
2013 IEEE Conference on Communications and Network Security (CNS)

Fragmentation Considered Poisonous, or:
one-domain-to-rule-them-all.org

Arnir Herzberg
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

Email: amir.herzberg@gmail.com

Abstract-We present effective off-path DNS cache poisoning
attacks, circumventing widely-deployed challenge-response de
fenses, e.g., transaction identifier randomisation, port and query
randomisation.

Our attacks depend on the use of UDP to retrieve long DNS
responses, resulting in IP fragmentation. We show how attackers
are often able to generate such fragmented responses, and then
abuse them to inject spoofed, 'poisonous' records, into legitimate
DNS responses.

We also studied how resolvers, name servers, domains and
registrars, can defend against our attacks. The best defense is
deployment and enforcement of DNSSEC validation. However,
DNSSEC must be deployed correctly by both domain and
resolver, which is challenging; we hope our results will catalyse
this process, but it will surely take long time. In fact, recent
study found less than 1 % of resolvers reject responses upon
DNSSEC validation failures. Note also that, ironically, adoption
of DNSSEC by a domain, is the main reason for fragmented DNS
responses (abused in our attacks). We therefore present several
short-term countermeasures, which can complement DNSSEC,
especially until DNSSEC deployment is complete.

We validated our attacks against popular resolvers (Bind and
Unbound), and real domains in the Internet.

Keywords: DNS security, DNS cache poisoning, fragmentation
attacks, off-path attacks.

I. INTRODUCTION

The correctness and availability of information in the Do
main Name System (DNS) are crucial for the operation of the
Internet. There is a long history of attacks on the DNS, most
notably DNS cache poisoning, where the attacker provides in
correct records in a DNS response, which are then cached and
served to clients by the DNS resolver. DNS cache poisoning
may allow weak off-path attackers to redirect communication
to incorrect, adversarial, servers, thereby enabling an off-path
attacker to intercept and modify content; as a result off-path
attackers can circumvent many defense mechanisms such as
Same Origin Policy (SOP), domain blacklists and domain
policies (e.g., SPF), exposing users to a range of attacks, such
as phishing, credentials-theft (e.g., XSS), and more.

To protect against DNS cache poisoning attacks, the
IETF defined and standardised DNSSEC [RFC4033-4035].

*This work was carried out while the second author was in the Department
of Computer Science, Bar Ilan University.

Haya Shulrnan*
Fachbereich Informatik

Technische Universitat DarmstadtlEC-SPRIDE
Darmstadt, Germany

Email: haya.shulman@gmail.com

DNSSEC authenticates DNS responses using digital sig
natures, providing security not only against off-path, but
also against Man-in-the-Middle (MitM) attackers. However,
DNSSEC deployment is challenging, mainly since it requires
both, adoption by domains, and validation by resolvers. Al
though it was proposed more than 15 years ago, only about
2% of the domains are signed and about 1 % of the resolvers
perform validation of DNSSEC-enabled DNS responses, [1].

Currently, while DNSSEC deployment tarries, most re
solvers rely on challenge-response mechanisms to prevent
DNS cache poisoning, using existing fields in DNS queries,
which are echoed in responses. DNS requests contain a short,
16 bit, transaction identifier (TXID) field, originally designed
to match an incoming response with a pending request. Fol
lowing Kaminsky's poisoning attack [2], additional sources of
randomness were added, most notably source port and name
server address randomisation; these defenses are widely de
ployed and standardised [RFC5452]. Such challenge-response
mechanisms only require resolvers to properly randomise the
fields in the requests, and validate that they were properly
echoed in the responses; there is no dependency on support
by the name servers, hence, deployment is easy. However,
challenge-response mechanisms offer no protection against
MitM attackers. Yet, the common belief (or hope) is that these
fields, when chosen randomly, cannot be predicted by an off
path attacker and hence suffice to prevent off-path poisoning.

Indeed, it seems that many practitioners are pacified by these
improved challenge-response mechanisms; the urge to deploy
DNSSEC, especially following Kaminsky's attack, seemed to
have reduced. We believe that this is a mistake, for two main
reasons: (1) in practice attackers may often be able to gain
MitM capabilities, e.g., wireless networks, insecure/malicious
devices, or insecure routing, and (2) as we show in this work
and our previous work [3]-[5], existing challenge-response
mechanisms may not be secure, since the challenge values
can often be guessed by off-path attackers in common network
configurations.

In this work, we present an even more convincing argument:
attacks which foil all deployed challenge-response defenses,
without depending on the use of NAT or other special network
configuration/device/vulnerability, as in [3], [5]. Furthermore,
our attacks do not require guessing the challenge values. The

978-1-4799-0895-0/13/$31.00 ©2013 IEEE 224

2013 IEEE Conference on Communications and Network Security (CNS)

attacks' requirements are modest: (1) we assume ability to
trigger DNS requests, e.g., by redirecting a user, of a victim
resolver, to a malicious website, (2) an off-path attacker,
and (3) existence of sufficiently-long DNS responses. Long
responses exist for some DNS queries, e.g., ironically, for
domains using DNSSEC; we also show that in many domains
allowing registration of sub-domains, e.g., org, an attacker
can register a sub-domain which causes fragmented referrals
from the parent (e.g., org), enabling our poisoning attacks.

The attacks are very efficient, and further enhanced with
improved 'birthday optimisations', i.e., circumventing the
'birthday prevention' mechanism adopted by most resolvers
following Kaminsky's attack.

The attacks are based on three observations: (1) although
most DNS responses are short, some responses are long! , and
may get fragmented; (2) all challenge-response parameters,
used to authenticate DNS responses (TXID, source port, and
query), are contained in the beginning of the response, i.e.,
in the first fragment (if fragmented), and (3) it is possible,
in certain situations, to replace the second fragment with a
spoofed second fragment, tricking the resolvers into caching a
poisoned record; see Figure 1. To launch the cache poisoning
attack, the following challenges need to be overcome:

� FRAGMENTATION . typical DNS response are short, and
hence are not fragmented. We found that some responses
are fragmented. Furthermore, the attacker can often cause

fragmentation, by registering a maliciously-crafted subdomain;
see Section II).

