). You can use these as you like, though we suggest you use them to store
information you need hashed under a unique string name special to your task. The hash tables are located in
EvolutionState and are called:

public HashMap[] data; // one hash table per thread number

These serve roughly the same purpose as Java’s ThreadlLocal variables, but we can use an array here
instead of a ThreadLocal because we know beforehand how many threads we have.

2.4.4 Multithreading Support

ECJ not only can evaluate and breed individuals in a multithreaded fashion, but it also uses multiple threads
in other areas, such as handling island models or distributed parallel evaluation on remote machines. Many
of these EC] modules take advantage of a thread pool, essentially a cache of hot threads, so they don’t have to
create new ones on-the-fly all the time. This could have been done with Java’s concurrency package; but ECJ
has its own lightweight thread pool called ec.util. ThreadPool.

You can hand the ThreadPool a java.lang.Runnable, and it will fire off this Runnable in a separate thread,
either drawn from the ThreadPool or (if none are available) created new. ThreadPool returns to you a
ec.util. ThreadPool.Worker which represents that thread. When your Runnable has completed its task, the
Worker will return to the ThreadPool to be used later. You can also wait for a specific Worker to complete its
Runnable (a task known as joining); or wait for all currently running Workers to complete their Runnables.
You can also kill Workers not presently running a Runnable, or join all Workers and then kill everyone.
Overall it’s a very simple, lightweight API.

ec.util. ThreadPool Methods

public Worker start(Runnable run)
Starts a Worker’s thread on a given Runnable and returns that Worker. This Worker and its thread are drawn from
the pool, or if there is no available Worker, it is created new (with a new thread).

public Worker start(Runnable run, String name)
Starts a Worker’s thread on a given Runnable and returns that Worker. The thread will be named with the given
name so it is easily recognized in a debugger. This Worker and its thread are drawn from the pool, or if there is no
available Worker, it is created new (with a new thread).

public int getTotalWorkers()
Returns the total number of workers either waiting in the pool or presently working on some Runnable.

45

public int getPooledWorkers()
Returns the total number of workers waiting in the pool (not working on some Runnable).

public boolean join(Worker thread, Runnable run)
Blocks until the given Worker has completed running the given Runnable, then returns true. If the Worker is not
running this Runnable, returns false immediately.

public boolean join(Worker thread)
Blocks until the given Worker has completed running any current Runnable, then returns true. If the Worker is not
any Runnable, returns false immediately.

public void joinAll()
Blocks until all Workers have completed running any current Runnables.

public void killPooled()
Destroys all currently pooled Workers (that is, ones which are not running a Runnable).

public void killAll()
Blocks until all Workers have completed running any current Runnables. Then destroys all Workers.

A Worker encapsulates a running thread, and is intentionally very opaque. However you can send an
interrupt to the underlying thread if you need to (a rare need):

ec.util. ThreadPool.Worker Methods

public void interrupt()
Calls interrupt() on the Worker’s underlying thread.

2.5 Jobs

Perhaps you need to run ECJ 50 times and collect statistics from all 50 runs. ECJ’s ec.Evolve class provides a
rudimentary but extensible jobs facility to do this. You specify the number of jobs as follows:

jobs = 50

Each job will automatically use a different set of random number generator seeds. Additionally, if there
is more than one job, EC] will prepend each statistics file with job.jobnumber. For example, if we ran with
just a single job (the default) we’d probably create an output statistics file called out.stat. But if we ran with
multiple jobs, during the fourth job we’d create the output statistics file as job.3.out.stat (jobs start with 0).

Jobs are restarted properly from checkpoints: when you resume from a checkpoint, you'll start up right
in that job and continue from there. This is accomplished by storing the job parameter, and the runtime
arguments, in the ec.EvolutionState object. See extended comments in the ec.Evolve source code for more
information.

