
Building a 2D Physics Engine for MASON

Christian Thompson
GMU CS 798

Introduction
For my Master’s Project, I developed a 2-dimensional physics engine as a plug-in to
the GMU Evolutionary Computation Lab’s Multi-Agent Simulator (MASON). The main
goals of this simulator are to provide a generic framework for physically realistic
simulation and to be small, easy to use, and fast. The framework provides users the
ability to easily build MASON simulations that include collisions, joints, and forces.
Two MASON simulations that demonstrate the features of the system are “collisions,”
and “robots.”

Collisions
The “collisions” simulation demonstrates the collision detection and response
features of the system. Rectangles and circles move around on a frictionless surface
and collide with each other and the bordering walls. Since the surface is frictionless
and there is no momentum loss during collisions, the circles and rectangles should
theoretically continue to bounce around forever. By changing the “coefficient of
friction” and “coefficient of restitution” parameters, however, the simulator can
simulate friction between the objects and the surface and momentum loss during
collisions. Figure 1 shows a screen shot of the simulation.

Figure 1: Collisions simulation

Robots
In the “robots” simulation, gray robots attempt to pick up blue cans and move them
to the top of the screen. Once the robots have collected all the cans they return to
their initial positions.

The “robots” simulation demonstrates all features of the system. Each robot is
comprised of a circular body and an effector with which to pick up the cans. The
effector is simulated with two small circles constrained to the robot’s body using pin
joints. Additionally, the robots “pick up” the cans by constraining them to themselves
with a temporary pin joint. Both the robots and cans experience friction with the
surface on which they are moving. The robots experience very little friction to
simulate their wheeled locomotion, while the cans experience much more friction to
simulate their relatively large mass and lack of wheels. While moving around, the
robots collide with cans, each other, and the walls demonstrating collision detection
and response. Figure 2 shows a screen shot of the simulation.

Figure 2: Robots simulation

Motion
The fundamental functionality of the physics engine is to move the simulated objects
in a physically realistic way based on their positions, orientations, linear and angular
velocities, their masses, and the forces and torques being applied to them. The
physics engine calculates these quantities by using a numerical integrator to
integrate the kinematic and kinetic equations that describe the objects’ motions. By
storing the state of all objects in matrices and vectors, it is able to calculate these
quantities for all objects in one step.

Kinematics
Kinematics describes how bodies move in the absence of force [3]. The simulator
uses kinematic equations to determine an object’s current position, orientation,
velocity, and angular velocity based on its previous position, orientation, linear and
angular velocities, and linear and angular accelerations.

An object’s velocity is its rate of change in position (tx ∆∆ /) and its angular velocity
is its rate of change in orientation (t∆∆ /θ). Multiplying an object’s velocity and
angular velocity by an amount of time gives the object’s changes in position and

orientation over that period. The following equations calculate an object’s position
and orientation after an infinitesimally small period of time (dt)

dttxtxdttx)()()(&+=+ (1)

dtttdtt)()()(θθθ &+=+ (2)

Likewise, an object’s linear acceleration is the rate of change in velocity (tx ∆∆ /&) and

angular acceleration is the rate of change in angular velocity (t∆∆ /θ&). The following
equations calculate an object’s linear and angular velocities after the time period dt .

dttxtxdttx)()()(&&&& +=+ (3)

dtttdtt)()()(θθθ &&&& +=+ (4)

The simulator can not directly evaluate equations (3) and (4) because it does not
track objects’ linear and angular accelerations. It must calculate the accelerations
based on the forces and torques that are applied to the objects.

Kinetics
Kinetics extends the subject of kinematics to include the effects of forces (f) and
torques (τ) on objects [3]. When forces and torques are applied to objects the
objects experience linear and angular accelerations. The physics engine calculates
linear and angular accelerations using the following equations, also known as the
equations of motion [3]:

xmf &&= (5)

θτ &&I= (6)

Rearranging (5) and (6) and plugging into (3) and (4) provides equations to
calculate an object’s linear and angular velocities using only quantities tracked by the
simulator

dt
m
ftxtx +=+)()1(&&

(7)

dt
I

tt τθθ +=+)()1(&&
(8)

Numerical Integration
The smallest unit of time in the simulator is one time step. This quantity is much
larger than the infinitesimally small dt so the simulator must integrate the equations
over each time step. Because the forces and torques applied to objects may not be
defined by simple functions, the simulator must approximate the answers to the
kinematic equations using numerical integration.

The kinematic equations can be expanded using the Taylor series into the following
forms (in which t∆ is a finite number representing the step size) [3]:

K
&&&

&&&& +∆+∆+=∆+
!2
)()()()(

2ttxttxtxttx (9)

K
&&

& +∆+∆+=∆+
!2
)()()()(

2ttxttxtxttx (10)

The Euler method of numerical integration is to use the first two terms of the
expansions and throw out the rest [3]:

ttxtxttx ∆+=∆+)()()(&&&& (11)
ttxtxttx ∆+=∆+)()()(& (12)

Although easy to implement, the Euler method doesn’t work well with some systems
because it is a rough approximation and can allow errors to build up quickly. For
example, figure 3 shows the result of simulating a pendulum with an Euler
integrator.