� DEFRAGMENTATION CACHE POIS ONING . a spoofed sec
ond fragment, sent by the attacker, must have correct IP
ID, protocol, and IP addresses, to be reassembled with the
authentic first fragment of a DNS response, and must be in
the cache when the corresponding first fragment arrives. This
is challenging, yet doable with good success probability; see
Section III.

� ENS URING VALID DNS RESPONSE. the 'mixed' DNS
response, consisting of a spoofed second fragment and an
authentic first fragment, should be valid and cached; this
requires addressing the following challenges, as addressed in
Section IV:

• UDP checksum: the reassembled IP packet must have a
correct UDP checksum, so that it is not rejected by the OS
on the receiving host.

• Valid DNS response: the reassembled IP packet must
have valid format and structure, and the challenge-response
values should match those sent within the request, so that it
is not rejected by the DNS resolver software.

• Overriding cached records: the injected spoofed records
must comply with resolvers' caching policies so that they are
not only accepted, but also cached by the resolver.

We present efficient attacks applicable to many popular
domains and resolvers, overcoming these challenges. We have

1 Originally, DNS packets were restricted to 5 1 2 bytes, but longer responses
are possible using the EDNS record [RFC267I].

experimentally validated our attacks on two (popular) open
source resolvers that support DNSSEC: Bind 9.8.3 and Un
bound 1.4.18. Some of our techniques may be useful for other
purposes, e.g., to intercept traffic, improving the attack of [6],
and for Denial-of-Service (DoS) attacks.

Hence, we believe that the DNS transactions should best
be protected using cryptography, and DNSSEC seems to be
the practical choice, with security based on experts-scrutiny
as well as on analysis [7]. However, we highlight some issues
with the deployment of DNSSEC, which require improvement.
First, we show that, ironically, as long as resolvers do not
'strictly enforce' DNSSEC validation, adoption by domains
may actually facilitate the attack, by providing long, frag
mented responses. Adoption of multiple signing algorithms
and multiple key lengths may further exacerbate the problem;
the currently popular 1024-bit RSA is too weak. Second,
when the resolvers cannot establish a chain of trust from
the root zone to the target domain, they fall back to a non
validating mode, also facilitating the attack. Third, we show
that DNSSEC does not prevent two variants of the attack:
fake subdomain injection, when the (widely-used) DNSSEC
NSEC3 OPT-OUT option is supported, and name-server pin

ning attack, which can be abused for DoS and traffic analysis.

fliffit
1.2.3.6

DNS request
i- -'. A?$123foo.org I
, 2

1" authentic fragment
is reassembled with

attacker'sZod
spoofed fragment

�..:;;:::.;:;:,....;::::;:"::::......=� 1 / DNS request

\. 1" authentic fragment
____ �._. -.j ::;;;.7 �:��1i2.3.4

(4\ __

I Second fragment does not
have a match thus, discarded
from cache after 30 seconds

A?$123.foo.org

2"- authentic fragment
SrcTP:7.7.7.7d,tIP:l.2.3.4
JP-ID:777 offset:H!O

Fig. 1. Fragmentation based DNS cache poisoning attack. The off-path
attacker, at IP 6.6.6.6, sends a spoofed second fragment to the resolver (step
I), and then triggers a DNS request, e.g. , via a client visiting an attacker
controlled webpage (step 2). The response from name server is fragmented
(step 3). The first fragment is reassembled with spoofed fragment (step 4),
poisoning the cache of the resolver.

Contributions

(1) We show how to exploit fragmentation to perform effi
cient DNS cache poisoning attacks, circumventing challenge
response, and birthday protection, mechanisms, and motivate
adoption of DNSSEC.

(2) We show efficient defragmentation-cache poisoning at
tacks (focusing on DNS responses); this includes study of IP
ID allocation among DNS name servers.

(3) We show an off-path subdomain injection attacks,
against DNSSEC configurations using NSEC3 OPT-OUT. This
improves over the result of [7], which required a MitM
attacker, or vulnerable DNS implementations, e.g., not sup
porting source port randomisation.

(4) We evaluate an extensive range of short-term coun
termeasures against our attacks; a truly satisfying defense
remains an important challenge, though.

225

2013 IEEE Conference on Communications and Network Security (CNS)

II. USING FRAGMENTATION FOR DNS CACHE POIS ONING

IF fragmentation is rare in the Internet. Less than 1 % of
the traffic is fragmented. Hence the first challenge of our
attacks, is to trigger a DNS request, whose response would
get fragmented; we address this challenge in Subsection II-A.
Then in Subsection II-B we present a high level overview of
our cache poisoning attacks.

A. Fragmented Victim-Domain Responses

Most DNS responses are short and do not fragment. How
ever, we found that there is a significant percentage of queries
which result in long, fragmented, responses. This is especially
true, once domains adopt DNSSEC. The most common long
response are: (1) responses for ANY type requests (which
return all the records in the target zone) and (2) DNSSEC
enabled DNS responses, which contain cryptographic sig
natures and keys; see Figure 2 for a distribution of the
length of responses for second-level domains (SLDs) of gov
TLD, separating between SLDs which are DNSSEC-signed
and those which are not. It is easy to see that a significant
fraction of the responses, especially DNSSEC-enabled SLDs,
are fragmented (assuming typical MTU of 1500 bytes or less).
We note that as DNSSEC adoption proceeds, we expect to see
more (and longer) such responses, due to the use of longer
keys, multiple key lengths, and multiple algorithms.

0.9

0.8

0.7

� 0.6 '"
c 0.5 'ro
E
0 0.4 0

0.3

0.2

0.1

L end

\'\\<�:'"-.. , \ ...
\ "'"

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Response Size (bytes)

Fig. 2. Length of ANY, regular and NXDOMAIN responses of (DNSSEC
protected and 'unprotected') gov domains; domains taken from [8].

However, the attacker is not restricted to using existing
domains, and can register domains, intentionally causing the
referral from the parent to be very long (fragmenting), and
use them to facilitate the attacks. We registered several such
domains, under a number of TLDs, most notably org, info
and de.

