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Abstract-We present effective off-path DNS cache poisoning 
attacks, circumventing widely-deployed challenge-response de
fenses, e.g., transaction identifier randomisation, port and query 
randomisation. 

Our attacks depend on the use of UDP to retrieve long DNS 
responses, resulting in IP fragmentation. We show how attackers 
are often able to generate such fragmented responses, and then 
abuse them to inject spoofed, 'poisonous' records, into legitimate 
DNS responses. 

We also studied how resolvers, name servers, domains and 
registrars, can defend against our attacks. The best defense is 
deployment and enforcement of DNSSEC validation. However, 
DNSSEC must be deployed correctly by both domain and 
resolver, which is challenging; we hope our results will catalyse 
this process, but it will surely take long time. In fact, recent 
study found less than 1 % of resolvers reject responses upon 
DNSSEC validation failures. Note also that, ironically, adoption 
of DNSSEC by a domain, is the main reason for fragmented DNS 
responses (abused in our attacks). We therefore present several 
short-term countermeasures, which can complement DNSSEC, 
especially until DNSSEC deployment is complete. 

We validated our attacks against popular resolvers (Bind and 
Unbound), and real domains in the Internet. 

Keywords: DNS security, DNS cache poisoning, fragmentation 
attacks, off-path attacks. 

I. INTRODUCTION 

The correctness and availability of information in the Do
main Name System (DNS) are crucial for the operation of the 
Internet. There is a long history of attacks on the DNS, most 
notably DNS cache poisoning, where the attacker provides in
correct records in a DNS response, which are then cached and 
served to clients by the DNS resolver. DNS cache poisoning 
may allow weak off-path attackers to redirect communication 
to incorrect, adversarial, servers, thereby enabling an off-path 
attacker to intercept and modify content; as a result off-path 
attackers can circumvent many defense mechanisms such as 
Same Origin Policy (SOP), domain blacklists and domain
policies (e.g., SPF), exposing users to a range of attacks, such 
as phishing, credentials-theft (e.g., XSS), and more. 

To protect against DNS cache poisoning attacks, the 
IETF defined and standardised DNSSEC [RFC4033-4035]. 

*This work was carried out while the second author was in the Department 
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DNSSEC authenticates DNS responses using digital sig
natures, providing security not only against off-path, but 
also against Man-in-the-Middle ( MitM) attackers. However, 
DNSSEC deployment is challenging, mainly since it requires 
both, adoption by domains, and validation by resolvers. Al
though it was proposed more than 15 years ago, only about 
2% of the domains are signed and about 1 % of the resolvers 
perform validation of DNSSEC-enabled DNS responses, [1]. 

Currently, while DNSSEC deployment tarries, most re
solvers rely on challenge-response mechanisms to prevent 
DNS cache poisoning, using existing fields in DNS queries, 
which are echoed in responses. DNS requests contain a short, 
16 bit, transaction identifier (TXID) field, originally designed 
to match an incoming response with a pending request. Fol
lowing Kaminsky's poisoning attack [2], additional sources of 
randomness were added, most notably source port and name 
server address randomisation; these defenses are widely de
ployed and standardised [RFC5452]. Such challenge-response 
mechanisms only require resolvers to properly randomise the 
fields in the requests, and validate that they were properly 
echoed in the responses; there is no dependency on support 
by the name servers, hence, deployment is easy. However, 
challenge-response mechanisms offer no protection against 
MitM attackers. Yet, the common belief (or hope) is that these 
fields, when chosen randomly, cannot be predicted by an off
path attacker and hence suffice to prevent off-path poisoning. 

Indeed, it seems that many practitioners are pacified by these 
improved challenge-response mechanisms; the urge to deploy 
DNSSEC, especially following Kaminsky's attack, seemed to 
have reduced. We believe that this is a mistake, for two main 
reasons: (1) in practice attackers may often be able to gain 
MitM capabilities, e.g., wireless networks, insecure/malicious 
devices, or insecure routing, and (2) as we show in this work 
and our previous work [3]-[5], existing challenge-response 
mechanisms may not be secure, since the challenge values 
can often be guessed by off-path attackers in common network 
configurations. 

In this work, we present an even more convincing argument: 
attacks which foil all deployed challenge-response defenses, 
without depending on the use of NAT or other special network 
configuration/device/vulnerability, as in [3], [5]. Furthermore, 
our attacks do not require guessing the challenge values. The 
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attacks' requirements are modest: (1) we assume ability to 
trigger DNS requests, e.g., by redirecting a user, of a victim 
resolver, to a malicious website, (2) an off-path attacker, 
and (3) existence of sufficiently-long DNS responses. Long 
responses exist for some DNS queries, e.g., ironically, for 
domains using DNSSEC; we also show that in many domains 
allowing registration of sub-domains, e.g., org, an attacker 
can register a sub-domain which causes fragmented referrals 
from the parent (e.g., org), enabling our poisoning attacks. 

The attacks are very efficient, and further enhanced with 
improved 'birthday optimisations', i.e., circumventing the 
'birthday prevention' mechanism adopted by most resolvers 
following Kaminsky's attack. 