Figure 3: Euler Pendulum

Since the pendulum starts in a horizontal position on the left side, it should never get
above the horizontal position on the right side. As figure 3 shows, however, the
pendulum quickly gains energy when the Euler integrator is used.

Another, more accurate method, of integration is the Runge-Kutta method, which
approximates the first four terms of the Taylor series expansion. This function is
calculated using the following equations [3]:

))((1 txxtk &∆=







 +∆=

2
1)(2 ktxxtk &







 +∆=

2
2)(3 ktxxtk &

)3)((4 ktxxtk +∆= &

(13)

6
)432221()()(kkkktxttx ++++=∆+

Although it requires more calculations, the Runge-Kutta method is necessary in
simulations like the pendulum simulation to more accurately simulate reality. When
the pendulum simulation uses the Runge-Kutta integrator, the pendulum does not
gain or lose energy.

State Representation
The simulator stores the states of all objects in a single set of vectors and matrices.
The position vector (x) holds the current positions and orientation of all objects.
Each object has a block of three variables in the position vector (x , y , and θ)

stored sequentially by the object’s index as shown by the following example position
vector for two objects:











































2

2

2

1

1

1

2

1

θ

θ

y
x

object

y
x

object

The velocity (x&) and force (F) vectors are organized in the same way. An object’s
block in the velocity vector holds its x& , y& , and θ& variables. Its block in the force
vector holds the sum of the x force components, y force components, and torques

being applied to the object.

Finally, the simulator stores the “mass inverse matrix” (W) containing the mass
inverses (m/1) and mass moment of inertia inverses (I/1) of all objects (the mass
moment of inertia I is the rotational equivalent of mass). The values are stored
along the diagonal of the matrix with the rows corresponding to the rows in the
position, velocity, and force vectors as shown by the following example mass inverse
matrix:

2

2

2

1

1

1

100000

010000

001000

000100

000010

000001

I

m

m

I

m

m

The advantage of this representation is that the numerical integrator can calculate
the positions and velocities of all objects in one step using matrix arithmetic and the
numerical integration equations describe above. When matrices are used with the
Euler method of integration, for example, the equations used to update the positions
and velocities of all objects in one step become

xxx &+= (14)
WFxx += && . (15)

Collision Detection
As the physics engine moves objects around in simulations, it needs to determine at
each time step if any of the objects are colliding. The naïve approach to collision
detection is to check for collisions between all pairs of objects at each time step. As
the number of objects in the system grows large, this method becomes unacceptably
slow because the physics engine must perform expensive exact collision detection for
n2 pairs of objects. To improve efficiency many collision detection libraries divide
collision detection into two phases: a rough, but fast, “broad phase” and an accurate,
but slower, “narrow phase” [6]. Several methods exist for performing both broad and
narrow phase collision detection. For broad phase collision detection, I chose to
implement the dimension reduction strategy described in [4].

Broad Phase
The dimension reduction strategy considers each dimension one at a time. The
endpoints of each object are projected onto each dimension and a check is done to
see if any of the objects’ endpoints are overlapping. If a pair of objects has
overlapping endpoints in all dimensions the pair is marked as possibly colliding.
Figure 4 illustrates this for 1 dimension. In the illustration, the pair containing
objects A and B is a good candidate for more accurate collision detection because
their endpoints are overlapping. On the other hand, neither object should be tested
for collision with object C.

B

C
A

A1 B2 C1 C2A2B1

Figure 4: dimension reduction strategy

The algorithm described in [4] keeps a sorted list of object end points for each
dimension. At the beginning of each time step the lists are sorted using an insertion
sort. As the sorting algorithm moves each end point into its place in the sorted list,
the algorithm tracks any overlaps created by the change in order. Because the
objects don’t move very much during one time step [4], the lists remain almost
sorted, and the insertion sort can be completed in an expected O(n) time.

After sorting both dimensions, the broad phase collision detection logic creates a list
of the pairs of objects whose end points overlap in both dimensions and passes this
list to the narrow phase collision detection logic for more accurate testing.

Narrow Phase
Once the broad phase collision detection logic identifies pairs of objects that might be
colliding, the next step is to determine if they are indeed colliding using narrow
phase collision detection. I chose to use an algorithm based on the Lin-Canny closest
feature tracking algorithm described in [6].

The Lin-Canny algorithm searches for the closest pair of features between two
objects (a feature is either a vertex or an edge). It determines if a given pair is the
closest using Voronoi regions. Figure 5 shows the Voronoi regions for some of the
features for a pair of rectangles. In the figure, it is clear that the object A’s top right
vertex and object B’s and bottom edge are the closest features. The Voronoi region
for A’s vertex is the region between the two rays emanating from the two edges that
meet to form the vertex. The Voronoi region of B’s edge is the one between the two
rays that extend perpendicularly from the vertices at both ends of the edge.