But what if you need more job complexity? For example, what if you want to run ECJ with 10 different
parameter settings and 50 runs per setting? You’ll need to do some coding.

For example, let’s say we want to run 50 jobs, and each job changes the generation length. The first job has
20 generations, the second job has 21 generations, etc. Here’s the trick. After ECJ creates the ec.EvolutionState
object, it calls the startFresh() method on this object. The default implementation calls setup(...) on this
object, then starts running the evolutionary loop. There’s your chance. Let’s say you're using the common
EvolutionState ec.simple.SimpleEvolutionState subclass as your EvolutionState. Override the startFresh(...)
method in a custom subclass of SimpleEvolutionState along these lines:

46

public class ec.app.myexample.MySimpleEvolutionState extends ec.simple.SimpleEvolutionState

{

public void startFresh()
{
// setup() hasn’t been called yet, so very few instance variables are valid at this point.
// Here’s what you can access: parameters, random, output, evalthreads, breedthreads,
// randomSeed0ffset, job, runtimeArguments, checkpointPrefix,
// checkpointDirectory
// Let’s modify the ’generations’ parameter based on the job number
int jobNum = ((Integer) (job[0])).intValue();
parameters.set(new ec.util.Parameter("generations"), "" + (jobNum + 20));

// call super.startFresh() here at the end. It’1l call setup() from the parameters
super.startFresh() ;
}

}

Now we need to stipulate that this is our EvolutionState, by changing the state parameter:

state = ec.app.myexample.MySimpleEvolutionState
jobs = 50

In truth though, in all my experiments, I have personally always handled different parameter settings in a
completely different way: on the command line using a UNIX script. It’s much simpler than mucking with
Java code. For example, to run ten runs each of five different population sizes, perhaps you could do this (in
the tcsh shell language):

Q@ seed = 92341
foreach size (2 4 8 16 32)
foreach job (1 23456789 10)
@ seed = ${seed} + 17
java ec.Evolve -file ant.params \
-p seed.O0=${seed} \
-p pop.subpop.0.size=${size} \
-p stat.file=out.${size}.${job}.stat
end
end

2.6 The ec.Evolve Top-level

ECJ’s Evolve.java class looks complex but that’s just because it has various gizmos to do jobs, checkpoint
handling, etc. But in in fact, the top-level loop for ECJ can be quite small. Here’s all you need to do:

1. Try to load an ec.EvolutionState from a checkpoint file.
2. If it loads call run(...) on it.
3. Otherwise...

(a) Load a parameter database.

(b) Create a new ec.EvolutionState from the parameter database.
(c) Call run(...) onit.

4. Call cleanup(...) and exit.

47

Here’s the basic code. As you can see, it’s not very complex.

public static void main(String[] args)

{

EvolutionState state = Evolve.possiblyRestoreFromCheckpoint (args);

if (state!=null) // loaded from checkpoint
state.run(EvolutionState.C_STARTED_FROM_CHECKPOINT) ;

else
{
ParameterDatabase parameters = Evolve.loadParameterDatabase(args);
state = Evolve.initialize(parameters, 0);
state.run(EvolutionState.C_STARTED_FRESH) ;
}

Evolve.cleanup(state);

System.exit (0);

}

The source code for ec.Evolve is very heavily commented with examples and ideas for customization.
Check it out!

The ec.Evolve class is the most common way to start up ECJ but it’s just a bootstrapping mechanism and
can be completely replaced with code of your own. However there are a number of useful utility methods in
the class which you might want to take advantage of even if you decide to roll your own bootstrapper.

ec.Evolve Methods

public static void main(String[| args)
The top-level. Starts up ECJ either from a checkpoint file (by calling possiblyRestoreFromCheckpoint(...)) or from
scratch (by calling initialize(...), runs the EC process, then finally calls cleanup(...).

public static EvolutionState possiblyRestoreFromCheckpoint(String[| args)
If the command-line arguments indicate that EC]J should load an EvolutionState from a checkpoint file, this method
does so and returns it. Else it returns null.