To generate long referral responses, we used the largest
possible number of name servers, and maximal-length names
for each of them; we found the restrictions, supported by
the registrars, to be lower than specified in the standard, but
sufficient to cause fragmentation (and poisoning).

B. Cache Poisoning Attacks: Overview

In this section we describe two cache poisoning attacks
exploiting fragmented DNS responses, type answer and re-

ferral. Depending on the response length and type, the sec
ond fragment may contain records that reside either in the
additional, or authority, section (or both) of the DNS
response. The attacker crafts a fake second fragment that re
places the authentic NS (name server) records in authority
section, or A (IP address) records in additional section,
with spoofed NS (or respectively A) records.

We show poisoning of an answer response in Figure 3; see
poisoning of a referral response in technical report [9].

122 15:27:55.896647 199.249,112.1132.79.6.282 IP Fragmented IP protocol (proto=UCP &xll" off=1488, ID=7c6e) [Rea

: g " 7 6
135 15:27:56.255729 199.249.112.1132.79.6.2:82

+ Flags: 8x848e (Standard query response, No error)
Ouestions: 1

First fragment is
reassembled with

the (spoofed)
second fragment

8528 eclbdlaf
Answe r RRs: 6 8539 fb 7b 73 (8
Authority RRs: 7 8549 61 3& 83 6f

Additional RRs: 5 6556 73 746469

- Queries 6566 51 88 66 95

+ QRG; t)lpe ONSKEY, class IN
9579 91 51 89 99
6589 6c 6'161 73

- Answers 65'19 66 91 51 89
+ ORG; type ONSKEY, class IN
+ ORG; type DNSKEY, class IN
+ eRG; type eNSKEY, class IN

65a9 61 96 61 51
9Sb9 99 91 99 91

'p_lilL91 99
+ eRG; type ONSKEY, class IN
+ eRG; type RRSIG, class IN
+ eRG; type RRSIG, class IN

- Authoritative nameservers

Forged A RRs ofDNS servers of ORG.
Authentic RRs were:

+ eRG; type NS, class IN, ns a9.or9.af�Uas-nst.�nfo b6.0rg.afilias-nst.org;
+ ORG; type NS, class HI. ns a2.crg.ahlias-nst.l-nfc" d6.org.afilias-nst.org;

'b

: �:�: ��� ��: ��::: �:: �: :�:���::����:::�:�:�:� '--- �---""T""�'l:""':��
+ eRG; type NS, class HI. ns c9.org.afiUas-nst.info
+ eRG; type NS, class IN. ns d9.org.afilias-nst.ORG
+ eRG; type RRSIG. class IN

- Additiona �d'�������all���=====� t.Of\(j;
t eA class IN addr 1'1'1.19.112.15
type MM . class IN, addr 2991;599;(;;1
type MM . class IN, addr 2991;S99;f;:1

99ge99 99
96a9 99 91 99 91
96b9 99 99 99 99
66c9 66 96 66

Fig. 3. A DNS cache poisoning attack exploiting fragmented DNS responses
of org domain. The attacker replaces authentic IP addresses, of the name
servers of org, with the address of a machine that it controls; the second
address is also changed to adjust the checksum.

Poisoning Answer Response: A wires hark capture, in Fig
ure 3, that was run on a network interface card (NIC) of a DNS
resolver shows the packets that were received and sent by the
resolve?; the resolver is at IF address l32.70.6.202 and the
response arrives from 199.249.112.1 (one of the name servers
of org). Line 122 shows a spoofed second fragment sent by
the attacker (subsequently reassembled with a packet in line
134). Then a DNS request for a DNSKEY of org is sent
(line 133); the response arrives in two fragments, such that
part of the records in the authority section and all the records
in additional section reside in second fragment3. Once the
first fragment arrives and it is reassembled with the spoofed
fragment waiting in the defragmentation cache. The response,
illustrated in the main wireshark screen, is composed of a
spoofed second fragment and a first authentic fragment, and
contains spoofed IF addresses of name servers of org. The
authentic second fragment, arriving in line l35, is discarded
after a timeout, since there is no matching first fragment. The
attacker replaces the IP addresses of the name servers of org

2The wireshark capture features only the packets relevant to the attack -
this was accomplished by specifying an appropriate wireshark filter.

3Following disclosure of our attack, the name servers of org were patched
to exclude the name servers records from responses containing DNSKEY
records.

226

2013 IEEE Conference on Communications and Network Security (CNS)

with spoofed IP addresses.
Poisoning Referral Response: The attack, described above,

exploited fragmented DNS responses, however, most DNS
responses are not sufficiently long to undergo fragmentation.
For instance, the attack strategy above does not apply to
name servers of org anymore, since following disclosure
of our attacks they were configured to stop serving name
server records in tandem with DNSKEY records in the
same response. Yet, as we show, attacker is not restricted
to using only legitimate DNS responses, and can facilitate
maliciously created domains in its attacks. Specifically, an
attacker can register a malicious subdomain and exploit re

ferral responses, to it, in its attacks. The referral response is
sent from the parent domain, and therefore can contain NS
or A records of the parent domain or other children of the
parent domain. In our experimental evaluation we registered a
domain called one-domain-to-rule-them-all. org,
which was specially-crafted so that the referral from a parent
domain org is sufficiently long and is fragmented. The attack
is similar to the procedure poisoning the answer response type;
see details of the cache poisoning attack exploiting a referral

response from org in a technical report [9].

III. DEFRAGMENTATION-CACHE POIS ONING

In order to ensure that the first authentic fragment is
reassembled with a spoofed second fragment, the attacker must
perform a defragmentation cache poisoning. Defragmentation
cache poisoning is caching a spoofed secontf fragment, so
that when the first fragment, of the response, arrives to the
resolver, the IP protocol will merge the two fragments (and
pass the resulting packet to UDP).

In order for IP to merge the spoofed second fragment with
the legitimate first fragment, the two fragments must match in
four parameters: source and destination IP addresses, transport
protocol and the IP identifier (/P-ID) field. In IPv4, the IP-ID
is a 16 bit fieldS selected by the sender of the IP packet.

