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About Myself

• Associate Professor 
Department of Computer Science
George Mason University

• Co-director
GMU Evolutionary Computation Laboratory

• Interests
Multiagent Systems and Simulation
Machine Learning and Stochastic Search
Autonomous Robotics



Presentation Overview

• Quick Introduction to MASON

• Projects Involving MASON

• MASON Architecture Overview
[note to the jet-lagged: you can sleep here]

• Model Parameter and Agent Behavior 
Optimization

• Later this week: Hands-On Programming



Introduction



What is MASON?

• Open source Java discrete-event simulator

• For multiagent simulations requiring:

• speed

• replicability

• large numbers of agents

• high degree of flexibility and “hackability”

• simulations run on back-end servers



Pretty Demo Pictures



Pretty Demo Pictures





Who Built MASON?

• Design
The George Mason University
       Center for Social Complexity
   & Department of Computer Science
       Sean Luke, Claudio Cioffi-Revilla

• Coding
Sean Luke, Gabriel Balan, Liviu Panait, Keith Sullivan, Joey 
Harrison, Sean Paus, Christian Thompson, Daniel 
Kuebrich,  Ankur Desai

• Funding
GMU, NSF, DARPA, General Electric Global 
Research, Office of Naval Research (ONR)



Trends in “Swarm-style” 
MAS Simulation

• Small, rapid-prototyped experiments
Higher-level, slower, more domain-specific

• Repast, NetLogo

• Large experiments
General-purpose, high-performance, 
modular, highly flexible, strong guarantees, 
parameter optimization

• MASON



Why “Big Iron” Matters

• Reason #0: our simulations are getting more 
detailed

• Reason #1: we need to demonstrate 
solution robustness despite parameter 
perturbations

• Parameter sweeps are expensive

• Reason #2: the design space of simulations 
is getting nasty.  Automated design help is 
welcome.  But also expensive!



What I Use 
MASON For

• Fast evaluation of many simulations on 
large numbers (100+) of back-end clustered 
computers

• Optimization of agent behaviors

• Parameter sweeps

• Visualization on front-end workstations

• Application to a wide range of problems



Large Experiments 
aren’t Just in Robotics
• Multiagent modeling of the emergence of 

empire in Inner Mongolia
GMU Center for Social Complexity
Smithsonian Institution (NSF)

• Agents: households, political entities

• Agent interactions: trade routes, 
communication, migration, rise of horse 
culture

• We only know part of the design space!



We Use MASON for...

• Social Science MAS Models

• Physical Systems Modeling

• Robotics

• Machine Learning and Optimization

• Artificial Life and Systems Biology

• Traffic Engineering



How They’re Different
• Most are engineering fields.  They want to 

figure out MAS solutions to problems.

• “How do I get a swarm of unmanned 
aerial vehicles to photograph as much 
territory in Afghanistan as possible?”

• MAS in the social sciences (and biological 
sciences) wants to use MAS to describe 
phenomena.

• It turns out the tools aren’t that different!



Current Simulations 
Done with MASON

• Harbor Defense

• Cultural Transmission, Memory, Leadership, 
and Collective Action

• Large-Scale (million-agent) economies of 
microeconomically-motivated agents

• Models of the Development of the 
Mongolian Empire



A Few of My Own
Ongoing Projects

• New Multi-Pheromone Algorithms for 
Ant-Robot Foraging

• Cooperative Target Observation with 
Unmanned Aerial Vehicles

• Multiagent Traffic Control

• Robotics Simulation

• Rigid Body Physics Simulation



Swarm Foraging with 
Pheromones

• Thousands of robotic 
ant agents discover and 
ferry “food” back to a 
nest

• Ants communicate 
information via 
depositing pheromones

• Pheromones direct 
other ants to food and 
nest locations



• Strong relationship with dynamic-
programing-style value functions:

• Of strong interest to the MAS machine 
learning community

Pheromones 
and Value Functions

Up(s
′) = R(s′) + γ max

a∈A

∑

s′′∈S′′

T (s′, a, s′′)Up(s
′′)

Up(s
′) = max(Up(s

′), (1 − α)Up(s
′) + α(R(s′) + γUp(s))



Multiagent Traffic 
Light Control

• You’ve waited at many reds today.  
Shouldn’t future lights cut you a break?

• Lights dispense credits to cars waiting at red

• Cars given the green must pay back credits

• Green lights given to lanes holding cars 
totaling the most credits

• Multiagent simulation: as many as 16,000 
cars, 10x10 grid of traffic light intersections



FlockBots

• 7” mobile swarm robots w/gripper, camera, 
wireless linux, sensors

• Running experiments on 10–1000 physical 
robots is slow and tedious.  Fast simulation 
is crucial.



Cooperative Target 
Observation

• Many slow targets

• A few fast observers, 
each with an 
observation range

• Partially-decentralized 
algorithms to maximize 
the number of targets 
within range of at least 
one observer



MASON App 
Architecture

• MASON simulations are 
divided into two parts:

• The model, which can 
run by itself on the 
command line, or be 
attached to...