public static ParameterDatabase loadParameterDatabase(String[| args)
Loads a ParameterDatabase from the file or resource indicated on the command line.

public static EvolutionState initialize(ParameterDatabase parameters, int randomSeedOffset)
Builds a new EvolutionState and initializes it, using the provided random seed offset. This method simply calls
buildOutput(), then calls initialize(parameters, randomSeedOffset, output).

public static Output buildOutput()
Builds a new Output and returns it.

public static EvolutionState initialize(ParameterDatabase parameters, int randomSeedOffset, Output output)
Builds a new EvolutionState and initializes it, using the provided Output and random seed offset. The random
seed is determined by first drawing it from the command line, then adding the random seed offset multiplied by
the number of random number generators (e.g., threads). Thus the randomSeedOffset can be used to indicate a
job number. For example, if there are two random number generators and the base seed was 1234, and there are
three jobs, then the first (zeroth) job will have generators 1234 and 1235, the second job will have generators 1236
and 1237, and the third job will have 1238 and 1239. If you're not doing jobs, just pass in 0 for the offset.

public static int determineThreads(Output output, ParameterDatabase parameters, Parameter threadParameter)
Looks up the given thread parameter and, using it, determines the number of threads to use.

public static int determineSeed(Output output, ParameterDatabase parameters, Parameter seedParameter,
long currentTime, int offset, boolean auto)
Computes a random number generator seed. The seed is computed by first looking up seedParameter and using
this as the base seed. If the seed parameter is “time”, or auto is true, then the provided current time is used as a
base seed (you might wish to change the time each time you call this method). Otherwise, the base seed is the
number value stored in the seed parameter. Then the base seed plus the offset is returned as the final seed.

48

public static MersenneTwisterFast primeGenerator(MersenneTwisterFast generator)
Mersenne Twister’s first 624 or so random numbers are not as good as its later numbers because they were
constructed using a Knuth LCS generator to initialize Mersenne Twister from a seed. They’re acceptable to use but
just to be careful, this method “primes the pump” by calling nextlnt() 1048 times, then returns the same generator.

public static void cleanup(EvolutionState state)
Flushes and closes output buffers and writes out used, accessed, unused, and unaccessed parameters as requested.

2.7 Integrating ECJ with other Applications or Libraries

When integrating ECJ with other applications or libraries, you have to decide who’s going to be in the
driver’s seat — that is, in control of main(...). There are two common situations:

¢ EC]J is in control. The most common scenario here is ECJ using an external library, such as a simulation
toolkit, to assess the fitness of an Individual.

* The other application or library is in control. This might arise if you have some external application
which wishes to use ECJ as a sub-procedure to do some optimization.

You can of course do both: have Application A control ECJ, which in turn controls Simulation Library B.

2.71 Control by ECJ]

When EC]J is in control, usually the subordinate library is being used to assess the quality of an Individual,
perhaps as a simulation library. To do this, you'll probably need a place to set up your library, prepare a
simulation to test a string of Individuals, reset the simulation for each Individual, and eventually destroy the
library. Note that if you use checkpointing, your library must be serializable.

Let’s do the simplest case: it may well be the case that all you need to do is create a simulation, run it,
and destroy it each time an individual is evaluated. in this case, you just do this inside the evaluate() method
in your Problem, along these lines:

public void evaluate(EvolutionState state, Individual ind, int subpopulation, int threadnum)
{
if (!ind.evaluated) // don’t bother reevaluating
{
// Build the simulation
Simulation mySimulation = new Simulation(state.random[threadnum], threadnum, ...);

// use the simulation, then get rid of it
// then set the fitness of the individual
+

}

Notice that in this example, to construct our simulation, we’re passing in the random number generator
for the thread, which would be the best practice. We're also passing in the thread number, which is a unique
integer from 0 ... state.evalthreads), which might be useful for the simulation to distinguish itself from others
(for example, so it can write out some kind of statistics file as " foo.threadnumber.out” or whatever so none of
the simulations overwrite each other).

