
MASON

Sean Luke

Department of Computer Science
George Mason University

Washington, DC

About Myself

• Associate Professor
Department of Computer Science
George Mason University

• Co-director
GMU Evolutionary Computation Laboratory

• Interests
Multiagent Systems and Simulation
Machine Learning and Stochastic Search
Autonomous Robotics

Presentation Overview

• Quick Introduction to MASON

• Projects Involving MASON

• MASON Architecture Overview
[note to the jet-lagged: you can sleep here]

• Model Parameter and Agent Behavior
Optimization

• Later this week: Hands-On Programming

Introduction

What is MASON?

• Open source Java discrete-event simulator

• For multiagent simulations requiring:

• speed

• replicability

• large numbers of agents

• high degree of flexibility and “hackability”

• simulations run on back-end servers

Pretty Demo Pictures

Pretty Demo Pictures

Who Built MASON?

• Design
The George Mason University
 Center for Social Complexity
 & Department of Computer Science
 Sean Luke, Claudio Cioffi-Revilla

• Coding
Sean Luke, Gabriel Balan, Liviu Panait, Keith Sullivan, Joey
Harrison, Sean Paus, Christian Thompson, Daniel
Kuebrich, Ankur Desai

• Funding
GMU, NSF, DARPA, General Electric Global
Research, Office of Naval Research (ONR)

Trends in “Swarm-style”
MAS Simulation

• Small, rapid-prototyped experiments
Higher-level, slower, more domain-specific

• Repast, NetLogo

• Large experiments
General-purpose, high-performance,
modular, highly flexible, strong guarantees,
parameter optimization

• MASON

Why “Big Iron” Matters

• Reason #0: our simulations are getting more
detailed

• Reason #1: we need to demonstrate
solution robustness despite parameter
perturbations

• Parameter sweeps are expensive

• Reason #2: the design space of simulations
is getting nasty. Automated design help is
welcome. But also expensive!

What I Use
MASON For

• Fast evaluation of many simulations on
large numbers (100+) of back-end clustered
computers

• Optimization of agent behaviors

• Parameter sweeps

• Visualization on front-end workstations

• Application to a wide range of problems

Large Experiments
aren’t Just in Robotics
• Multiagent modeling of the emergence of

empire in Inner Mongolia
GMU Center for Social Complexity
Smithsonian Institution (NSF)

• Agents: households, political entities

• Agent interactions: trade routes,
communication, migration, rise of horse
culture

• We only know part of the design space!

We Use MASON for...

• Social Science MAS Models

• Physical Systems Modeling

• Robotics

• Machine Learning and Optimization

• Artificial Life and Systems Biology

• Traffic Engineering

How They’re Different
• Most are engineering fields. They want to

figure out MAS solutions to problems.

• “How do I get a swarm of unmanned
aerial vehicles to photograph as much
territory in Afghanistan as possible?”

• MAS in the social sciences (and biological
sciences) wants to use MAS to describe
phenomena.

• It turns out the tools aren’t that different!

Current Simulations
Done with MASON

• Harbor Defense

• Cultural Transmission, Memory, Leadership,
and Collective Action

• Large-Scale (million-agent) economies of
microeconomically-motivated agents

• Models of the Development of the
Mongolian Empire

A Few of My Own
Ongoing Projects

• New Multi-Pheromone Algorithms for
Ant-Robot Foraging

• Cooperative Target Observation with
Unmanned Aerial Vehicles

• Multiagent Traffic Control

• Robotics Simulation

• Rigid Body Physics Simulation

Swarm Foraging with
Pheromones

• Thousands of robotic
ant agents discover and
ferry “food” back to a
nest

• Ants communicate
information via
depositing pheromones

• Pheromones direct
other ants to food and
nest locations

• Strong relationship with dynamic-
programing-style value functions:

• Of strong interest to the MAS machine
learning community

Pheromones
and Value Functions

Up(s
′) = R(s′) + γ max

a∈A

∑

s′′∈S′′

T (s′, a, s′′)Up(s
′′)

Up(s
′) = max(Up(s

′), (1 − α)Up(s
′) + α(R(s′) + γUp(s))

Multiagent Traffic
Light Control

• You’ve waited at many reds today.
Shouldn’t future lights cut you a break?

• Lights dispense credits to cars waiting at red

• Cars given the green must pay back credits

• Green lights given to lanes holding cars
totaling the most credits

• Multiagent simulation: as many as 16,000
cars, 10x10 grid of traffic light intersections

FlockBots

• 7” mobile swarm robots w/gripper, camera,
wireless linux, sensors

• Running experiments on 10–1000 physical
robots is slow and tedious. Fast simulation
is crucial.

Cooperative Target
Observation

• Many slow targets

• A few fast observers,
each with an
observation range

• Partially-decentralized
algorithms to maximize
the number of targets
within range of at least
one observer

MASON App
Architecture

• MASON simulations are
divided into two parts:

• The model, which can
run by itself on the
command line, or be
attached to...

• The optional
visualization toolkit, for
analyzing and
manipulating the
model.