A

B

Figure 5: Voronoi Regions

The closest pair of features between two non-intersecting convex polygons is the
only pair for which the closest point on each feature falls within the Voronoi region of
the other feature [6]. In figure 5, the proof that A’s top right vertex and B’s bottom
edge form the closest pair is that A’s vertex falls in the Voronoi region of B’s edge
and that the point (the black dot) on B’s edge that is closest to A’s vertex is within
A’s vertex’s Voronoi region.

The narrow phase algorithm finds the closest features by searching through the pairs
of features until it finds a pair for which this property holds. For each pair, it must
check if the closest point on each feature falls within the other’s Voronoi region.
Since vertices and edges have different Voronoi regions, the algorithm to check this
is slightly different for each feature type.

For a point to lie in a vertex’s Voronoi region, it must fall to the right of the region’s
left ray and to the left of the regions right ray. To check if this is true, the physics
engine first finds the vector v that points from the vertex to the point (see figure 6).

v

Figure 6: Vector v from vertex to point

It then determines if the point lies to the right of the left ray by taking the dot
product of the vector v and the right ray (see projection vector p in figure 7). If the
dot product is positive (p points to the right), the point falls to the right of the left

ray.

p

v

Figure 7: Projection p of vector v onto vertex’s Voronoi region’s right ray

If the point lies to right of the left ray, the physics engine then checks if the point lies
to the left of the right ray by projecting the vector v onto the left ray. If both checks
return true, the point lies within the vertex’s Voronoi region.

For a point to lie within an edge’s Voronoi region, the physics engine must perform
two similar checks. It first checks that the point lies within the region formed by the
vector extending perpendicularly from the left vertex and the vector pointing from
the left vertex to the right vertex. It then checks that the point lies in the opposite
region on the right side. Figure 8 shows the vectors and projections required to
determine if a point lies within an edge’s Voronoi region.

Figure 8: Projections for an edge’s Voronoi region

The Lin-Canny algorithm searches through the feature pairs intelligently using the
result of the current feature pair test to determine which feature pair to test next.
Unfortunately the algorithm is complex and sometimes has problems converging [6].
Because the objects in this simulator are two-dimensional and have relatively fewer
features than those in a three-dimensional simulation, I chose to simply loop through
the pairs of features until the closest is found.

After the narrow phase logic finds the closest feature pair between two objects, it
determines if those features are close enough to be considered colliding. If so, it
reports the collision. If not, there is a reasonable chance that the objects will collide
soon. Since objects don’t move much in one time step, it is likely that the current
closest feature pair will still be the closest pair in the next time step [6]. Therefore,
the simulator saves time by recording the current feature pair to use as a starting
point for the closest feature pair search in the next time step.

Finally, if no pairs of features fall into each other’s Voronoi region, the objects have
penetrated. The narrow phase collision detector finds the collision in this case by
performing a binary search back in time over the last time step to find the point at
which they penetrated.

Collision Response
Once the collision detector reports a collision, the simulator needs to instantaneously
change the velocities of the colliding objects to prevent them from penetrating. It
does this by applying the equivalent of an infinite force over an infinitesimally short
period of time. This quantity is called an “impulse” [5].

Point Masses
The simulator uses three main concepts to calculate the impulses needed for objects
to respond to collisions realistically. The first concept is Newton’s Law of Restitution,
which relates the pre and post-collision relative velocities at the collision point. The
second is that an impulse causes a change in an object’s momentum. Finally, the
third concept is that impulses should only cause the objects’ momentums to change
along the collision normal [5].

Newton’s Law of Restitution relates the pre-collision relative velocity at the collision
point to the post collision relative velocity. The relative velocity (ABv) between
object A and object B is calculated by subtracting the velocity of the collision point on
object A (APv) from the velocity of the collision point on object B (BPv).

BPAPAB vvv −= (16)

For point masses, the collision point velocities APv and BPv are simply the velocities
of the objects. Newton’s Law relates the pre and post-collision relative velocities
using the following equation [5]:

nvnv ⋅−=⋅ AB
pre

AB
post e (17)

Equation (17) says that the post-collision relative velocity along the collision normal
is a percentage of the pre-collision relative velocity along the collision normal. The
percentage depends on the elasticity of the collision, represented by the variable e
which is known as the coefficient of restitution [5]. In a perfectly elastic collision
(1=e), the incoming relative velocity is equal to minus the outgoing relative
velocity. A super ball bouncing on the floor is a good approximation of a perfectly
elastic collision. If a super ball is moving downward toward the floor at a speed of -
10, this equation says that it will be moving upward at a speed of 10 after its
collision with the floor.