In our setting, the attacker knows the IP addresses, and
the transport protocol is UDP. Hence, the only parameter,
which the attacker may not know, is the value of the IP
ID. A naive (brute-force) strategy is to try all possible IP-ID
values, by sending multiple spoofed second fragments, each
containing a different IP-ID value. However, the number of
spoofed fragments that the defragmentation caches can store
is limited and operating systems often restrict the number
of cached fragments per each (source, destination, protocol)
triple. Typical defragmentation cache size allows several thou
sands of fragments. Recent Linux kernel versions impose a
default value of 64 fragments (enforced via ipfrag_max_dist

parameter; see [10]).
The attacker should cache almost this number of spoofed

(second) fragments. We use B to denote the number of spoofed

4We focus on the common case, where (legitimate) fragments arrive 'in
order', i.e., the legitimate second fragment arrives after the first fragment has
arrived; the adaption to the general case, where fragments arrive in reversed
order is simple.

sIn IPv6, the IP-ID is 32 bits; we focus on IPv4, since adoption of IPv6 is
still limited.

Random and other
1%

TABLE I
IP-ID ALLOCATION METHODS OF TLD NAME SERVERS (FROM 20 1 2) .

second fragments sent by the attacker, i.e., B is typically just
a bit smaller than 64, e.g., B = 62.

The question is then: what is the probability that the IP
ID, of one of the up to B spoofed second fragments (sent by
the attacker), matches the IP-ID of the legitimate (fragmented)
response.

The answer depends on the IP-ID assignment method of the
name server. We found that servers can be classified according
to five main allocation methods: 57% use globally-sequential

/P-ID (incremented upon sending a packet, to any destination),
14% use per-destination sequential /P-ID (incremented upon
sending a packet, to a particular destination), 20% use mixed

/P-ID (two or more sequential sequences 'mixed up', probably
due to multiple machines behind load balancer), 9% use zero

/P-ID (assigned by some systems to all short packets), and
1 % use random/other IP-ID (selected randomly or via an
unidentified process); see Table I.

In our analysis of the match between the IP-ID values,
we consider only6 three IP-ID 'methods': per-dest, global

and random/other. We show strategies which the attacker can
employ to predict the IP-ID for each IP-ID assignment method,
and analyse success probability and complexity of the attack.

All our attacks are initiated with the transmission of B
spoofed second fragments, by the attacker, which are stored
at the defragmentation cache of the resolver (for 30 seconds
by default).

Consider first the case where the attacker has no information
about the expected IP-ID value, i.e., the 'random/other' IP
ID category, and assume that the attacker triggers only a
single request, to which a single response is sent. The IP
ID in the response should match one of the B fragments
stored in the defragmentation cache; we subsequently show
how to extend this to multiple requests, which circumvents
the birthday protection and allows to significantly improve the
efficiency of the attack. The probability of a match is p = 2f6
and for B = 62 it is 0.0009. By repeating the attack, the
success probability increases; the mean number of attempts to
poison is n = 1 � 1057; for TTL of 5 minutes, this would

p
be 3.5 days.

This average time to poison may be reasonable for many
attacks. However, in the following subsections, we show that
the success probability can be significantly improved, by: (1)
taking advantage of the birthday paradox (Section III-A), (2)
predicting the IP-ID for sequential (Section III-C) and per

destination (Section III-D) IP-ID allocation methods, and (3)
circumventing TTL restriction (see technical report [9]).

6We ignore the Zero class, which contains name servers that assign a fixed
IP-ID zero to all responses; we believe this is done by some systems when
sending 'short' packets, which are unlikely to be fragmented. For simplicity,
we classify 'mixed' under 'random/other' category.

227

2013 IEEE Conference on Communications and Network Security (CNS)

A. Circumventing Birthday Protection

'Birthday attack' is a well-known optimisation for classical
DNS poisoning attacks, where the attacker not only sends
many responses (with different guesses for challenge values),
but also generates multiple requests to the same query, to
increase the probability of a match between some request and
some response. Currently, most resolvers prevent the 'birthday
attack', by deploying birthday protection: not sending multiple
concurrent requests for the same query.

We show that 'birthday protection' can be circumvented
via our fragmentation-based attacks. The idea is that the
attacker can send multiple DNS requests, for different random
subdomains of the victim domain; since these are different
domains, birthday protection does not apply. All queries are
of exactly the same length; hence, the second fragments in
the responses to all of these requests are exactly identical to
each other. Hence, a fake second fragment can match any of
the (legitimate) first fragments. The impact is exactly that of
the birthday paradox, if the attacker guesses the IP-ID (e.g.,
when the server uses random IP-ID assignment); the impact
can be even higher, when the attacker can predict the IP-ID
with some precision (see in following subsections).

For example, consider the maliciously-
registered domain technique, instead of making
the query to the malicious domain itself, e.g.,
one-domain-to-rule-them-all. org, we
make requests to (many) sub domains thereof, e.g.,
xyz. one-domain-to-rule-them-all. org; all
requests are of exactly the same length, hence, all responses
have identical second fragment. The attacker can predict
the value of this second fragment and replace it with a
spoofed second fragment (with the same checksum). As a
result, the spoofed response-fragments can match any of
the authentic first fragments, i.e., we obtain the 'improved
birthday paradox'.

B. Random /P-ID Allocation

We next analyse the probability for successful defragmenta
tion cache poisoning, assuming random IP-ID allocation, i.e.,
the name server selects the IP-ID values in each response
uniformly. Let n be a number of DNS requests triggered by
the attacker. By simple analysis (in [9]), we find that the
probability for successful poisoning is:

Pr [success] = 1 - (1 - 2�6 r (1)

See graph, based on Eq. (1), in Figure 4. However, very
few servers support random IP-ID assignment method, and
therefore, our focus is on per-destination incrementing and
globally incrementing IP-ID allocations.