You need to be careful about random number generators. The best thing to do would be to use ECJ’s
generator. But here’s the order of options, from best to least good.

49

1. The best would be for simulator #thread to use state.random[thread] as its only random number genera-
tor.

2. If this is not possible, next best would be for each simulator to use a unigue random number generator
object. This may not result in replicable results.

3. If this is not possible, next best would be for each simulator to use a shared random number generator
object which is synchronized for multithreading. This will definitely not result in replicable results, and
may also not be properly serializable.

4. If your simulator is using java.util.Random or (heaven forbid) Math.random(...), then it’s time for a
rewrite of your simulator.

Note also that if you use distributed evaluation, this code will be run on remote machines, so you'd want
to do this stuff on the slave, not on the master.

Finally, remember that if you run multithreaded, you’ll have multiple simulations running in parallel,
and you’ll want to make sure that these simulations don’t share any global (static) data in common that
would create race conditions.

This approach is plausible but it’s a bit inflexible and inefficient. You are given no opportunity to globally
set up the simulation system, and furthermore you're constructing and destroying an entire simulation each
time — perhaps it would be better to:

1. Load and set up the simulation library once
2. Use this to construct some N simulations, one per thread, once, or perhaps once per generation

3. Reuse these simulations multiple times by resetting them (rather than destroying and recreating them)
when new individuals need to be assessed

4. Clean up before quitting

Here are some plausible locations for these tasks:

Set up the library [would create a custom EvolutionState, and override setup() to create a blank array of
simulations, one per evaluation thread. This would also be the spot to set up the library as appropriate. Note
that setup() is called even on the master when you're doing distributed evaluation, but in that case you’d not
want to set up since you're not doing any simulations on the master. So the code below checks for that.

public class MyEvolutionState extends ec.simple.SimpleEvolutionState // or whatever...

{

public Simulation[] simulations;

public void setup(EvolutionState state, Parameter base)

{
super.setup(state, base); // state is obviously the MyEvolutionState itself

// there are two cases where we’d want to set this up:

// 1. I am running ECJ in a single process, and am NOT running with

// distributed (master/slave) evaluation

// 2. I am running with distributed evaluation, and I am a slave (not the master).
// So we check for those cases here:

// the code below verifies that I’m running on a slave, not the master

ec.util.Parameter param = new ec.util.Parameter("eval.i-am-slave");
boolean amASlave = state.parameters.getBoolean(param, null, false);

50

// the code below verifies that I’m doing distributed evaluation
boolean doingDistributedEvaluation = (Evaluator.masterProblem == null);

// okay here we go
if (!doingDistributedEvaluation || amASlave)
{

simulations = new Simulation[state.evalthreads];
// do your library setup here
// now create the simulation array

}

3

You'd then set this parameter:

state = MyEvolutionState

You could of course override the setup(...) method of certain other classes, such as ec.Initializer (see

Section[3.3).

It's possible that you might need to differentiate between setting up from a fresh run and setting up

due to recovering from checkpoint. In this case, you might instead override the methods startFresh() and
startFromCheckpoint(). See Section 3}

Prepare the simulation and evaluate an individual Whenever evaluate(...) is called, you can now grab
your simulation, reset it as appropriate, and test your individual. Alternatively you could just delete your
existing simulation and create a new fresh one:

public void evaluate(EvolutionState state, Individual ind, int subpopulation, int thread)

{

if (simulations[thread] == null) // simulator doesn’t exist
simulations[thread] = new Simulation(state.random[thread], thread, ...);

else simulations[thread] .reset(); // reset your simulator somehow

// run the simulation with your individual and assess the individual
// now set its fitness here

3

Alternatively of course you could always just make a new simulation if that’s not terribly inefficient.
Now you’d set up the simulation with your ECJ individual, pulse it multiple times until you're finished,

and then determine the Individual’s Fitness and return.