The next set of equations expresses the fact that impulses change the momentums
of both objects as a result of a collision. Newton’s Third law of equal and opposite
forces says that the impulses applied to both objects are of equal magnitude, but
opposite directions [5]. Therefore, the equations for both objects include the same

impulse R , but with opposite signs. The equations for the changes in momentums of
the objects are

Rxx += A
pre

AA
post

A mm && (18)

Rxx −= B
pre

AB
post

B mm && (19)

The final concept needed to solve for collision impulses is that they must only occur
along the collision normal [7]. In the following equation ⊥R represents the impulse

R rotated by 90 degrees:

0=⋅⊥ nR (20)

After writing this equation, the system has six equations and six unknowns (the x
and y components of the post collision velocities and of the impulse) and can be
solved using standard matrix techniques.

Rigid Bodies
Point masses provide an easy way to demonstrate the process of solving for collision
responses because they do not require consideration of rotational effects. Rigid
bodies use the same general process but require rotational effects to be considered
when calculating the relative velocities at the collision point and when updating
objects’ momentums in response to an impulse.

The rotation of rigid bodies affects the velocities of points on the bodies, so the
simulator must consider the colliding bodies’ rotations when calculating the relative
velocities for Newton’s Law of Restitution. Calculating the pre-collision relative
velocities of two rotating objects requires knowledge of the objects’ linear and
angular velocities. For example, the velocity of point AP in figure 9 depends on
object A’s down and right linear velocity and its clockwise angular velocity.

A

B

P

Ax&

Aθ&

Bθ&

Bx&

Figure 9: Relative velocity at collision point

The simulator calculates the velocity of a point due to the rotation of an object by
multiplying the angular velocity of the object with the vector ⊥r formed by rotating
by 90 degrees the vector from the center of the object to the point [5]

⊥= rxrotation θ&& . (21)

Figure 10 shows the vector ⊥r for the rectangle’s top right vertex.

⊥r

P
r

Figure 10: Velocity due to rotation

The total velocity of a point, therefore is

⊥+= rxxP θ&&& (22)

Plugging equation (22) into Newton’s Law of Restitution (equation (17)) gives:

() () nrxrxnrxrx ⋅+−+−=⋅+−+ ⊥⊥⊥⊥)()()()(BB

pre
B
pre

AA
pre

A
pre

BB
post

B
post

AA
post

A
post e θθθθ &&&&&&&& (23)

Because rigid bodies can rotate, impulses change not only their linear momentums,
but also their angular momentums. Equations (18) and (19) express the changes in
linear momentum experienced by colliding objects. The equation that expresses the
change in an object’s angular momentum is

Rr ⋅+= ⊥prepost II θθ && . (24)

In this equation, the impulse application point r is rotated 90 degrees and dotted
with the impulse. This operation is analogous to taking the three-dimensional cross
product in two dimensions [5].

The simulator now has the eight equations needed to solve for the collision impulses
for a pair of colliding rigid bodies. The full system of equations is:

Rr

R

R

Rr

R

R

⋅−=

−=

−=

⋅+=

+=

+=

⊥

⊥

B
pre

B
post

y
B
pre

BB
post

B

x
B
pre

BB
post

B

A
pre

A
post

y
A
pre

AA
post

A

x
A
pre

AA
post

A

II

ymym

xmxm

II

ymym

xmxm

θθ

θθ

&&

&&

&&

&&

&&

&&

() () nrxrxnrxrx ⋅+−+−=⋅+−+ ⊥⊥⊥⊥)()()()(BB
pre

B
pre

AA
pre

A
pre

BB
post

B
post

AA
post

A
post e θθθθ &&&&&&&&

0=⋅⊥ nR

Constrained Dynamics
“Constrained dynamics” provides a method to implement joints and articulated
bodies. In the physical world, a joint restricts the motions of the objects it connects.
A set of door hinges, for example, restricts a door to rotate around the axis created
by the side of the door frame to which the hinges are connected (see figure 11).

Wall and Frame Door

Hinge

Figure 11: Hinge joint connecting a door to its frame

The physics engine simulates such joints using constraints which, like joints, restrict
the ways in which objects are allowed to move. Constraints restrict objects’ motions
by applying “constraint forces” that offset accelerations in illegal directions.

Bead on a Wire
A simple example of a constrained system is a bead sliding along a two dimensional
wire (see figure 12). The derivation of this example follows the derivation of a similar
(but slightly more complicated) example in [8].

Figure 12: Bead sliding on a two dimensional wire

In the physical world, no matter what forces are applied to the bead, it always stays
on the wire (assuming the wire doesn’t break). If the wire lies along the line xy = ,

the bead’s position always satisfies the equation 0=− xy . The physics engine can
simulate this system by calculating and applying forces that prevent the bead from
leaving the line of the simulated wire.

In the bead-on-a-wire simulation, the bead’s position must satisfy the equation

0=− xy . This constraint can be written as:

0)(=−= xyC x (25)

Taking the derivative of the constraint function yields another that constrains the
bead’s velocity.