C. Globally Incrementing IP-ID Allocation

A significant fraction of name servers use global1y
incrementing allocation method. On first sight, predicting the
IP-ID for globally-incrementing servers seems easy - attacker
can query the name server directly and find out the current IP
ID value (since the same counter is used for sending packets

� 0.8

� � 0.6

�
UJ 0.4 g>
.� � 0.2

16 64 256 1024
DNS Requests Sent

Fig. 4. Poisoning success probability per poisoning attempt, by analysis
(Eq. (1» and by experiments, for B E {64, 1024,4096, 16384} (number
of fake second fragments in cache) and different numbers of DNS requests,
for random JP-ID assignment.

to the attacker and to all other destinations, including the
resolver). Indeed, such direct queries will be an important tool

70000 ,-------,-----,-----,----,----,--------,

60000

50000

� 40000
� � 30000

20000

10000

20 40 60 80 100 120
Time (in seconds)

Fig. 5. Progress of JP-ID for the globally-incrementing name server
aO. org. affilias-nst. info of org TLD.

in our extrapolation of the IP-ID value; however, the attack is
more complex - the IP-ID may considerably change between
the query by the attacker and the query by the resolver,
since the name server receives queries from other sources
too. Therefore, in busy nameservers, that receive queries at
a high rate, the IP-ID may grow very rapidly. However, even
if the DNS requests' rate to popular name servers is high, it is
typically predictable. For example, in Figure 5, we show the
measurements we ran on aO. org. affilias-nst. info,
one of the name servers of org, that supports the globally
incrementing IP-ID allocation; notice how rapidly the IP-ID
'grows' across the cyclic 16-bit counter field, yet it can be
seen that the increments are predictable.

Indeed, the IP-ID growth rate is rather predictable, by
extrapolating from recent rates. The reason for this is that the
query rate to name servers is stable, see [11]. We next present
a strategy allowing an attacker to estimate the IP-ID value,
that will be allocated by the name server to the response sent
to the resolver. We then show an experimental evaluation of a
successful DNS cache poisoning attack using the extrapolation
strategy above to perform defragmentation cache poisoning.

228

2013 IEEE Conference on Communications and Network Security (CNS)

For simplicity, in the analysis we assume a bound 8 on
the latency on all channels (0 ::::: latency ::::: 8), instanta
neous processing and negligible ('zero') transmission delay.
The sampling pro-
cedure, illustrated in
Figure 6, begins at
time t� , with the
attacker sending a I packet to the name 35�)
server, to sample the I current IP-ID value
x. Once the name
server receives the
packet from the at
tacker, it sends a re
sponse, at time tt, Fig. 6. Procedure of sampling IP-ID value and

s.t., t� ::::: tt ::::: t� + calculating value assigned to DNS response.

8, with IP-ID value
x. Upon receiving the response, at time tt ::::: t� + 2 . 8,

the attacker computes y, the estimate for the value of the IP
ID that will have been assigned by the name server to its
response to resolver's query. The attacker then sends multiple
responses, with IP-ID values in the range [y - �, y + �]; these
are accepted at time t1 ::::: t� + 3·8. We denote the time when
the resolver sends the request by t{}; to minimise the drift in
the IP-ID value, between its sampling, at tt, and the value
used by the name server in sending the response, at tf, we
pick t{} as the minimal value such that t{} � tt, Hence, it is
best to use t{} = t� + 3 . 8. The name server sends the response
to the resolver at time tf ::::: t{} + 8 = t� + 4 . 8.

Assume that we have bounds PMIX and PMAX on the
(respective) minimal and maximal rates at which the name
server receives DNS requests. We can now bound the range
of the IP-ID at time tf, when the response is sent; this is
the range of IP-ID values which should be in the fake second
fragments which the attacker plants in the resolver's cache.

Claim 3.1: Let x be the IP-ID value sampled by the attacker
at time tt. Then the IP-ID used by the server at time tk, to
respond to the request from the resolver, is y E [x + 38 .

PMIN, x + 48 · PMAX] .

Once the attacker calculates the range of candidate IP-ID
values that may be assigned to the response sent to resolver, it
can send spoofed second fragments. The strategy depends on
the relation between the defragmentation cache size B and the
number of potential IP-ID values N = 8· (4· PM AX -3· PM IN)'

If B � N, the attacker sends N fragments for all the potential
IP-ID values: y E [x+38'PMIN, x+48·PMAX] . Otherwise, if
B < N, the attacker should send B fragments with the most
probable IP-ID values, that are calculated based on typical
rates, see Figure 7.

Notice that our analysis above is for a single DNS request,
whose response the attacker attempts to match. The attacker
can improve the success probability by circumventing the
birthday protection and taking advantage of multiple DNS
requests; this requires to incorporate the transmission delay
of the DNS requests and responses into the calculation of

Less
probable

IP-ID values ran e

IP-ID values Most probable
IP-ID values

�M" "P�,. +(N-B)/2 NPMM-PM,Jf2
(N--:jjJ/2 B IP�ID values

����able :
IP-ID values

LJpw,x·(N-B)/2 1Jp

(N'Bj/2

Fig. 7. The most probable IP-ID values are derived from the typical request
rates arriving at the name server, i.e., removing too high or low rates from
the range of potential IP-ID values.

� (above). Experimental evaluation of DNS cache poisoning
success for a single and multiple requests is plotted in Figure 8.

................ £1 ··· .. ·· .. · .. EI

� 0.8•
. � J: ')4�.---_-M _........

• •••••. -, - •.•. _. _ •.•. _. ' ••.•.•. o.

J :: .

--

-.--,�------" g '0 ipfrag-max-dist, #Req
a... 0.2 ---+-- 64, 1

---x--- 1024, 1 64, 100
...... -8...... 1024 100

100 200 300 400 500 600 700 BOO 900 1000
Mean DNS Requests/second

Fig. 8. DNS cache poisoning for globally incrementing IP-ID allocation,
for name servers with different DNS request rates. In evaluations we use two
defragmentation cache sizes, 64 and 1024 and test for 1 vs. 100 simultaneous
DNS requests.