The attacks are based on three observations: (1) although 
most DNS responses are short, some responses are long! , and 
may get fragmented; (2) all challenge-response parameters, 
used to authenticate DNS responses (TXID, source port, and 
query), are contained in the beginning of the response, i.e., 
in the first fragment (if fragmented), and (3) it is possible, 
in certain situations, to replace the second fragment with a 
spoofed second fragment, tricking the resolvers into caching a 
poisoned record; see Figure 1. To launch the cache poisoning 
attack, the following challenges need to be overcome: 

� FRAGMENTATION . typical DNS response are short, and 
hence are not fragmented. We found that some responses 
are fragmented. Furthermore, the attacker can often cause 

fragmentation, by registering a maliciously-crafted subdomain; 
see Section II). 

� DEFRAGMENTATION CACHE POIS ONING .  a spoofed sec
ond fragment, sent by the attacker, must have correct IP
ID, protocol, and IP addresses, to be reassembled with the 
authentic first fragment of a DNS response, and must be in 
the cache when the corresponding first fragment arrives. This 
is challenging, yet doable with good success probability; see 
Section III. 

� ENS URING VALID DNS RESPONSE.  the 'mixed' DNS 
response, consisting of a spoofed second fragment and an 
authentic first fragment, should be valid and cached; this 
requires addressing the following challenges, as addressed in 
Section IV: 

• UDP checksum: the reassembled IP packet must have a 
correct UDP checksum, so that it is not rejected by the OS 
on the receiving host. 

• Valid DNS response: the reassembled IP packet must 
have valid format and structure, and the challenge-response 
values should match those sent within the request, so that it 
is not rejected by the DNS resolver software. 

• Overriding cached records: the injected spoofed records 
must comply with resolvers' caching policies so that they are 
not only accepted, but also cached by the resolver. 

We present efficient attacks applicable to many popular 
domains and resolvers, overcoming these challenges. We have 

1 Originally, DNS packets were restricted to 5 1 2  bytes, but longer responses 
are possible using the EDNS record [RFC267I ]. 

experimentally validated our attacks on two (popular) open
source resolvers that support DNSSEC: Bind 9.8.3 and Un
bound 1.4.18. Some of our techniques may be useful for other 
purposes, e.g., to intercept traffic, improving the attack of [6], 
and for Denial-of-Service (DoS) attacks. 

Hence, we believe that the DNS transactions should best 
be protected using cryptography, and DNSSEC seems to be 
the practical choice, with security based on experts-scrutiny 
as well as on analysis [7]. However, we highlight some issues 
with the deployment of DNSSEC, which require improvement. 
First, we show that, ironically, as long as resolvers do not 
'strictly enforce' DNSSEC validation, adoption by domains 
may actually facilitate the attack, by providing long, frag
mented responses. Adoption of multiple signing algorithms 
and multiple key lengths may further exacerbate the problem; 
the currently popular 1024-bit RSA is too weak. Second, 
when the resolvers cannot establish a chain of trust from 
the root zone to the target domain, they fall back to a non
validating mode, also facilitating the attack. Third, we show 
that DNSSEC does not prevent two variants of the attack: 
fake subdomain injection, when the (widely-used) DNSSEC 
NSEC3 OPT-OUT option is supported, and name-server pin

ning attack, which can be abused for DoS and traffic analysis. 
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Fig. 1. Fragmentation based DNS cache poisoning attack. The off-path 
attacker, at IP 6.6.6.6, sends a spoofed second fragment to the resolver (step 
I), and then triggers a DNS request, e.g. , via a client visiting an attacker
controlled webpage (step 2). The response from name server is fragmented 
(step 3). The first fragment is reassembled with spoofed fragment (step 4), 
poisoning the cache of the resolver. 

Contributions 

(1) We show how to exploit fragmentation to perform effi
cient DNS cache poisoning attacks, circumventing challenge
response, and birthday protection, mechanisms, and motivate 
adoption of DNSSEC. 

(2) We show efficient defragmentation-cache poisoning at
tacks (focusing on DNS responses); this includes study of IP
ID allocation among DNS name servers. 

(3) We show an off-path subdomain injection attacks, 
against DNSSEC configurations using NSEC3 OPT-OUT. This 
improves over the result of [7], which required a MitM 
attacker, or vulnerable DNS implementations, e.g., not sup
porting source port randomisation. 

(4) We evaluate an extensive range of short-term coun
termeasures against our attacks; a truly satisfying defense 
remains an important challenge, though. 
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II. USING FRAGMENTATION FOR DNS CACHE POIS ONING 

IF fragmentation is rare in the Internet. Less than 1 % of 
the traffic is fragmented. Hence the first challenge of our 
attacks, is to trigger a DNS request, whose response would 
get fragmented; we address this challenge in Subsection II-A. 
Then in Subsection II-B we present a high level overview of 
our cache poisoning attacks. 

A. Fragmented Victim-Domain Responses 

Most DNS responses are short and do not fragment. How
ever, we found that there is a significant percentage of queries 
which result in long, fragmented, responses. This is especially 
true, once domains adopt DNSSEC. The most common long 
response are: (1) responses for ANY type requests (which 
return all the records in the target zone) and (2) DNSSEC 
enabled DNS responses, which contain cryptographic sig
natures and keys; see Figure 2 for a distribution of the 
length of responses for second-level domains (SLDs) of gov 
TLD, separating between SLDs which are DNSSEC-signed 
and those which are not. It is easy to see that a significant 
fraction of the responses, especially DNSSEC-enabled SLDs, 
are fragmented (assuming typical MTU of 1500 bytes or less). 
We note that as DNSSEC adoption proceeds, we expect to see 
more (and longer) such responses, due to the use of longer 
keys, multiple key lengths, and multiple algorithms. 
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Fig. 2. Length of ANY, regular and NXDOMAIN responses of (DNSSEC
protected and 'unprotected') gov domains; domains taken from [8]. 