Alternatively if your Problem implements the coevolutionary ec.coevolve.GroupedProblemForm (see

Section[/.1.2), you might write this:

public void evaluate(EvolutionState state, Individual[] ind, boolean[] updateFitmness,

boolean countVictoriesOnly, int[] subpops, int thread)
{
if (simulations[thread] == null) // simulator doesn’t exist
simulations[thread] = new Simulation(state.random[thread], thread, ...);
else simulations[thread] .reset(); // reset your simulator somehow

// run the simulation with all individuals in ind[] and assess them

51

// now set their fitnesses here

3

At the end of a run, EC] may call the describe() method on your Problem (see Section (3.4.1). I'd do things
similarly:

public void describe(EvolutionState state, Individual ind, int subpopulation, int thread, int log)

{

if (simulations[thread] == null) // simulator doesn’t exist
simulations[thread] = new Simulation(state.random[thread], thread, ...);

else simulations[thread] .reset(); // reset your simulator somehow

// run the simulation with your individual and write out to the log interesting facts

3

At present there is no describe(...) method for GroupedProblemForm.

Optionally Delete the Simulation each Generation It’s possible that you might want to clean delete your
simulation or clean it up somehow after a generation has transpired. This is an unusual need: I wouldn’t do
this. But if you must, you could do this in your Problem class:

public void finishEvaluating(EvolutionState state, int thread)
{

super.finishEvaluating(state, thread);

// do your cleanup here of simulations[thread], then...
simulations[thread] = null;

3
See again Section [3.4.1}

Clean up the Library Finally at the end of an ECJ run you can clean up the library if you need to: perhaps
to flush out logs or close sockets. A reasonable place to do this is to create a custom ec.Finisher subclass (see

Section [3.3):

public class MyFinisher extends SimpleFinisher // or whatever

{

public void finishPopulation(EvolutionState state, int result)
{
super.finishPopulation(state, result);

// clean up the simulations

for(int simID = 0; simID < state.evalthreads; simID++)

{
if (simulations[simID] != null)
{
// clean up simulations[simID] as you wish, then...
simulations[simID] == null;
}

// finally clean up the whole library here
X

52

2.7.2 Control by another Application or Library

To set up and run ECJ from an external application or library, you need to get a parameter database, initialize

ECJ on it, and start it running. Most likely you'll be running ECJ multiple times, so it makes sense to

construct a single ParameterDatabase, then clone it repeatedly for each time ECJ does an optimization run.
You could create your initial ParameterDatabase by pointing it at a file:

File parameterFile = ...
ParameterDatabase dbase = new ParameterDatabase(parameterFile,
new String[] { "-file", parameterFile.getCanonicalPath() 1});

There are other options besides loading from files of course: see Section[2.1.8] Once you have created
your ParameterDatabase, you'll likely want to make copies of it over and over again so you can customize
some of its parameters differently each time you run EC] from the application or library. You could do this
in two ways. You could just make a ParameterDatabase which uses the original database as its parent:

ParameterDatabase child = new ParameterDatabase();
child.addParent (dbase) ;

I instead prefer to first copy the original so as to keep a completely separate version in case there
are multithreading issues. Here we use ec.util.DataPipe to copy the ParameterDatabase, because it’s not
Cloneable:®

ParameterDatabase copy = (ParameterDatabase) (DataPipe.copy(dbase));
ParameterDatabase child = new ParameterDatabase();
child.addParent (dbase) ;

Once you have your ParameterDatabase ready;, it’s time to add some custom parameters. Perhaps each
time you're setting up ECJ from your application you want it to run in a slightly different way. Notably you
may want to customize the random number seed. You can do it like this:

child.set(...);
child.set(...);
child.set(...);
// ... etc...