0)(=−= xyC &&& x (26)

Taking a final derivative provides a function that constrains the bead’s acceleration.

0)(=−= xyC &&&&&& x (27)

This function can be re-written in terms of forces using Newton’s Second Law
(xmf &&=):

0/)()(=−= mffC xyx&& (28)

The forces applied to the bead include the external forces (i.e. someone pushing the
bead) and the constraint forces that keep the bead on the wire. Therefore, the
previous equation can be re-written again as

() 0/)()()(intint =+−+= mffffC constra
x

external
x

constra
y

external
yx&& (29)

Because this one equation has two unknowns (intconstra

xf and intconstra
yf), the physics

engine needs one more equation to solve for the constraint forces. The principal of
virtual work provides the extra equation. This principal says that constraint forces
must do no work in the system. Since work is the amount of displacement caused by
a force, this can be restated by saying that constraint forces can not cause
displacements; they can only serve to cancel out other forces. The final equation in
the system ensures that the constraint force does not cause displacements by
requiring it to be orthogonal to all legal displacements. Since the bead in the above
example can only move along the line xy = , the constraint forces must therefore be
along the orthogonal line xy −= (see heavy arrows representing possible directions
for constraint forces in figure 13).

Figure 13: Constraint forces (heavy arrows) must be orthogonal to all legal displacements

Because the bead can only move in the directions of legal displacements, the
constraint forces must also be orthogonal to the legal velocities. The following
equations restrict the direction of the constraint force to be orthogonal to the bead’s
velocity:

yf constrax &λ−=int (30)

xf constray &λ=int (31)

Plugging these equations into equation (29) gives

() 0/)()(=−−+ myfxf external
x

external
y && λλ (32)

or, after solving for lambda,

)/()(xyff external
y

external
x && +−=λ . (33)

Plugging λ into equations 30 and 31 then provides external

xf and external
yf .

General Constraint Equations
While the method described above is useful for understanding the process of solving
for constraint forces, the physics engine needs a way to allow simulation writers to
add any number and combination of constraints. [8] derives a more general method
in which vectors and matrices are used to calculate constraint forces for any number
and combination of constraints and objects. This section follows that derivation.

The first step is to define the constraint vector, in which each row holds a constraint
equation:

0=C (34)

Like the bead-on-a-wire example, this equation needs to be differentiated twice with
respect to time to give the legal acceleration equations. The first derivative uses the
chain rule, multiplying the objects’ velocities times the partial derivative of the
constraint vector with respect to the objects’ positions. The partial derivative vector

x
C

∂
∂ is also known as the “Jacobian” (J) of C .

0== xJC && (35)

Differentiating again gives the legal acceleration equation

0=+= xJxJC &&&&&& . (36)

The equations of motion can be used to substitute masses, mass moments of inertia,
and forces for accelerations.

)(intconstraFFWx +=&& (37)

Substituting this equation for x&& in equation 36 gives

0)(int =++= xJFFJWC &&&& constra (38)

or

xJJWFJWF &&−−=constraint (39)

The final step is to ensure that the constraints do no work. As in the bead-on-a-wire
example, this restriction means that the constraint forces must be orthogonal to the
legal displacements. Since in legal displacements, C does not change, Tx∂∂ /C (TJ)
contains the set of vectors that are orthogonal to the legal displacements. The
following equation, therefore, ensures that the constraint force vector falls into the
space spanned by the set of the illegal displacement vectors [8]:

λJF Tconstraint = (40)

Plugging this equation into equation (39) gives

xJJWFλJWJ &&−−=T (41)

which can be solved for λ and, thus, constraintF .

To make this method more concrete, the following example calculates the variables
needed to solve equation (41) for a pin joint constraint. Solving that equation for the
constraint forces requires J and J& (since W , F , and x& are already known).

Calculating J requires first defining C . The pin joint has two constraint equations
(one for each dimension x and y). It requires each object’s local coordinate of the

pin joint to convert to the same global coordinate. In the case of the door simulation,
it requires the door’s and frame’s local coordinates of the hinge to convert to the
same global coordinate (see figure 14).

HingeWall and Frame Door
doorrframer

Figure 14: Local coordinates of hinge

The pin joint is located in the door frame’s local coordinate at framer and in the door’s
local coordinate frame at doorr . The door frame’s local coordinate for the hinge is
converted to the global coordinate frame by

frameframehinge
frame xrRx += θ (42)

in which frameθR is the rotation matrix for angle franeθ .