However, the attacker is not restricted to using existing 
domains, and can register domains, intentionally causing the 
referral from the parent to be very long (fragmenting), and 
use them to facilitate the attacks. We registered several such 
domains, under a number of TLDs, most notably org, info 
and de. 

To generate long referral responses, we used the largest
possible number of name servers, and maximal-length names 
for each of them; we found the restrictions, supported by 
the registrars, to be lower than specified in the standard, but 
sufficient to cause fragmentation (and poisoning). 

B. Cache Poisoning Attacks: Overview 

In this section we describe two cache poisoning attacks 
exploiting fragmented DNS responses, type answer and re-

ferral. Depending on the response length and type, the sec
ond fragment may contain records that reside either in the 
additional, or authority, section (or both) of the DNS 
response. The attacker crafts a fake second fragment that re
places the authentic NS (name server) records in authority 
section, or A (IP address) records in additional section, 
with spoofed NS (or respectively A) records. 

We show poisoning of an answer response in Figure 3; see 
poisoning of a referral response in technical report [9]. 
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Fig. 3. A DNS cache poisoning attack exploiting fragmented DNS responses 
of org domain. The attacker replaces authentic IP addresses, of the name 
servers of org, with the address of a machine that it controls; the second 
address is also changed to adjust the checksum. 

Poisoning Answer Response: A wires hark capture, in Fig
ure 3, that was run on a network interface card (NIC) of a DNS 
resolver shows the packets that were received and sent by the 
resolve?; the resolver is at IF address l32.70.6.202 and the 
response arrives from 199.249.112.1 (one of the name servers 
of org). Line 122 shows a spoofed second fragment sent by 
the attacker (subsequently reassembled with a packet in line 
134). Then a DNS request for a DNSKEY of org is sent 
(line 133); the response arrives in two fragments, such that 
part of the records in the authority section and all the records 
in additional section reside in second fragment3. Once the 
first fragment arrives and it is reassembled with the spoofed 
fragment waiting in the defragmentation cache. The response, 
illustrated in the main wireshark screen, is composed of a 
spoofed second fragment and a first authentic fragment, and 
contains spoofed IF addresses of name servers of org. The 
authentic second fragment, arriving in line l35, is discarded 
after a timeout, since there is no matching first fragment. The 
attacker replaces the IP addresses of the name servers of org 

2The wireshark capture features only the packets relevant to the attack -
this was accomplished by specifying an appropriate wireshark filter. 

3Following disclosure of our attack, the name servers of org were patched 
to exclude the name servers records from responses containing DNSKEY 
records. 
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with spoofed IP addresses. 
Poisoning Referral Response: The attack, described above, 

exploited fragmented DNS responses, however, most DNS 
responses are not sufficiently long to undergo fragmentation. 
For instance, the attack strategy above does not apply to 
name servers of org anymore, since following disclosure 
of our attacks they were configured to stop serving name 
server records in tandem with DNSKEY records in the 
same response. Yet, as we show, attacker is not restricted 
to using only legitimate DNS responses, and can facilitate 
maliciously created domains in its attacks. Specifically, an 
attacker can register a malicious subdomain and exploit re

ferral responses, to it, in its attacks. The referral response is 
sent from the parent domain, and therefore can contain NS 
or A records of the parent domain or other children of the 
parent domain. In our experimental evaluation we registered a 
domain called one-domain-to-rule-them-all. org, 
which was specially-crafted so that the referral from a parent 
domain org is sufficiently long and is fragmented. The attack 
is similar to the procedure poisoning the answer response type; 
see details of the cache poisoning attack exploiting a referral 

response from org in a technical report [9]. 

III. DEFRAGMENTATION-CACHE POIS ONING 

In order to ensure that the first authentic fragment is 
reassembled with a spoofed second fragment, the attacker must 
perform a defragmentation cache poisoning. Defragmentation 
cache poisoning is caching a spoofed secontf fragment, so 
that when the first fragment, of the response, arrives to the 
resolver, the IP protocol will merge the two fragments (and 
pass the resulting packet to UDP). 

In order for IP to merge the spoofed second fragment with 
the legitimate first fragment, the two fragments must match in 
four parameters: source and destination IP addresses, transport 
protocol and the IP identifier (/P-ID) field. In IPv4, the IP-ID 
is a 16 bit fieldS selected by the sender of the IP packet. 