(and so on). Now you set up the Output class. At this point you may wish to quiet stdout and stderr if you
don’t want ECJ polluting them:

Output out = Evolve.buildOutput();

// this stuff is optional
out.getLog(0).silent = true; // stdout
out.getLog(l) .silent = true; // stderr

You can shut up the Statistics log with this parameter:
stat.file = /dev/null
Now you initialize ECJ and start it running;:

EvolutionState evaluatedState = Evolve.initialize(child, 0, out);
evaluatedState.run(EvolutionState.C_STARTED_FRESH) ;

8This isn’t ECJ’s fault. It’s because ParameterDatabase is a subclass of java.util.Properties, which is Cloneable only in the most recent
versions of Java.

53

This runs the whole thing from start to end, then returns. Alternatively to pulse EC]J every generation
(maybe so you can test stuff per-generation) you could say:

EvolutionState evaluatedState = Evolve.initialize(child, O, out);
evaluatedState.startFresh();
int result = EvolutionState.R_NOTDONE;
while(result == EvolutionState.R_NOTDONE)
result = evaluatedState.evolve();

At this point you might wish to check the Statistics to see what the results were. Let’s say it’s a
SimpleStatistics. You could then say:

// inds is an array, one per subpopulation
Individual[] inds = ((SimpleStatistics) (evaluatedState.statistics)).getBestSoFar();
// ... grab the Fitness from these Individuals, etc.

Finally, you clean up.
Evolve.cleanup(evaluatedState);

And you can forget about evaluatedState at this point.

54

Chapter 3

ec.EvolutionState and the EC]
Evolutionary Process

As discussed in Section 2} the purpose of the ec.Evolve class is simply to set up an ec.EvolutionState and get it
going. ec.EvolutionState is the central object in all of ECJ.

An EC]J process has only one ec.EvolutionState instance. Practically everything in ECJ, except for ec.Evolve
itself, is pointed to somehow from ec.EvolutionState, so if you checkpoint ec.EvolutionState, the entire ECJ
process is written to disk. Various subclasses of ec.EvolutionState define the stochastic optimization process.
And a great many methods are handed the ec.EvolutionState instance, and so have essentially global access
to the system.

If you peek inside ec.EvolutionState, you will find a number of objects, as shown in Figure 3.1}

¢ Some familiar objects, placed there by ec.Evolve after it created the ec.EvolutionState: the Parameter
Database, Output, and array of Random Number Generators. Additionally, the number of breeding
threads and evaluation threads (and various checkpoint and job stuff, not shown below):

public ec.util.ParameterDatabase parameters;
public ec.util.MersenneTwisterFast[] random;
public ec.util.Output output;

public int breedthreads;

public int evalthreads;

¢ A Population, which holds the individuals in the evolutionary process; plus the current generation
(iteration) of the evolutionary process and the total number of generations to run, or alternatively the
total number of evaluations to run. How or whether these last three variables are used depends on
the evolutionary process in question.

public ec.Population population;
public int generation;

public int numGenerations = UNDEFINED;
public int numEvaluations = UNDEFINED;

Some notes. The default setting for numEvaluations and numGenerations is EvolutionState. UNDEFINED
(0). One of these two variables will be set at parameter-loading time. The other will stay, initially, at
UNDEFINED. If numEvaluations was set, and generational evolution is being used, then numGenerations
will eventually be set to a real value after the initial population has been created but before it has been
evaluated. We'll get to how these are set later, in the Generational and Steady-State sections (Sections

ETland D).