 Optional Visualization

Console

Field
Portrayal

Display

 Simulation Model

Schedule
Field

Architecture Overview

MASON Models

• Models often consist of a
schedule representing time,
and fields representing space.

• Schedule: discrete-event
schedule such as is found
in Swarm or Repast.

• Fields: MASON has square and
hex grids, continuous space, and
networks; in 2D, 3D, toroidal,
bounded, or unbounded space;
holding Objects, ints, or doubles.

You can make
your own fields if

you like.

 Simulation Model

Schedule
Field

Where are the Agents?

• Agents are the objects
scheduled on the Schedule
to manipulate the world.

• Fields can store any arbitrary
object or data value: they
don’t just have to store
agents.

• Indeed, many agents might
not be part of a Field at all.
They’re “in the world but not
of the world”.

This is a very AI way of
looking at things...

 Simulation Model

Schedule
Field

Checkpointing

• The entire model is self-
contained in a subclass of
SimState which you create.

• This allows you to
occasionally checkpoint the
model (save its current
running state to disk).

• You can restore from a
checkpoint on a different
computer running a different
operating system if you like.

 Simulation Model

Schedule
Field

Disk

MASON Model Goals

• Efficiency

• Optional Model Replicablity

• Self-Containment

• Modularity and Extensibility

• [and of course] Checkpointing

Visualization and GUI
• An optional visualization

toolkit holds onto the
model and visualizes it
while it is running.

• The Console: lets the user
manipulate the Schedule

• Field Portrayals: let the
user visualize / probe
fields and their objects.

• Displays: windows which
hold field portrayals

 Optional Visualization

Console

Field
Portrayal

Display

 Simulation Model

Schedule
Field

Displays and Portrayals

• Each 2D or 3D display is a window which is
associated with one or more field portrayals

• Each field portrayal draws/inspects one field

• Field portrayals draw/inspect the objects or
values the field by calling up simple
portrayals you’ve registered for the objects

• Simple portrayals can draw objects or
values, and produce inspectors (probes) for
those objects or values.

Requisite
UML

Diagram

Visualization

Display

Field
Portrayal

Simple
Portrayal

Inspector

Console Schedule

Field

Object or
Value

*

1

*

1

1

1

*

1

GUIState SimState

*

1 1

1

1

1

*

1

1 *
portrays

1 1

portrays

1 1

controls

*1

Steppable
("Agent")

*

1

Model

Visualization Gizmos
• 2D and 3D Space

• Movie and Image Generation

• Inspectors
(What Swarm called “Probes”)

• Sophisticated Console

• Histograms

• Time-Series Charts

• Publication-Quality PDF Output

Checkpointing Works
in Visualization Too

• You can checkpoint the
model from, and recover
to, a visualization toolkit

• The same checkpointed
model runs by itself or
under different
visualizers.

• You can change
platforms: run on a back-
end server, occasionally
visualize on front-end
workstation.

Disk

Extensions

• 2D Rigid Body Physics (pure Java)

• Social Networks

• Scheme / Kawa

• In Design

• 3D Rigid Body Physics (using ODE)

• GIS

• Swarmbot API

Optimization

Multiagent Systems
Design is Hard

• Design space increases dramatically with...

• More agents and their interactions

• Complex behaviors

• Unexpected macro-phenomena emerge
from simple underlying agent behaviors

• How to produce the effect you want?

Can Computers Help?

• It’d be nice to automate the design process!

• Let the computer discover and optimize
the solution for you

Which
Automation Method?

• Solutions are unknown

• No directly computable
gradient

• Solutions take arbitrary
form, neighborhood
function is ad-hoc

• Many local optima (due
in part to “emergence”)

[supervised learning]

[gradient descent]

[reinforcement
learning, linear
optimization, etc.]

[hill-climbing]

Evolutionary Computation
• When you don’t know what the best solution is,

but you know a good one when you see it

• Set of candidate solutions (a population of individuals)

• Each individual is tested and assigned a quality (fitness)

• A new set (the next generation) is formed by

• Selecting and copying fitter individuals, then

• Randomly tweaking them and mixing and matching
pieces of them (breeding)

• Repeat

Evolutionary Computation

Fitness
Assessment

Selection and
Breeding

Population
Reassembly

MASON
Fits Here

Example: Robot
Soccer Team Behaviors
• What is are the optimal

robot behaviors for good
team performance?

• Each population is
responsible for one robot
type (goalie, forward, etc.)

• Individuals’ fitnesses are
assessed by teaming them
up and playing a match
against another team

The Good and Bad

• Evolutionary Computation methods...

• Are highly parallelizable

• Are representation-free

• May be applied to many problems

• But require many, many evaluations

• 100,000 simulation runs not uncommon

• In this field, industrial grade really matters!

The End

• http://cs.gmu.edu/~eclab/projects/mason/

• WCSS Tutorial: Simple Schelling Segregation

• Ask me for tutorial documentation,
tutorial classes, copies of MASON, etc.
(on my USB drives)