In our setting, the attacker knows the IP addresses, and 
the transport protocol is UDP. Hence, the only parameter, 
which the attacker may not know, is the value of the IP
ID. A naive (brute-force) strategy is to try all possible IP-ID 
values, by sending multiple spoofed second fragments, each 
containing a different IP-ID value. However, the number of 
spoofed fragments that the defragmentation caches can store 
is limited and operating systems often restrict the number 
of cached fragments per each (source, destination, protocol) 
triple. Typical defragmentation cache size allows several thou
sands of fragments. Recent Linux kernel versions impose a 
default value of 64 fragments (enforced via ipfrag_max_dist 

parameter; see [10]). 
The attacker should cache almost this number of spoofed 

(second) fragments. We use B to denote the number of spoofed 

4We focus on the common case, where (legitimate) fragments arrive 'in 
order',  i.e., the legitimate second fragment arrives after the first fragment has 
arrived; the adaption to the general case, where fragments arrive in reversed 
order is simple. 

sIn IPv6, the IP-ID is 32 bits; we focus on IPv4, since adoption of IPv6 is 
still limited. 

Random and other 
1% 

TABLE I 
IP-ID ALLOCATION METHODS OF TLD NAME SERVERS (FROM 20 1 2) .  

second fragments sent by the attacker, i.e., B is typically just 
a bit smaller than 64, e.g., B = 62. 

The question is then: what is the probability that the IP
ID, of one of the up to B spoofed second fragments (sent by 
the attacker), matches the IP-ID of the legitimate (fragmented) 
response. 

The answer depends on the IP-ID assignment method of the 
name server. We found that servers can be classified according 
to five main allocation methods: 57% use globally-sequential 

/P-ID (incremented upon sending a packet, to any destination), 
14% use per-destination sequential /P-ID (incremented upon 
sending a packet, to a particular destination), 20% use mixed 

/P-ID (two or more sequential sequences 'mixed up', probably 
due to multiple machines behind load balancer), 9% use zero 

/P-ID (assigned by some systems to all short packets), and 
1 % use random/other IP-ID (selected randomly or via an 
unidentified process); see Table I. 

In our analysis of the match between the IP-ID values, 
we consider only6 three IP-ID 'methods': per-dest, global 

and random/other. We show strategies which the attacker can 
employ to predict the IP-ID for each IP-ID assignment method, 
and analyse success probability and complexity of the attack. 

All our attacks are initiated with the transmission of B 
spoofed second fragments, by the attacker, which are stored 
at the defragmentation cache of the resolver (for 30 seconds 
by default). 

Consider first the case where the attacker has no information 
about the expected IP-ID value, i.e., the 'random/other' IP
ID category, and assume that the attacker triggers only a 
single request, to which a single response is sent. The IP
ID in the response should match one of the B fragments 
stored in the defragmentation cache; we subsequently show 
how to extend this to multiple requests, which circumvents 
the birthday protection and allows to significantly improve the 
efficiency of the attack. The probability of a match is p = 2f6 
and for B = 62 it is 0.0009. By repeating the attack, the 
success probability increases; the mean number of attempts to 
poison is n = 1 � 1057; for TTL of 5 minutes, this would 

p 
be 3.5 days. 

This average time to poison may be reasonable for many 
attacks. However, in the following subsections, we show that 
the success probability can be significantly improved, by: (1) 
taking advantage of the birthday paradox (Section III-A), (2) 
predicting the IP-ID for sequential (Section III-C) and per

destination (Section III-D) IP-ID allocation methods, and (3) 
circumventing TTL restriction (see technical report [9]). 

6We ignore the Zero class, which contains name servers that assign a fixed 
IP-ID zero to all responses; we believe this is done by some systems when 
sending 'short' packets, which are unlikely to be fragmented. For simplicity, 
we classify 'mixed' under 'random/other' category. 
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A. Circumventing Birthday Protection 

'Birthday attack' is a well-known optimisation for classical 
DNS poisoning attacks, where the attacker not only sends 
many responses (with different guesses for challenge values), 
but also generates multiple requests to the same query, to 
increase the probability of a match between some request and 
some response. Currently, most resolvers prevent the 'birthday 
attack', by deploying birthday protection: not sending multiple 
concurrent requests for the same query. 

We show that 'birthday protection' can be circumvented 
via our fragmentation-based attacks. The idea is that the 
attacker can send multiple DNS requests, for different random 
subdomains of the victim domain; since these are different 
domains, birthday protection does not apply. All queries are 
of exactly the same length; hence, the second fragments in 
the responses to all of these requests are exactly identical to 
each other. Hence, a fake second fragment can match any of 
the (legitimate) first fragments. The impact is exactly that of 
the birthday paradox, if the attacker guesses the IP-ID (e.g., 
when the server uses random IP-ID assignment); the impact 
can be even higher, when the attacker can predict the IP-ID 
with some precision (see in following subsections). 

For example, consider the maliciously-
registered domain technique, instead of making 
the query to the malicious domain itself, e.g., 
one-domain-to-rule-them-all. org, we 
make requests to (many) sub domains thereof, e.g., 
xyz. one-domain-to-rule-them-all. org; all 
requests are of exactly the same length, hence, all responses 
have identical second fragment. The attacker can predict 
the value of this second fragment and replace it with a 
spoofed second fragment (with the same checksum). As a 
result, the spoofed response-fragments can match any of 
the authentic first fragments, i.e., we obtain the 'improved 
birthday paradox'. 