55

0..n

1
Parameter
Database

Mersenne Twister

RNG
Evolve
1 n
: Output O Log
makes
* Initializer I~ — makes — J»| Population
1 1
EvolutionState updates ~
- -
Breeder - — applies — P Breeding Pipeline
1 1
Evaluator k>— prototype —— Problem - -
|
I
. I 4
updates |
Exchanger | I
v evaluates
|
Finisher Fitness |
|
1 |
Statistics |
1 1 I n
Q I
- Individual = |

Figure 3.1 Top-Level operators and utility facilities in EvolutionState, and their relationship to certain state objects. A repeat of Figure

Compare to Figure[£.2)

* An Initializer, whose job is to create the initial ec.Population at the beginning of the run, and a Finalizer,
whose job is to clean up at the very end of the run.

public ec.Initializer initializer;
public ec.Finalizer finalizer;

¢ An Evaluator, whose job is assign quality assessments (fitnesses) to each member of the Population,
and a Breeder, whose job is to produce a new Population from the previous-generation’s Population
through some collection of selection and modification operators.

public ec.Evaluator evaluator;

public ec.Breeder breeder;

¢ An Exchanger, which optionally exports Population members to other EC] processes, or imports ones
to add to the Population. And finally, a Statistics object, whose methods are called at many points in
the run to output statistics on the current run performance.

public ec.Exchanger exchanger;
public ec.Statistics statistics;

56

3.1 Common Patterns
Most of ECJ’s classes follow certain patterns which you’ll see many times, so it’s useful to review them here.

3.1.1 Setup

Nearly all classes adhere to the ec.Setup interface. This interface is java.io.Serializable (which is why ECJ can
serialize all its objects) and defines a single method:

ec.Setup Methods

public void setup(EvolutionState state, Parameter base)
Constructs the Setup object from the Parameter Database using base as the primary parameter base. Nearly all EC]
classes implement this method.

EC]J objects are born from ECJ’s Parameter Database, which constructs them with the default (no-
argument) constructor. Then they have setup(...) called on them, and are expected to construct themselves
by loading parameters as necessary from the Parameter Database (state.parameters), using the provided
Parameter base. Thus the setup(...) method is, for all intents and purposes, the constructor for nearly all
EC]J objects.

When implementing setup(...) always call super.setup(...) if a superclass exists.

3.1.2 Singletons and Cliques

Singletons (ec.Singleton) are Setups which create a single instance per evolutionary run, and that’s it. For
example, ec.EvolutionState is a Singleton, as are ec.Initializer, ec.Finalizer, ec.Evaluator, ec.Breeder, ec.Exchanger,
and ec.Statistics. Singletons are generally meant to be globally accessible.

Though Singleton are single objects, Cliques (ec.Clique) are objects for which only a small number (but
usually more than 1) are created. Cliques are also generally meant to be globally accessible. Most Cliques
have a globally accessible registry of some sort in which all Clique members can be found.

Because they are global, Prototypes and Singletons usually are set up from a single parameter base (the
one provided by setup(...)).

3.1.3 Prototypes

Prototypes (ec.Prototype) are by far the most common objects in ECJ. Prototypes are Setups which follow the
following design pattern: only one instance is loaded from the Parameter Database and set up; this object
is the prototype. Then many objects are created by deep cloning the prototype. One example of a Prototype
is an Individual (ec.Individual): a single prototypical Individual is created when EC]J starts up; and further
Individuals are deep cloned from this prototype to fill Populations.

Because they can be deep cloned, Prototypes implement the java.lang.Cloneable interface, so you must
implement the method:

ec.Prototype Methods

public Object clone()
Deep-clones the object. Implemented by all Prototypes. Must call super.clone(), possibly catching a thrown
CloneNotSupportedException.

Unlike Singletons and Cliques, Prototypes also usually have two parameter bases: the primary base
provided by setup(...), and a default base. As a result, Prototypes must implement a method which can be
called to provide this default base:

57

ec.Prototype Methods

public ec.util.Parameter defaultBase()
Returns the default base for the Prototype.