The door’s local coordinate for the hinge is converted to the global coordinate frame
by

doordoorhinge
door xrRx += θ . (43)

Because the door’s hinge and the door frame’s hinge must have the same position,
the constraint therefore is:

0)(=+−+ doordoorframeframe
doorframe xrRxrR θθ (44)

Multiplying by the rotation matrix gives the constraint equations for the x and y

dimensions

() 0sincossincos =+−−+− doordoor
y

doordoor
x

doorframeframe
y

frameframe
x

frame xrrxrr θθθθ (45)

() 0cossincossin =++−++ doordoor
y

doordoor
x

doorframeframe
y

frameframe
x

frame yrryrr θθθθ (46)

Therefore, the constraint vector C is

()
()









++−++
+−−+−

doordoor
y

doordoor
x

doorframeframe
y

frameframe
x

frame

doordoor
y

doordoor
x

doorframeframe
y

frameframe
x

frame

yrryrr
xrrxrr

θθθθ
θθθθ

cossincossin
sincossincos

J is the partial derivative of the constraint vector with respect to the vector
containing the positions of all objects. The resulting matrix’s columns relate to the
rows of the position vector and its rows relate to the rows of C . The door and frame
simulation has two objects and one constraint (the pin joint), so J will have 6
columns and 2 rows.













+−−−
+−−−

= doordoor
y

doordoor
x

frameframe
y

frameframe
x

doordoor
y

doordoor
x

frameframe
y

frameframe
x

θθθθ
θθθθ

sincos10sincos10
cossin01cossin01

rrrr
rrrr

J

Multiplying J by the velocity vector x& gives C&







































+−−−
+−−−

=

door

door

door

frame

frame

frame

doordoor
y

doordoor
x

frameframe
y

frameframe
x

doordoor
y

doordoor
x

frameframe
y

frameframe
x

θ
y
x
θ
y
x

rrrr
rrrr

C

&
&

&

&
&

&

&
θθθθ

θθθθ
sincos10sincos10
cossin01cossin01

Finally, taking the partial derivative of C& with respect to x gives J&













+−−
−+−

= doordoordoor
y

doordoordoor
x

frameframeframe
y

frameframeframe
x

doordoordoor
y

doordoordoor
x

frameframeframe
y

frameframeframe
x

θθθθθθθθ
θθθθθθθθ
&&&&

&&&&
&

cossin00cossin00
sincos00sincos00

rrrr
rrrr

J

The simulator can now solve for the constraint forces for the door simulation given
x& , W , and F .

Implementation
In the example above, the J and J& matrices only included two objects and two
constraint equations (representing one pin joint). In a real simulation, however,
there can be many objects and many constraints. In this case, the J and J& matrices
have columns for the pose variables of all objects in the system and one row for each
constraint equation in the system. The individual constraints represent blocks in the
global J and J& matrices at the intersection of the constraint’s row numbers in the
global constraint vector and the column numbers of the pose variables of the objects
they constrain.

The following simulation, for example, has 6 objects - four walls and two doors - and
two pin joints (for a total of four constraint equations).

Frame 1 Door 1

Hinge 1

Frame 2

Frame 3 Door 2

Hinge 2

Frame 4

The J matrix has columns representing the pose variables of the 6 objects and rows
for each of the four constraint equations. The following global J matrix shows the
individual J blocks at the intersections of the pose variables and constraint
equations in the global J matrix.























xxxxxx
xxxxxx

2hinge

xxx
xxx

xxx
xxx

hinge

framedoorframeframedoorframe

000000000000
000000000000

000
000

000
000

000
000

000
000

1

423211 484764847648476484764847648476

The physics engine is implemented such that each constraint is represented with a
“Constraint” object. Each constraint object knows its positions in the global
constraint matrices and is responsible for updating these matrices at each time step
based on the states of and forces applied to the objects it constrains. After each
constraint updates its block in the global matrices, the physics engine solves for the
current constraint forces for all constraints in one step.

Constrained Collision Response
Constraints work under the assumption that the velocity and positions of the objects
they are constraining are valid at the current time step [8]. They keep this
assumption true by enforcing legal accelerations. Unfortunately, the impulses used to
simulate collisions violate this assumption because they instantaneously change the
velocities of objects. Therefore, collision response for constrained objects must
account for the constraints. The simulator does this by not only solving for the
impulses required at collision points, but also the impulses required at constraint
connection points.

The “Collision Response” section details the system of equations needed to solve for
the collision impulses for a simple collision involving two objects. When constraints
are involved, the simulator also needs to solve for the constraint impulses. Each
additional constraint and object pair introduces five new unknowns: the x and y
components of the constraint impulse, the x and y components of the new object’s

post collision velocity, and the new object’s post collision angular velocity. For
example, if object B from figure 9 is connected with another object using a pin joint
(object C in figure 15), the system of equations developed in the collision response
section needs to be updated with information about the additional impulse and to
include five more equations for the five new unknown variables.