D. Per-Destination Incrementing JP-ID Allocation

In the popular per-destination incrementing IP-ID alloca
tion method, the first IP-ID to some destination IP address
is selected at random and subsequent packets sent to the
same destination are allocated sequentially incrementing IP
ID values.

The attacker can efficiently hit the correct IP-ID by using
a meet-in-the-middle strategy, see Figure 9. Let B be the
defragmentation cache size. The attacker plants 2�6

spoofed
second fragments, each fragment i contains IP-ID value of
{i . 2�6

}f�=1' For B = 64, the sequence consists of IP-ID
values multiples of 210 = 1024, and to reach 100% success
the attacker should trigger 1024 simultaneous DNS requests,
via the puppet, so that any of first 1024 fragments matches
any of the 64 (spoofed) second fragments), see Figure 9; for
B = 1024 the sequence consists of 1024 multiples of 64,

and to attain 100% poisoning probability, the attacker should
trigger 64 DNS requests.

Another approach is to wait for periods when only one (or
two) name servers will respond. Indeed, the the number of
machines behind a load balancer is usually very dynamic, and
in periods of low load, many TLDs may use a single machine.

In our attacks, we adopted a third approach: we applied
the technique in [3], to cause the resolver to avoid using the
'mixing' name servers, since each domain we attacked also

229

2013 IEEE Conference on Communications and Network Security (CNS)

1024 tragments

1024 2048 65536

64 fragments

Fig. 9. DNS cache poisoning using a meet-in-the-middle strategy for
IP-ill hitting for name servers with per-destination IP-ID allocation and
ip!rag_mw,-dist of 64 fragments.

had non-mixing name servers. In Section V-A, we present
'name server pinning' and its applications, including its use
for DNS poisoning.

IV. ENS URING VALID RESPONSE

DNS responses are validated via: UDP checksum, DNS

response structure, DNS bailiwick and priority rules and
challenge-response mechanisms; invalid responses are dis
carded by the resolvers. Notice that since the challenge
response validators are all always in the first fragment, they are
automatically satisfied. We next discuss each of these checks,
and provide techniques allowing attackers to circumvent them.

A. UDP Checksum

The UDP checksum is one's complement sum over the
payload. Therefore, to match the checksum the attacker can
query the name server in advance for the same resource record
and learn the contents of the corresponding DNS response,
including all contents in the second fragment. The attacker
then ensures that the checksum of the spoofed second fragment
is identical to the checksum of the authentic second fragment:
(1) by concatenating two bytes after the EDNS record, in case
the spoofed record is shorter than the authentic record, which
it replaces; or (2) by changing two bytes in another record, to
fix the checksum.

B. Response Structure

Resolvers validate that the number of records in each section
of the DNS response corresponds to the values specified in a
DNS header. In our attack we inject new records replacing

authentic records, e.g., replace the value of the name field of
an NS record with a new value (of the name server that the
attacker controls), and do not add new records. Therefore, the
number of records in a spoofed second fragment is identical
to the number of records in the authentic second fragment.
Each injected spoofed record should be correctly formatted
(according to DNS standard).

C. Bailiwick and Priority Rules

The ability of the attacker to spoof records, is limited in the
same way that a regular name server is restricted. Specifically,
resolves ignore records received in a response, if they do not
satisfy the bailiwick rules, whose goal is to prevent a name
server of one domain from defining (false) mappings for other
domains. The resolvers also apply priority rules when deciding
whether to cache records in responses, and when overwriting
already cached records. For instance, during our experimental

evaluation of the attacks we found that Unbound 1.4.18 and
Bind 9.8.3 treat NS records, received in non-existing domain

(NXDOMAIN) responses, differently: while Unbound caches
such records, Bind ignores them; specifically, Bind does not
cache NS records in responses that contain an SOA record;
see full paper, [9], for more details.

V. DNSSEC IS NOT A PANACEA

In this section we show that some attacks still apply, even
if DNSSEC is fully adopted and correctly validated; in partic
ular, name server pinning (Section V-A) and the non-existing

subdomain injection due to NSEC3 opt-out (Section V-B).

A. Name Server Pinning via Cache Poisoning

In DNS referral responses from the name server of a do
main, say �rg, to a query sub. org, the name server provides
details of the name servers of sub. org, specifically their
domain-name (NS record, in authority section) and address
(A record, in 'additional' section); these are referred to as the
delegation or glue records. Even when DNSSEC is used, the
glue records are sent unsigned, and used by resolvers to resolve
future requests for domains within sub. org. Furthermore,
the glue records are usually cached and used, for queries to
that specified domain.

An attacker can use our poisoning attack, described in the
previous sections, to poison the glue records. When DNSSEC
is not (fully) deployed, this can be used to later poison
responses to queries sent to the fake nameserver. In contrast,
if DNSSEC is deployed, the records sent as answer to queries
must be signed, so sending fake glue records does not seem to
be useful, see [7]. However, fake glue records can be abused
to cause NS-pinning, which, in tum, can facilitate DoS and
traffic analysis attacks.

The attacker sets very high time-to-live (TTL) in the poi
soned glue records. As a result, these records will remain
in cache, after the TTL, of any legitimate record for the
same domain, expires. When all legitimate records expire from
cache, the resolver will use the (only remaining) spoofed
glue records, and for as long as the spoofed record is in
cache, the resolver will not request other records for the same
domain; this holds even if the poisoned glue record causes
the resolver to send queries to a completely non-responsive
address, providing an easy method for a DoS on resolver's
clients.

B. Off-Path Subdomain Injection via NSEC3 Opt-Out

Bau and Mitchell, [7], have shown, that the use of NSEC3
opt-out allows a MitM attacker to create fake (non-existing)
sub-domains. As [7] showed, this facilitates XSS, phishing and
cookie stealing attacks. Our techniques allow off-path attackers
to inject non-existing sub-domains. In spite of the publication
of this potential abuse by MitM [7], NSEC3 opt-out is still
widely used, and often even recommended, since it improves
performance (esp. as long as DNSSEC is deployed only in
small fraction of the domains).