B. Random /P-ID Allocation 

We next analyse the probability for successful defragmenta
tion cache poisoning, assuming random IP-ID allocation, i.e., 
the name server selects the IP-ID values in each response 
uniformly. Let n be a number of DNS requests triggered by 
the attacker. By simple analysis (in [9]), we find that the 
probability for successful poisoning is: 

Pr [success] = 1 - (1 - 2�6 r (1) 

See graph, based on Eq. (1), in Figure 4. However, very 
few servers support random IP-ID assignment method, and 
therefore, our focus is on per-destination incrementing and 
globally incrementing IP-ID allocations. 

C. Globally Incrementing IP-ID Allocation 

A significant fraction of name servers use global1y
incrementing allocation method. On first sight, predicting the 
IP-ID for globally-incrementing servers seems easy - attacker 
can query the name server directly and find out the current IP
ID value (since the same counter is used for sending packets 
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Fig. 4. Poisoning success probability per poisoning attempt, by analysis 
(Eq. (1»  and by experiments, for B E {64, 1024,4096, 16384} (number 
of fake second fragments in cache) and different numbers of DNS requests, 
for random JP-ID assignment. 

to the attacker and to all other destinations, including the 
resolver). Indeed, such direct queries will be an important tool 
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Fig. 5. Progress of JP-ID for the globally-incrementing name server 
aO. org. affilias-nst. info of org TLD. 

in our extrapolation of the IP-ID value; however, the attack is 
more complex - the IP-ID may considerably change between 
the query by the attacker and the query by the resolver, 
since the name server receives queries from other sources 
too. Therefore, in busy nameservers, that receive queries at 
a high rate, the IP-ID may grow very rapidly. However, even 
if the DNS requests' rate to popular name servers is high, it is 
typically predictable. For example, in Figure 5, we show the 
measurements we ran on aO. org. affilias-nst. info, 
one of the name servers of org, that supports the globally
incrementing IP-ID allocation; notice how rapidly the IP-ID 
'grows' across the cyclic 16-bit counter field, yet it can be 
seen that the increments are predictable. 

Indeed, the IP-ID growth rate is rather predictable, by 
extrapolating from recent rates. The reason for this is that the 
query rate to name servers is stable, see [11]. We next present 
a strategy allowing an attacker to estimate the IP-ID value, 
that will be allocated by the name server to the response sent 
to the resolver. We then show an experimental evaluation of a 
successful DNS cache poisoning attack using the extrapolation 
strategy above to perform defragmentation cache poisoning. 
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For simplicity, in the analysis we assume a bound 8 on 
the latency on all channels (0 ::::: latency ::::: 8), instanta
neous processing and negligible ( 'zero') transmission delay. 
The sampling pro-
cedure, illustrated in 
Figure 6, begins at 
time t� , with the 
attacker sending a I packet to the name 35�) 
server, to sample the I current IP-ID value 
x. Once the name 
server receives the 
packet from the at
tacker, it sends a re
sponse, at time tt, Fig. 6. Procedure of sampling IP-ID value and 

s.t., t� ::::: tt ::::: t� + calculating value assigned to DNS response. 

8, with IP-ID value 
x. Upon receiving the response, at time tt ::::: t� + 2 . 8, 

the attacker computes y, the estimate for the value of the IP
ID that will have been assigned by the name server to its 
response to resolver's query. The attacker then sends multiple 
responses, with IP-ID values in the range [y - �, y + �]; these 
are accepted at time t1 ::::: t� + 3·8. We denote the time when 
the resolver sends the request by t{}; to minimise the drift in 
the IP-ID value, between its sampling, at tt, and the value 
used by the name server in sending the response, at tf, we 
pick t{} as the minimal value such that t{} � tt, Hence, it is 
best to use t{} = t� + 3 . 8. The name server sends the response 
to the resolver at time tf ::::: t{} + 8 = t� + 4 . 8. 

Assume that we have bounds PMIX and PMAX on the 
(respective) minimal and maximal rates at which the name 
server receives DNS requests. We can now bound the range 
of the IP-ID at time tf, when the response is sent; this is 
the range of IP-ID values which should be in the fake second 
fragments which the attacker plants in the resolver's cache. 

Claim 3.1: Let x be the IP-ID value sampled by the attacker 
at time tt. Then the IP-ID used by the server at time tk, to 
respond to the request from the resolver, is y E [x + 38 . 

PMIN, x + 48 · PMAX] . 

Once the attacker calculates the range of candidate IP-ID 
values that may be assigned to the response sent to resolver, it 
can send spoofed second fragments. The strategy depends on 
the relation between the defragmentation cache size B and the 
number of potential IP-ID values N = 8· (4· PM AX -3· PM IN)' 

If B � N, the attacker sends N fragments for all the potential 
IP-ID values: y E [x+38'PMIN, x+48·PMAX] . Otherwise, if 
B < N, the attacker should send B fragments with the most 
probable IP-ID values, that are calculated based on typical 
rates, see Figure 7. 

Notice that our analysis above is for a single DNS request, 
whose response the attacker attempts to match. The attacker 
can improve the success probability by circumventing the 
birthday protection and taking advantage of multiple DNS 
requests; this requires to incorporate the transmission delay 
of the DNS requests and responses into the calculation of 
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Fig. 7. The most probable IP-ID values are derived from the typical request 
rates arriving at the name server, i.e., removing too high or low rates from 
the range of potential IP-ID values. 

