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Abstract—Preserving privacy is an undeniable benefit to users
online. However, this benefit (unfortunately) also extends to those
who conduct cyber attacks and other types of malfeasance. In
this work, we consider the scenario in which Privacy Preserving
Technologies (PPTs) have been used to obfuscate users who are
communicating online with ill intentions. We present a novel
methodology that is effective at deobfuscating such sources by
synthesizing measurements from key locations along protocol
transaction paths. Our approach links online personas with their
origin IP addresses based on a Pattern of Life (PoL) analysis,
and is successful even when different PPTs are used. We show
that, when monitoring in the correct places on the Internet,
DNS over HTTPS (DoH) and DNS over TLS (DoT) can be
deobfuscated with up to 100% accuracy, when they are the
only privacy-preserving technologies used. Our evaluation used
multiple simulated monitoring points and communications are
sampled from an actual multiyear-long social network message
board to replay actual user behavior. Our evaluation compared
plain old DNS, DoH, DoT, and VPN in order to quantify their
relative privacy-preserving abilities and provide recommenda-
tions for where ideal monitoring vantage points would be in the
Internet to achieve the best performance. To illustrate the utility
of our methodology, we created a proof-of-concept cybersecurity
analyst dashboard (with backend processing infrastructure) that
uses a search engine interface to allow analysts to deobfuscate
sources based on observed screen names and by providing packet
captures from subsets of vantage points.

Index Terms—Privacy, Machine Learning, DNS, Security, At-
tribution, Deobfuscation

I. INTRODUCTION

Privacy concerns are a top-of-mind consideration for many
Internet users. This has led to a growing abundance of proto-
cols and tools that use cryptography to provide confidentiality
guarantees. In 2014, the Internet Architecture Board (IAB) is-
sued a statement urging that protocols move toward using con-
fidential operation by default [1], and most World Wide Web
traffic was transmitted without encryption or authentication.
Flash forward to today, and the Web almost exclusively uses
the Hypertext Transfer Protocol Secure (HTTPS) [2], which
relies on Transport Layer Security (TLS) [3] for confidentiality
protections. However, while protocols like these protect the
confidentiality of home users, corporate employees, students,
and more, they also protect miscreants who are conducting
ranges of undesirable actions. For example, confidentiality
protections are used to obscure the sources of data leaks, docu-
ment exfiltration, and more. As a recent incident illustrates [4],
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many of these threats are orchestrated in broad view, in public
forums. Troubling behaviors, where the sources are often
obscured, include cyber-bullying, disclosure of confidential or
private documents, and much more. When actions like these
are taken by an actor who is using anonymizing technologies,
cybersecurity analysts currently have little (or no) ability to
deobfuscate the source(s) of troubling communications.

Technologies like Transport Layer Security (TLS) [3], DNS
over TLS (DoT) [5], DNS over HTTPS (DoH) [6], Virtual
Private Networks (VPNs), and many more are designed and
deployed to preserve users’ privacy (we call these Privacy
Preserving Technologies, or PPTs). Unfortunately, while PPTs
can be a significant benefit for most users, they have also
become a panacea for malfeasance. Cybersecurity analysts
who are routinely tasked with the duty of tracing the origins of
document exfiltrations and/or determining the identities of ac-
tors involved in Transnational Criminal Organizations (TCOs)
are stymied by the source obfuscation of encryption’s privacy
guarantees. In the face of encryption, how can our security
protectors track the origins of disclosures of confidential, or
classified, documents?

In this work we focus on the problem of anonymous users
posting dangerous (or confidential) content in public. This
includes posting threats, cyber-bullying, exposing classified or
sensitive information, or any other disconcerting communi-
cations made in public, under the veil of anonymity. Such
situations may pose threats to individuals, children, national
security, and many other potential victims. We make a foun-
dational observation: when transactions are known/knowable,
such as posts on message boards, the Pattern of Life (PoL)
of those transactions (i.e. posting and interacting) obviate the
need to overcome PPTs’ encryption in order to deobfuscate
the sources of communications.

In this work, we produce a general methodology that decon-
structs complex Internet topologies into more granular subsets
(called “Scopes”), uses features of observable network traffic
and PoL to overcome PPTs, and deobfuscate sources. This
methodology is designed to allow the ingestion of network
traffic (which may include PPTs) and facilitate a search-
engine-like interface to deobfuscate otherwise hidden com-
munication sources. We use an approach called Topological
Data Analysis (TDA) [7]–[9] to transform discrete network
traffic into a univariate time series. We show that, for this
class of problem (i.e. obfuscated sources posting to visible
message boards), deobfuscation of sources is not only possible
but nearly certain, from specific network vantage points. Our
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results show that with a normalized accuracy score (from
0.0 to 1.0), we are able to deobfuscate sources using DoT
and DoH with scores of 1.0, when analyzed from specific
network vantage points. Our methodology presumes no access
to software, servers, or cryptographic keys, and performs
deobfuscation based solely on visible network traffic. Our
contributions are:

• Our methodology, which ingests raw packet captures
from variable networks and deobfuscates sources.