A

B

p
C

Figure 15: Collision with a constraint

Three equations of the original eight need to be updated to include the new impulse.
Since body B is constrained by the pin joint, it will receive an impulse from it.
Therefore, the equations relating its momentum before and after the collision need
to include terms for the constraint impulse (toinjR) [7]:

joint
x

collision
x

B
pre

BB
post

B RRxmxm +−= && (47)

joint
y

collision
y

B
pre

BB
post

B RRymym +−= && (48)

jointjocollisioncollisionB
pre

BB
post

B II RrRr ⋅+⋅−= ⊥⊥
intθθ && (49)

Five new equations are needed to solve for the five new unknowns. The first three
relate the momentum of object C before and after the collision (note that object C
does not directly receive a collision impulse, only an impulse from the pin joint).

joint
x

C
pre

CC
post

C Rxmxm −= && (50)

joint
y

C
pre

CC
post

C Rymym −= && (51)

jointjoC
pre

CC
post

C II Rr ⋅−= ⊥
intθθ && (52)

The last two equations express the property of the pin joint that the points
connected by the pin joint must have the same velocity after the collision [7].

)()(CCCBBB xxxx ⊥⊥ +=+ rr θθ &&&& (53)

)()(CCCBBB yyyy ⊥⊥ +=+ rr θθ &&&& (54)

After solving the system of equations, the simulator updates the velocities of all the
involved objects by applying the appropriate impulses. This maintains the
assumption of legal velocities and allows the constraint engine to continue.

Matrix Optimization
After getting the collision response and constraint logic working, the simulator was
very slow. According to the profiler, the biggest bottleneck was in manipulating the
matrices used to calculate collision responses and constraint forces. These matrices
get very large as objects are added to the system. The matrix used for collision
response, for example, is a square matrix of dimension 3 times the number of
objects in the system (x , y , and θ) plus 2 times the number of constraints in the

system plus 2 (for the one collision impulse being solved for). When the “collisions”
simulation is run with 1000 squares, therefore, a 3002x3002 matrix must be
inverted to resolve each collision. Needless to say, this caused the simulation to
ground to a halt.

Sparse Matrices
Because the collision response matrix has enough room for every object in the
system, but is only used to resolve a collision involving two objects (in collisions that
don’t involve constraints), the matrix encodes a very small amount of useful
information relative to its size.

The following shows a collision response matrix for the “collisions” simulation with 3
rectangles

1 0 0 0 0 0 0 0 0 0.03 0.00
0 1 0 0 0 0 0 0 0 0.00 0.03
0 0 1 0 0 0 0 0 0 -0.02 0.01
0 0 0 1 0 0 0 0 0 -0.03 0.00
0 0 0 0 1 0 0 0 0 0.00 -0.03
0 0 0 0 0 1 0 0 0 -0.02 0.01
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0

-0.46 -0.89 -0.05 0.46 0.89 0.05 0 0 0 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 -0.89 0.46

This matrix has three features that are common to all collision response matrices.
The first is the identity matrix formed by removing rows at the bottom and columns
on the right. This identity matrix represents the equations relating the objects’ pre
and post-collision momentums. The second feature is the rows at the bottom of the
matrix that only have non-zero values for the blocks representing the colliding
objects. The third is the columns on the right that only have non-zero blocks for the
constraints involved in the collision.

Because this structure is always present, it can be exploited to dramatically increase
the efficiency of matrix operations on these matrices. The only parts of the matrix
that need to be stored and manipulated are the small blocks of information contained
within the borders. In the matrix shown above, for example, the non-redundant
information is stored in the outlined blocks - two 2x3 sub-matrices, two 3x2 sub-
matrices, and one 2x2 sub-matrix. These blocks contain 28 values vs. the 121
contained in the entire matrix. The savings become much more dramatic as objects
are added to the system.

The constraint matrices are also very big and very sparse [8]. In the constraint
equation

xJJWFJWJ &&−−=λT ,

the J and J& matrices both have (3 * number of objects) columns and number of
rows proportional to the number of constraints in the system. The W matrix is a
square matrix of dimension (3 * number of objects). Because constraints generally
only relate two objects and the J matrices only have values at the intersection of
the constraint’s rows in the matrix (2 for a pin joint) and the constrained objects’
columns (3 for each object), this matrix has relatively few non-zero blocks of data.
For example, the following is a J matrix for the robots simulation with 1 robot and 1
can (for a total of 4 objects and two constraints).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 6 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -12 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -6 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -12 0 0 0 0 1 0

Additionally, the W matrix only contains non-zero values along its diagonal. Using
standard matrix techniques on these matrices is very wasteful since the amount of
information contained within them is very small in comparison to their size.

Efficient Sparse Matrix Methods
Fortunately, there are methods to efficiently manipulate such “sparse” matrices. In
[8], Witken suggests using a conjugate gradient algorithm to solve matrix equations
of the form bMx = for sparse matrices. This algorithm solves these equations
iteratively by choosing a value for x and minimizing the resulting error. A significant
benefit of the algorithm is that it can work on any matrix as long as the matrix
provides functionality to multiply itself by a vector and to multiply the transpose of
itself by a vector. The physics engine includes a matrix package that implements
these methods for all three sparse matrix types found in the system – diagonal and

block sparse for constrained dynamics and bordered diagonal identity for collision
response.