� (above). Experimental evaluation of DNS cache poisoning 
success for a single and multiple requests is plotted in Figure 8. 
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Fig. 8. DNS cache poisoning for globally incrementing IP-ID allocation, 
for name servers with different DNS request rates. In evaluations we use two 
defragmentation cache sizes, 64 and 1024 and test for 1 vs. 100 simultaneous 
DNS requests. 

D. Per-Destination Incrementing JP-ID Allocation 

In the popular per-destination incrementing IP-ID alloca
tion method, the first IP-ID to some destination IP address 
is selected at random and subsequent packets sent to the 
same destination are allocated sequentially incrementing IP
ID values. 

The attacker can efficiently hit the correct IP-ID by using 
a meet-in-the-middle strategy, see Figure 9. Let B be the 
defragmentation cache size. The attacker plants 2�6 

spoofed 
second fragments, each fragment i contains IP-ID value of 
{i . 2�6 

}f�=1' For B = 64, the sequence consists of IP-ID 
values multiples of 210 = 1024, and to reach 100% success 
the attacker should trigger 1024 simultaneous DNS requests, 
via the puppet, so that any of first 1024 fragments matches 
any of the 64 (spoofed) second fragments), see Figure 9; for 
B = 1024 the sequence consists of 1024 multiples of 64, 

and to attain 100% poisoning probability, the attacker should 
trigger 64 DNS requests. 

Another approach is to wait for periods when only one (or 
two) name servers will respond. Indeed, the the number of 
machines behind a load balancer is usually very dynamic, and 
in periods of low load, many TLDs may use a single machine. 

In our attacks, we adopted a third approach: we applied 
the technique in [3], to cause the resolver to avoid using the 
'mixing' name servers, since each domain we attacked also 
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1024 tragments 

1024 2048 65536 

64 fragments 

Fig. 9. DNS cache poisoning using a meet-in-the-middle strategy for 
IP-ill hitting for name servers with per-destination IP-ID allocation and 
ip!rag_mw,-dist of 64 fragments. 

had non-mixing name servers. In Section V-A, we present 
'name server pinning' and its applications, including its use 
for DNS poisoning. 

IV. ENS URING VALID RESPONSE 

DNS responses are validated via: UDP checksum, DNS 

response structure, DNS bailiwick and priority rules and 
challenge-response mechanisms; invalid responses are dis
carded by the resolvers. Notice that since the challenge
response validators are all always in the first fragment, they are 
automatically satisfied. We next discuss each of these checks, 
and provide techniques allowing attackers to circumvent them. 

A. UDP Checksum 

The UDP checksum is one's complement sum over the 
payload. Therefore, to match the checksum the attacker can 
query the name server in advance for the same resource record 
and learn the contents of the corresponding DNS response, 
including all contents in the second fragment. The attacker 
then ensures that the checksum of the spoofed second fragment 
is identical to the checksum of the authentic second fragment: 
(1) by concatenating two bytes after the EDNS record, in case 
the spoofed record is shorter than the authentic record, which 
it replaces; or (2) by changing two bytes in another record, to 
fix the checksum. 

B. Response Structure 

Resolvers validate that the number of records in each section 
of the DNS response corresponds to the values specified in a 
DNS header. In our attack we inject new records replacing 

authentic records, e.g., replace the value of the name field of 
an NS record with a new value (of the name server that the 
attacker controls), and do not add new records. Therefore, the 
number of records in a spoofed second fragment is identical 
to the number of records in the authentic second fragment. 
Each injected spoofed record should be correctly formatted 
(according to DNS standard). 

C. Bailiwick and Priority Rules 

The ability of the attacker to spoof records, is limited in the 
same way that a regular name server is restricted. Specifically, 
resolves ignore records received in a response, if they do not 
satisfy the bailiwick rules, whose goal is to prevent a name 
server of one domain from defining (false) mappings for other 
domains. The resolvers also apply priority rules when deciding 
whether to cache records in responses, and when overwriting 
already cached records. For instance, during our experimental 

evaluation of the attacks we found that Unbound 1.4.18 and 
Bind 9.8.3 treat NS records, received in non-existing domain 

(NXDOMAIN) responses, differently: while Unbound caches 
such records, Bind ignores them; specifically, Bind does not 
cache NS records in responses that contain an SOA record; 
see full paper, [9], for more details. 

V. DNSSEC IS NOT A PANACEA 

In this section we show that some attacks still apply, even 
if DNSSEC is fully adopted and correctly validated; in partic
ular, name server pinning (Section V-A) and the non-existing 

subdomain injection due to NSEC3 opt-out (Section V-B). 

A. Name Server Pinning via Cache Poisoning 

In DNS referral responses from the name server of a do
main, say �rg, to a query sub. org, the name server provides 
details of the name servers of sub. org, specifically their 
domain-name (NS record, in authority section) and address 
(A record, in 'additional' section); these are referred to as the 
delegation or glue records. Even when DNSSEC is used, the 
glue records are sent unsigned, and used by resolvers to resolve 
future requests for domains within sub. org. Furthermore, 
the glue records are usually cached and used, for queries to 
that specified domain. 

An attacker can use our poisoning attack, described in the 
previous sections, to poison the glue records. When DNSSEC 
is not (fully) deployed, this can be used to later poison 
responses to queries sent to the fake nameserver. In contrast, 
if DNSSEC is deployed, the records sent as answer to queries 
must be signed, so sending fake glue records does not seem to 
be useful, see [7]. However, fake glue records can be abused 
to cause NS-pinning, which, in tum, can facilitate DoS and 
traffic analysis attacks. 