230

2013 IEEE Conference on Communications and Network Security (CNS)

VI. DEFENSES

The best (long-term) defense against the poisoning attacks
we described, is to apply DNSSEC correctly7; partial or
incorrect use of DNSSEC does not prevent our attacks, e.g.,
see [12], [13]. DNSSEC foils our (off-path) poisoning attacks,
and even defends against MitM adversaries. An exception is
the NS-pinning attack; i.e., an attacker may still be able to
deny resolution of a victim domain. Preventing NS-pinning
seems to require either extensions to DNSSEC, or adoption of
additional defense mechanisms.

In the following subsections, we describe shorter-term
defense mechanisms and recommendations, to be deployed
by resolvers, name-servers and registrars. Our recommended
countermeasures could also help prevent the NS-pinning and
the sub-domain injection [7] attacks; a better way to prevent
sub-domain poisoning, is to avoid the DNSSEC NSEC3 OPT
OUT option. Since none of these defenses is a 'silver bullet' ,
we present 'three lines of defense'. The front line comprises
defenses that prevent fragmentation from occurring. The sec

ond line contains defenses that prevent the defragmentation
cache poisoning. In the last line there are defenses that prevent
DNS cache poisoning, even when the resolver receives a
spoofed-defragmented response packet. We do not discuss
'classical' firewall-based defenses, such as detecting the attack
and blocking suspect packets, and focus on attack-specific
mechanisms.

A. Preventing Fragmentation

The poisoning attacks we presented are based on fragmenta
tion, which normally is a very rare event in the current Internet.
We therefore recommend to prevent or minimise the use of
fragmentation, by refraining from sending long responses.

ZONE OPERATORS AND REGISTRARS should impose a
maximal limit on the length of responses. Our most effec
tive poisoning attack, exploits registration of domains with
specially-crafted records, causing fragmentation of the refer
ral response from the parent domain. Registrars and TLD
name servers should consider placing careful restrictions on
the registered records to prevent such fragmentation. Since
registrars may not have any direct incentive in deploying this
recommendation, guidance may be required.

Furthermore, it is difficult to impose a limit that is suffi
ciently low to prevent fragmentation. In particular, DNSSEC
records are long, and we expect (and hope) they will become
much more common in the future - and probably, with more
and longer keys, resulting in much longer responses.

RES OLVERS should not ask for DNSSEC records, unless
they strictly apply DNSSEC validation. Recently, [1] found
that the vast majority of resolvers, that signal support of
DNSSEC, do perform strict validation, i.e., do not block un

signed or mal-signed responses; this must change immediately.
In fact, testing services should alert administrators and clients

7 By 'correct use of DNSSEC' we mean: (1) all domains �igned properly
from root, (2) resolvers ignoring responses not properly SIgned, and (3)
avoiding use of NSEC3 opt-out.

using such vulnerable setups. The resolvers can also prevent
fragmentation by setting the buffer of the EDNS record to
some low value, e.g., below 1500 bytes. As a result, when
longer responses are returned, the name server sets the TC bit
on, signaling to resolver to request the records over TCP.

NAME SERVERS can also prevent fragmentation, by using
TCP to send long responses; indeed, few name servers already
do this, apparently to avoid interoperability problems, e.g.,
with firewalls that block fragments. However, the use of TCP
by name servers is known to be problematic, due to its
significantly higher storage, communication and processing
costs. Furthermore, the referral clogging attack, see [9], is
much worse when name servers use TCP.

B. Preventing Defragmentation Cache Poisoning

Another line of defense is to prevent defragmentation cache
poisoning. This may be accomplished by placing stronger re
strictions on the defragmentation buffer, such as: (1) reducing
the maximal number of cached fragments per each sender
and protocol (typically around 64 to 100), (2) reducing the
maximal time that a fragment is cached (typically 30 seconds),
(3) when receiving fragments out of order, i.e., second and then
first, delay the defragmentation process and in case another
matching fragment arrives, and use the second fragment that
arrives in order, i.e., after the first.

Adoption of such changes to the basic IP defragmentation
process, requires careful validation and experimentation.

In this work, due to low support of IPv6 within the DNS
servers, we focused on IPv4. Notice that the fragmentation
mechanism was significantly modified in IPv6, and in partic
ular the IP-ID field in IPv6 was modified from 16 bits to 32
bits. However, IPv6 specifications explicitly recommends the
use of sequential IP-ID values; these may yet be predictable,
using the techniques we presented.

C. Preventing DNS-poisoning via Spoofed 2nd Fragments

The 'last line of defense', to prevent DNS-poisoning in
cludes recommendations both for resolvers and for name
servers. These defenses are critical, especially to foil the
birthday protection circumvention, see Section III-A.

RES OLVER - RANDOM (LENGTH) PREFIX DEFENSE. Some
DNS resolvers, e.g., Google Public DNS, were patched to
attach a random prefix to queries, when the (expected) re
sponse is a referral, e.g., a query to the root or to a top-level
domain. However, our fragmentation-based poisoning attacks
circumvent this defense, since the random prefix is returned in
the first fragment (together with all of the other challenges);
the attacker can still change the second fragment. Note that
while prepending the random prefix causes a change to the
UDP checksum (of the entire packet), this makes no impact
on the attack, since the attacker anyway makes sure to retain
the checksum of the second fragment.

A variant on this technique can also help against frag
mentation poisoning attacks. Specifically, the resolver can use
prefixes of random length; this changes the contents of the
second fragment, and hence the attack becomes harder, e.g., it

231

2013 IEEE Conference on Communications and Network Security (CNS)

is harder to preserve the checksum. Of course, the impact of
the random-length prefix defense is limited, since the range is
not that large (few hundred values at most). Still, the impact
on the efficiency of the attack is significant. Of course, the
random-length prefix defense, like the known random prefix
defense, is limited to queries where the response is known to
be a referral.

NAMESERVER - RANDOM S UFFIX DEFENSE. Yet another
possible defense, for name servers, is to always add a random

record to the end of any packet over a certain size (i.e.,
which may be fragmented). A simple type A resource record,
containing a random IP address for some fictitious domain
name, would suffice. This would prevent the attacker from
being able to predict and (correctly) adjust the checksum value,
and hence the vast majority of spoofed responses will be
dropped (upon detection of incorrect checksum).