The standard way to implement this method is to consult a special defaults class in the Parameter’s
Java package. For example, in the ec.simple package the defaults class is ec.simple.SimpleDefaults. Here’s the
entirety of this class:

public final class SimpleDefaults implements ec.DefaultsForm

{
public static final String P_SIMPLE = "simple";
public static final Parameter base() { return new Parameter(P_SIMPLE); }

}

The Parameter returned by base() here provides package default base for the ec.simple package. Now
consider ec.simple.SimpleFitness, a Prototype in this package. This class implements the defaultBase() method
like this:

public static final String P_FITNESS = "fitness";
public Parameter defaultBase()

{
return SimpleDefaults.base().push(P_FITNESS);
}

Thus, as a result the default parameter base for ec.simple.SimpleFitness is simple.fitness.

3.1.4 The Flyweight Pattern

Many Prototypes follow what is commonly known as the flyweight pattern. Prototypes are often great in
number and Java is a memory hog: so it’s helpful for groups of Prototypes to place shared information
common to them in a single central location rather than keep copies of their own. For various reasons
(particularly because it’s hard to do serialization) EC] doesn’t use static variables to store this common
information. Instead groups of Prototypes often all point to a special object which contains information
common to all of them. For example, instances of ec.Individual, in groups, typically share a common ec.Species
which contains information common to them. At any particular time there may be several such groups of
Individuals, each with a different Species.

3.1.5 Groups

Groups are similar to Prototypes in that a single object is loaded from the Parameter Database and further
objects are created by a cloning procedure. Groups are likewise java.lang.Cloneable. However, Groups are
different in that there is no prototype per se: the object loaded from the Parameter Database isn’t held in
reserve but is actively used. It must not just clone another object, but actually create a new, fresh, clean object
ready to be used. This is done by implementing the method:

ec.Group Methods

public ec.util.Parameter emptyClone()
Returns a pristine, new clone of the Group which has been emptied of members.

This method is normally implemented by cloning the object, cleaning out the clone, and returning it
in the same pristine state that it would be if it had been created directly from the Parameter Database. At

58

EvolutionState

[

Population

1

1.n

1
| Subpopulation |- ———————— — uses — — — |
|
1.n 1 !
- — chidof, !
1 v 1 | :
1 1 1 1 .
Individual - prototype =& Species [— prototype —| Breeding Pipeline [~ < |
0..n
T |
SRR W o
- — flyweight » = = = = . |
1.n 1 prototype chilfl of |
1 0..n

1 1 | 1 :
Fitness @ — uses — - Selection Method |
|
|

Figure 3.2 Top-Level data objects used in evolution. A repeat of Figure

present there are only a few ECJ objects which implement Group: namely, ec.Population, ec.Subpopulation, and
certain specialized subclasses of ec.Subpopulation.

3.2 Populations, Subpopulations, Species, Individuals, and Fitnesses

Populations, Subpopulations, and Individuals are the “nouns” of an evolutionary system, and Fitnesses
are the “adjectives”. They’re pretty central to the operation of any evolutionary or sample-based stochastic
search algorithm.

In ECJ, an individual is a candidate solution to a problem. Some M Individuals are grouped together
into a sample of solutions known as a subpopulation. Some N subpopulations are grouped together into
the system’s population. There’s only one population per evolutionary process. The most common scenario
is for ECJ to have M individuals grouped into a single subpopulation, which then is the sole member of
ECJ’s population. However, coevolutionary algorithms (Section [/-T) typically have N > 1 subpopulations:
as does a special and little-used internal island model scheme (see Section@.1

Usually EC]’s population is an instance of the class ec.Population and its subpopulations are instances of
the class ec.Subpopulation. Both of these are Groups. Let’s say that there’s a single subpopulation, which
must contain 100 individuals. We can express this as follows:

pop = ec.Population
pop.subpops = 1

pop.subpop.0 = ec.Subpopulation
pop.subpop.0.size = 100

1Because these two techniques use the subpopulations in different ways, they cannot be used together (a rare situation in ECJ).

59

Obviously further subpopulations would be pop.