The attacker sets very high time-to-live (TTL) in the poi
soned glue records. As a result, these records will remain 
in cache, after the TTL, of any legitimate record for the 
same domain, expires. When all legitimate records expire from 
cache, the resolver will use the (only remaining) spoofed 
glue records, and for as long as the spoofed record is in 
cache, the resolver will not request other records for the same 
domain; this holds even if the poisoned glue record causes 
the resolver to send queries to a completely non-responsive 
address, providing an easy method for a DoS on resolver's 
clients. 

B. Off-Path Subdomain Injection via NSEC3 Opt-Out 

Bau and Mitchell, [7], have shown, that the use of NSEC3 
opt-out allows a MitM attacker to create fake (non-existing) 
sub-domains. As [7] showed, this facilitates XSS, phishing and 
cookie stealing attacks. Our techniques allow off-path attackers 
to inject non-existing sub-domains. In spite of the publication 
of this potential abuse by MitM [7], NSEC3 opt-out is still 
widely used, and often even recommended, since it improves 
performance (esp. as long as DNSSEC is deployed only in 
small fraction of the domains). 

230 



2013 IEEE Conference on Communications and Network Security (CNS) 

VI. DEFENSES 

The best (long-term) defense against the poisoning attacks 
we described, is to apply DNSSEC correctly7; partial or 
incorrect use of DNSSEC does not prevent our attacks, e.g., 
see [12], [13]. DNSSEC foils our (off-path) poisoning attacks, 
and even defends against MitM adversaries. An exception is 
the NS-pinning attack; i.e., an attacker may still be able to 
deny resolution of a victim domain. Preventing NS-pinning 
seems to require either extensions to DNSSEC, or adoption of 
additional defense mechanisms. 

In the following subsections, we describe shorter-term 
defense mechanisms and recommendations, to be deployed 
by resolvers, name-servers and registrars. Our recommended 
countermeasures could also help prevent the NS-pinning and 
the sub-domain injection [7] attacks; a better way to prevent 
sub-domain poisoning, is to avoid the DNSSEC NSEC3 OPT
OUT option. Since none of these defenses is a 'silver bullet' , 
we present 'three lines of defense'. The front line comprises 
defenses that prevent fragmentation from occurring. The sec

ond line contains defenses that prevent the defragmentation 
cache poisoning. In the last line there are defenses that prevent 
DNS cache poisoning, even when the resolver receives a 
spoofed-defragmented response packet. We do not discuss 
'classical' firewall-based defenses, such as detecting the attack 
and blocking suspect packets, and focus on attack-specific 
mechanisms. 

A. Preventing Fragmentation 

The poisoning attacks we presented are based on fragmenta
tion, which normally is a very rare event in the current Internet. 
We therefore recommend to prevent or minimise the use of 
fragmentation, by refraining from sending long responses. 

ZONE OPERATORS AND REGISTRARS should impose a 
maximal limit on the length of responses. Our most effec
tive poisoning attack, exploits registration of domains with 
specially-crafted records, causing fragmentation of the refer
ral response from the parent domain. Registrars and TLD 
name servers should consider placing careful restrictions on 
the registered records to prevent such fragmentation. Since 
registrars may not have any direct incentive in deploying this 
recommendation, guidance may be required. 

Furthermore, it is difficult to impose a limit that is suffi
ciently low to prevent fragmentation. In particular, DNSSEC 
records are long, and we expect (and hope) they will become 
much more common in the future - and probably, with more 
and longer keys, resulting in much longer responses. 

RES OLVERS should not ask for DNSSEC records, unless 
they strictly apply DNSSEC validation. Recently, [1] found 
that the vast majority of resolvers, that signal support of 
DNSSEC, do perform strict validation, i.e., do not block un

signed or mal-signed responses; this must change immediately. 
In fact, testing services should alert administrators and clients 

7 By 'correct use of DNSSEC' we mean: (1) all domains �igned properly 
from root, (2) resolvers ignoring responses not properly SIgned, and (3) 
avoiding use of NSEC3 opt-out. 

using such vulnerable setups. The resolvers can also prevent 
fragmentation by setting the buffer of the EDNS record to 
some low value, e.g., below 1500 bytes. As a result, when 
longer responses are returned, the name server sets the TC bit 
on, signaling to resolver to request the records over TCP. 

NAME SERVERS can also prevent fragmentation, by using 
TCP to send long responses; indeed, few name servers already 
do this, apparently to avoid interoperability problems, e.g., 
with firewalls that block fragments. However, the use of TCP 
by name servers is known to be problematic, due to its 
significantly higher storage, communication and processing 
costs. Furthermore, the referral clogging attack, see [9], is 
much worse when name servers use TCP. 

B. Preventing Defragmentation Cache Poisoning 

Another line of defense is to prevent defragmentation cache 
poisoning. This may be accomplished by placing stronger re
strictions on the defragmentation buffer, such as: (1) reducing 
the maximal number of cached fragments per each sender 
and protocol (typically around 64 to 100), (2) reducing the 
maximal time that a fragment is cached (typically 30 seconds), 
(3) when receiving fragments out of order, i.e., second and then 
first, delay the defragmentation process and in case another 
matching fragment arrives, and use the second fragment that 
arrives in order, i.e., after the first. 