VII. C ONCLUSIONS AND FUTURE WORK

We showed how an off-path attacker can efficiently exploit
fragmented DNS responses to poison DNS caches. Our attacks
are effective against standard implementations of the DNS and
IP; we confirmed effectiveness against several domains in the
Internet, and popular (standard) resolvers (Unbound 1.4.18 and
Bind 9.8.3).

Most DNS responses are short, and hence not fragmented;
however, some DNS responses can be long and may get
fragmented. Ironically, one reason for long responses is the
use of DNSSEC; we also show how attackers can cause
fragmentation in many important domains, including about
third of the top-level domains, by intentionally registering
domain names with long referral responses.

This work follows three other DNS-poisoning attacks:
Kaminsky's of 2008 [2], and our derandomisation attacks [3],
[5]. Effective countermeasures, requiring 'only' (rather simple
and efficient) changes in the resolvers, were proposed against
all previously known attacks, see [RFC5452] and [3], [5], [14],
however they do not protect against our fragmentation-based
attacks. In Section VI, we also proposed defenses against the
fragmentation-based attacks presented in this work. Notice that
the proposed defenses are not trivial to implement; further
more, they only reduce the efficiency of the attack, rather than
completely prevent it. It therefore remains an important open
challenge, to find better easily-deployable defenses against the
fragmentation-based attacks.

We believe and hope that the combination of all our
recent attacks on the challenge-response DNS defenses, will
(finally) provide sufficient incentive to catalyse the adoption of
DNSSEC (or other cryptographic mechanism providing strong
security for DNS). In particular, notice that it is quite complex
to test resolvers for defenses against all these attacks, hence,
many resolvers may remain vulnerable for years. Indeed, based
on the tests we ran on CAIDA traces, [15], we observed
that many resolvers were not properly patched even against
Kaminsky's attack, and still use predictable or even fixed ports.

On the other hand, we also present variants of the at
tack, that pose significant threats even to a fully-conforming,

strict DNSSEC validation at both resolver and name server.
Specifically, we show how an off-path attacker can (1) create

fake sub-domains, demonstrating the off-path feasibility of the
attack of [7], and (2) cause name-server pinning, i.e., cause
resolvers to use incorrect name server, denying resolutions of
domain names (in the victim zone), demonstrating an effective
abuse of the observations of Bernstein [16]. We believe that
it is important to defend against these two attacks, e.g., using
the name-server-side defense against our attack (see Section
VI).

Finally, some of the vulnerabilities and observations which
we used in our attacks, may have additional implication and
applications, e.g., our ideas of long subdomain generation.

ACKNOWLEDGEMENTS

This research was supported by grant 1354/11 from the
Israeli Science Foundation (ISF), and by the Ministry of
Science and Technology, Israel. We are also grateful for
support for CAIDA's Internet Traces [15] that is provided
by the National Science Foundation, the US Department of
Homeland Security, and CAIDA Members.

REFERENCES

[1] O. Gudmundsson and S. D. Crocker, "Observing DNSSEC Validation
in the Wild," in SATIN, March 201 1 .

[2] D. Kaminsky, "It's the End of the Cache As We Know It," Presentation
at Blackhat Briefings, 2008.

[3] A. Herzberg and H. Shulman, "Security of Patched DNS," in Computer

Security - ESORICS 2012 - 1 7th European Symp osium on Research in
Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings,
ser. Lecture Notes in Computer Science, S. Foresti, M. Yung, and
F. Martinelli, Eds., vol. 7459. Springer, 2012, pp. 27 1-288. [Online].

[4] --, "Antidotes for DNS Poisoning by Off-Path Adversaries," in In
ternational Conference on Availability, Reliability and Security (ARES),
IEEE. IEEE Computer Society, 201 2, pp. 262-267.

[5] --, "Vulnerable Delegation of DNS Resolution," in Computer Security

- ESORICS 2013 - 18th European Symp osium on Research in Computer
Security, September, 2013. Proceedings, ser. Lecture Notes in Computer
Science. Springer, 201 3.

[6] Y. Gilad and A. Herzberg, "Fragmentation Considered Vulnerable," ACM
Transactions on Infommtion and System Security (TlSSEC), vol. 15 ,
no. 4, pp. 16 : 1-16 :31 , April 20 13, a preliminary version appeared in
WOOT 201 1.

[7] J. Bau and J. C. Mitchell, ''A security evaluation of DNSSEC
with NSEC3," in Network and Distributed Systems Security (NDSS)
Symp osium. The Internet Society, 2010. [Online].

[8] Federal Executive Branch Internet Domains, "Listing of Federal Agency
Internet Domains," February 201 2.

[9] A. Herzberg and H. Shulman, "Fragmentation Considered Poisonous,"
CoRR, vol. abs!1205.40 1 1 , 201 2.

[10] Kernel.org, "Linux Kernel Documentation, 201 1"
[1 1] D. Wessels and M. Fomenkov, "Wow, thats a lot of packets," in

Proceedings of Passive and Active Measurement Workshop (PAM), 2003.
[12] A. Herzberg and H. Shulman, "DNSSEC: Interoperability Challenges

and Transition Mechanisms," in International Conference on Availabil
ity, Reliability and Security (ARES). IEEE, 201 3.

[1 3] --, "Towards Adoption of DNSSEC: Availability and Security Chal
lenges," Cryptology ePrint Archive, Report 201 31254, 2013.

[14] D. Dagon, M. Antonakakis, P. Vixie, T. Jinrnei, and W. Lee, "Increased
DNS forgery resistance through Ox20-bit encoding: security via leet
queries," in ACM Conference on Computer and Communications
Security, P. Ning, P. F. Syverson, and S. Jha, Eds. ACM, 2008, pp.
21 1-222.

[15] CAIDA, "Anonymized Internet Traces 20 12 Dataset."
[16] D. J. Bernstein, "Breaking DNSSEC," 3rd USENIX Workshop on

Offensive Technologies, August 2009.

232