• The optional 
visualization toolkit, for 
analyzing and 
manipulating the 
model.

   Optional Visualization

Console

Field 
Portrayal

Display

   Simulation Model

Schedule
Field



Architecture Overview



MASON Models

• Models often consist of a 
schedule representing time, 
and fields representing space.

• Schedule: discrete-event 
schedule such as is found
in Swarm or Repast.

• Fields: MASON has square and 
hex grids, continuous space, and 
networks; in 2D, 3D, toroidal, 
bounded, or unbounded space; 
holding Objects, ints, or doubles.

You can make 
your own fields if 

you like.  

   Simulation Model

Schedule
Field



Where are the Agents?

• Agents are the objects 
scheduled on the Schedule 
to manipulate the world.

• Fields can store any arbitrary 
object or data value: they 
don’t just have to store 
agents.

• Indeed, many agents might 
not be part of a Field at all.  
They’re “in the world but not 
of the world”.  

This is a very AI way of 
looking at things...

   Simulation Model

Schedule
Field



Checkpointing

• The entire model is self-
contained in a subclass of 
SimState which you create.

• This allows you to 
occasionally checkpoint the 
model (save its current 
running state to disk).

• You can restore from a 
checkpoint on a different 
computer running a different 
operating system if you like.

   Simulation Model

Schedule
Field

Disk



MASON Model Goals

• Efficiency

• Optional Model Replicablity

• Self-Containment

• Modularity and Extensibility

• [and of course] Checkpointing



Visualization and GUI
• An optional visualization 

toolkit holds onto the 
model and visualizes it 
while it is running.

• The Console: lets the user 
manipulate the Schedule

• Field Portrayals: let the 
user visualize / probe 
fields and their objects.

• Displays: windows which 
hold field portrayals

   Optional Visualization

Console

Field 
Portrayal

Display

   Simulation Model

Schedule
Field



Displays and Portrayals

• Each 2D or 3D display is a window which is 
associated with one or more field portrayals 

• Each field portrayal draws/inspects one field

• Field portrayals draw/inspect the objects or 
values the field by calling up simple 
portrayals you’ve registered for the objects

• Simple portrayals can draw objects or 
values, and produce inspectors (probes) for 
those objects or values.



Requisite 
UML 
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Visualization Gizmos
• 2D and 3D Space

• Movie and Image Generation

• Inspectors 
(What Swarm called “Probes”)

• Sophisticated Console

• Histograms

• Time-Series Charts

• Publication-Quality PDF Output



Checkpointing Works 
in Visualization Too

• You can checkpoint the 
model from, and recover 
to, a visualization toolkit

• The same checkpointed 
model runs by itself or 
under different 
visualizers.

• You can change 
platforms: run on a back-
end server, occasionally 
visualize on front-end 
workstation.

Disk



Extensions

• 2D Rigid Body Physics (pure Java)

• Social Networks

• Scheme / Kawa

• In Design

• 3D Rigid Body Physics (using ODE)

• GIS

• Swarmbot API



Optimization



Multiagent Systems 
Design is Hard

• Design space increases dramatically with... 

• More agents and their interactions

• Complex behaviors

• Unexpected macro-phenomena emerge 
from simple underlying agent behaviors

• How to produce the effect you want?



Can Computers Help?

• It’d be nice to automate the design process!

• Let the computer discover and optimize 
the solution for you



Which 
Automation Method?

• Solutions are unknown 

• No directly computable 
gradient 

• Solutions take arbitrary 
form, neighborhood 
function is ad-hoc

• Many local optima (due 
in part to “emergence”) 

[supervised learning]

[gradient descent]

[reinforcement 
learning, linear 
optimization, etc.]

[hill-climbing]



Evolutionary Computation
• When you don’t know what the best solution is,

but you know a good one when you see it

• Set of candidate solutions (a population of individuals)

• Each individual is tested and assigned a quality (fitness)

• A new set (the next generation) is formed by 

• Selecting and copying fitter individuals, then

• Randomly tweaking them and mixing and matching 
pieces of them (breeding)

• Repeat



Evolutionary Computation

Fitness 
Assessment

Selection and 
Breeding

Population 
Reassembly

MASON 
Fits Here



Example: Robot
Soccer Team Behaviors
• What is are the optimal 

robot behaviors for good 
team performance?

• Each population is 
responsible for one robot 
type (goalie, forward, etc.)

• Individuals’ fitnesses are 
assessed by teaming them 
up and playing a match 
against another team



The Good and Bad

• Evolutionary Computation methods...

• Are highly parallelizable

• Are representation-free

• May be applied to many problems

• But require many, many evaluations

• 100,000 simulation runs not uncommon

• In this field, industrial grade really matters!



The End

• http://cs.gmu.edu/~eclab/projects/mason/

• WCSS Tutorial: Simple Schelling Segregation

• Ask me for tutorial documentation, 
tutorial classes, copies of MASON, etc.
(on my USB drives)