Adoption of such changes to the basic IP defragmentation 
process, requires careful validation and experimentation. 

In this work, due to low support of IPv6 within the DNS 
servers, we focused on IPv4. Notice that the fragmentation 
mechanism was significantly modified in IPv6, and in partic
ular the IP-ID field in IPv6 was modified from 16 bits to 32 
bits. However, IPv6 specifications explicitly recommends the 
use of sequential IP-ID values; these may yet be predictable, 
using the techniques we presented. 

C. Preventing DNS-poisoning via Spoofed 2nd Fragments 

The 'last line of defense', to prevent DNS-poisoning in
cludes recommendations both for resolvers and for name 
servers. These defenses are critical, especially to foil the 
birthday protection circumvention, see Section III-A. 

RES OLVER - RANDOM (LENGTH) PREFIX DEFENSE.  Some 
DNS resolvers, e.g., Google Public DNS, were patched to 
attach a random prefix to queries, when the (expected) re
sponse is a referral, e.g., a query to the root or to a top-level 
domain. However, our fragmentation-based poisoning attacks 
circumvent this defense, since the random prefix is returned in 
the first fragment (together with all of the other challenges); 
the attacker can still change the second fragment. Note that 
while prepending the random prefix causes a change to the 
UDP checksum (of the entire packet), this makes no impact 
on the attack, since the attacker anyway makes sure to retain 
the checksum of the second fragment. 

A variant on this technique can also help against frag
mentation poisoning attacks. Specifically, the resolver can use 
prefixes of random length; this changes the contents of the 
second fragment, and hence the attack becomes harder, e.g., it 
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is harder to preserve the checksum. Of course, the impact of 
the random-length prefix defense is limited, since the range is 
not that large (few hundred values at most). Still, the impact 
on the efficiency of the attack is significant. Of course, the 
random-length prefix defense, like the known random prefix 
defense, is limited to queries where the response is known to 
be a referral. 

NAMESERVER - RANDOM S UFFIX DEFENSE.  Yet another 
possible defense, for name servers, is to always add a random 

record to the end of any packet over a certain size (i.e., 
which may be fragmented). A simple type A resource record, 
containing a random IP address for some fictitious domain 
name, would suffice. This would prevent the attacker from 
being able to predict and (correctly) adjust the checksum value, 
and hence the vast majority of spoofed responses will be 
dropped (upon detection of incorrect checksum). 

VII. C ONCLUSIONS AND FUTURE WORK 

We showed how an off-path attacker can efficiently exploit 
fragmented DNS responses to poison DNS caches. Our attacks 
are effective against standard implementations of the DNS and 
IP; we confirmed effectiveness against several domains in the 
Internet, and popular (standard) resolvers (Unbound 1.4.18 and 
Bind 9.8.3). 

Most DNS responses are short, and hence not fragmented; 
however, some DNS responses can be long and may get 
fragmented. Ironically, one reason for long responses is the 
use of DNSSEC; we also show how attackers can cause 
fragmentation in many important domains, including about 
third of the top-level domains, by intentionally registering 
domain names with long referral responses. 

This work follows three other DNS-poisoning attacks: 
Kaminsky's of 2008 [2], and our derandomisation attacks [3], 
[5]. Effective countermeasures, requiring 'only' (rather simple 
and efficient) changes in the resolvers, were proposed against 
all previously known attacks, see [RFC5452] and [3], [5], [14], 
however they do not protect against our fragmentation-based 
attacks. In Section VI, we also proposed defenses against the 
fragmentation-based attacks presented in this work. Notice that 
the proposed defenses are not trivial to implement; further
more, they only reduce the efficiency of the attack, rather than 
completely prevent it. It therefore remains an important open 
challenge, to find better easily-deployable defenses against the 
fragmentation-based attacks. 

We believe and hope that the combination of all our 
recent attacks on the challenge-response DNS defenses, will 
(finally) provide sufficient incentive to catalyse the adoption of 
DNSSEC (or other cryptographic mechanism providing strong 
security for DNS). In particular, notice that it is quite complex 
to test resolvers for defenses against all these attacks, hence, 
many resolvers may remain vulnerable for years. Indeed, based 
on the tests we ran on CAIDA traces, [15], we observed 
that many resolvers were not properly patched even against 
Kaminsky's attack, and still use predictable or even fixed ports. 

On the other hand, we also present variants of the at
tack, that pose significant threats even to a fully-conforming, 

strict DNSSEC validation at both resolver and name server. 
Specifically, we show how an off-path attacker can (1) create 

fake sub-domains, demonstrating the off-path feasibility of the 
attack of [7], and (2) cause name-server pinning, i.e., cause 
resolvers to use incorrect name server, denying resolutions of 
domain names (in the victim zone), demonstrating an effective 
abuse of the observations of Bernstein [16]. We believe that 
it is important to defend against these two attacks, e.g., using 
the name-server-side defense against our attack (see Section 
VI). 

Finally, some of the vulnerabilities and observations which 
we used in our attacks, may have additional implication and 
applications, e.g., our ideas of long subdomain generation. 
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