Diagonal Matrix
The “times” and “transpose times” methods for diagonal matrices are very simple.
The diagonal matrix is stored as a one dimensional array with the value at array
position “n” representing the value at matrix position “n” x “n.” Multiplying by a
vector simply requires an element by element multiplication. Transposing a diagonal
matrix has no effect, so the “transpose times” operation is the same.

Block Sparse Matrix
Block sparse matrices are stored as a collection of sub-matrices, each representing a
block of non-zero data in the matrix. The sub-matrices are stored with their row and
column offsets to identify where they fall in the matrix. To multiply the entire matrix
with a vector, an “answer” vector is first initialized to 0. Each sub-matrix is then
multiplied by the section of the vector starting at the block’s row index and ending at
its row index plus its number of columns using standard matrix multiplication.
Finally, the result of this operation is added to the appropriate section of the answer
matrix.

The following example multiplies a small sparse matrix by a vector. The block sparse
matrix contains one 2 x 2 block at row 3 and column 2:













































6
5
4
3
2

*

00000
00250
00430
00000
00000

The algorithm first creates a 5 element answer vector and initializes it to zero. It
then multiplies the sub-matrix represented by the block with the corresponding
vector section









=
















30
32

5
4

*
25
43

Finally, it adds the result of that operation to the corresponding answer vector
section























0
30
32
0
0

The “transpose times” operation for block sparse matrices is similar to the “times”
operation except each sub-matrix’s row and column offsets are reversed and the

sub-matrices are transposed before being multiplied by their corresponding vector
sections.

Bordered Diagonal Identity Matrix
The operations for bordered diagonal identity matrices are similar to that of the block
sparse matrix. Since the upper left sub-matrix is the identity matrix, the
corresponding section of the vector with which the matrix is being multiplied is first
copied into the answer vector. The blocks in the two borders are then multiplied with
their corresponding sections of the vector using the same steps used by the block
sparse matrix algorithms.

BiConjugate Gradient Algorithm
The biconjugate gradient algorithm uses the times and transpose times methods to
solve the matrix equation bMx = . See [9] for details of the algorithm. Because the
matrix package implements very efficient versions of the times and transpose times
operations for all sparse matrices found in the collision response and constrained
dynamics equations, the simulator can efficiently solve for impulses and constraint
forces using the biconjugate gradient algorithm.

Future Work
The physics engine implements many features that MASON users can use to build
complex, efficient, and physically realistic simulations. There is still much work to be
done, however, for it to compete with more advanced physics engines. The most
obvious feature is to extend the simulator to three dimensions. Other features that
would shorten the gap with the more advanced engines are resting contact and
frictional collision response.

Resting contact is the term giving to objects that are colliding, but have zero relative
velocity. A real-world example of this is an apple sitting on a table. The apple exerts
force on the table equal to its mass times gravity. The apple doesn’t fall through the
table because the table exerts an equal and opposite force to the apple. As the
simulator is currently implemented, it will try to resolve such contact with an impulse
at each time step. This appears to work for a while, but the simulated apple will
eventually creep through the table. A resting contact feature of the physics simulator
would analytically solve for the forces needed to prevent resting objects from
penetrating like this. See [1] and [2] for further details.

Collision responses in the physics engine currently ignore the effects of friction
during collisions. In the physical world if a billiard ball hits the edge of a table at a 45
degree angle, the collision will impart some spin to the ball because of the friction
between the ball and the edge of the table. A simulated billiard ball, however, would
not spin as a result of such a collision. A frictional collision feature would solve for
both the impulse along the collision normal (as the physics engine currently does)
and the impulse along the collision tangent due to friction.

References
1. D. Baraff, “Fast Contact Force Computation for Nonpenetrating Rigid Bodies,”

Computer Graphics (Proc. SIGGRAPH), 1994
2. D. Baraff, “An Introduction to Physically Based Modeling: Rigid Body

Simulation II – Nonpenetration Constraints,” SIGGRAPH ’97 Course Notes
3. D. Bourg, “Physics for Game Developers,” O’Reilly (1/2002)
4. J. Cohen, M. Lin, D. Manocha, M. Ponamgi, “I-COLLIDE: An Interactive and

Exact Collision Detection System for Large-Scale Environments,” Department
of Computer Science, University of North Carolina, Chapel Hill, NC

5. C. Hecker, “Physics, Part 3: Collision Response,” Game Developer (March
1997), pp. 11 – 18

6. B. Mirtich, “Efficient Algorithms for Two-Phase Collision Detection,” MERL – A
Mitsubishi Electric Research Laboratory, TR-97-23 (12/1997)

7. M. Moore, J. Wilhelms, “Collision detection and response for computer
animation,” Computer (Proc. SIGGRAPH), vol. 22, pp. 289-298, 1998

8. A. Witkin, “Constrained Dynamics,” SIGGRAPH ’97 Course Notes
9. E. Weisstein et al. “Biconjugate Gradient Method,” MathWorld—A Wolfram

Web Resource,
http://mathworld.wolfram.com/biconjugategradientmethod.html