• A Proof-of-Concept (PoC) dashboard and processing
infrastructure that presents a search-engine interface for
cybersecurity analysts, which allows them to upload
network captures and perform deobfuscation of sources,
ranking results based on accuracy and recall statistics.

The remainder of this paper proceeds as follows: In Sec-
tion II we present some basic background on the Domain
Name System (DNS). Next, in Section III, we explain our
methodology, our reference architecture, and our algorithm.
We present the results of our evaluation in Section IV. Then,
we describe our future work in Section V and related work in
Section VI. Finally, we offer some conclusions in Section VII.

II. DNS BACKGROUND

The Domain Name System’s (DNS’) [10] resolution is a
necessary first step in almost all modern Internet transactions.
As a result, the idea of remaining anonymous through the use
of DNS has received a lot of attention.

Configuration changes are one way that users and operators
have increasingly begun to bolster their security and privacy
postures of DNS. One such configuration change has been
users’ migration away from using local DNS (“loDNS”)
resolution infrastructures towards public DNS (“pDNS”) reso-
lution. Typically, when users obtain IP addresses from DHCP,
the host network (e.g., an Internet Service Provider, a corporate
enterprise, a guest WiFi network, etc.) will also include the
address of a loDNS resolver. This is so the system can begin
resolving DNS names as soon as the IP address is leased,
as shown in Figure 1a. This configuration is typically a
convenience for the user, but also can be a security measure
taken by the host network operator. Nevertheless, some users
prefer to shift this to third party DNS operators, as illustrated
in Figure 1b. In 2009, Google announced its offering of Public
DNS (a pDNS option) [11] and users began to consider the
value proposition (illustrated in Figure 1) of moving from
loDNS to pDNS (now offered by many other large providers
such as Cisco’s OpenDNS, Cloudflare’s 1.1.1.1, Quad9’s
9.9.9.9, Neustar, and more). In some cases, these choices
are motivated by service offerings of pDNS providers, which
can range from parental-controls that help safeguard minors’
web browsing, to malware connection prevention, and beyond.
In many cases, the motivation has been stated as the pDNS
provider will be better able to offer security and configuration
assistance, regardless of users’ source networks.

In addition to configuration changes, the protocols and
system technologies themselves are also evolving to address
privacy concerns. In regards to protocol and system evolution,
the Internet Engineering Task Force (IETF) has taken up the

challenge to incorporate privacy concerns and protections into
many new protocols and/or extensions to existing protocols.
A couple of general observations can loosely frame some of
the motivating themes for these works: 1) user transaction
information is sensitive and should be obscured by encryption
where possible and 2) meta-data about transactions, services,
and end-points should be protected.

Many different approaches have been (and are being) tried
to enhance privacy in the DNS. Some notable protocol ex-
tensions (though, there are others) that are going through ex-
perimentation, standardization, and deployment consideration
are establishing DNS over Transport Layer Security (TLS)
connections (DoT) [5] and DNS over HTTPS (DoH) [6].

The DNS-over-TLS (DoT) [5] protocol is separated into
two stages. Initial work has explicitly focused on using TLS
to protect the transaction data between a stub-resolver and
a recursive resolver during DNS resolution. Many of the
motivations for this work arose after users began to purposely
use public DNS resolvers (pDNS). When using DNS-over-
TLS, queries and responses are sent over TLS to port 853
(rather than DNS’ canonical port, 53). Then, the recursive
resolver nominally uses the conventional DNS protocol to
authoritative name servers. An addition to DoT is being
considered by the IETF, whereby resolvers would be able
to use TLS to connect to authoritative name servers. This is
being called Authoritative DoT (ADoT). With the addition of
connection-oriented transactions (a result of using TCP), and
with the complication of certificate validation (necessary to
complete the TLS handshake), and the increased processing
overhead of TLS’ encryption.

The DNS-over-HTTPS (DoH) [6] protocol proposes to
allow client software to perform DNS queries by wrapping
them in HTTPS and sending them directly to DNS resolvers
that support the DoH protocol (over HTTPS’ canonical port,
443). While this may seem to be a direct analog of DoT, it
differs in very substantial (though nuanced) ways. In particular,
because the determination of where to send DNS queries is
now being made above the operating system layer, users and
administrators have no ability to know whether applications
have chosen different resolvers. DoH enables applications,
apps, and other software to establish channels that would
not otherwise be (at least) detected. DoH also brings with it
most (if not all) of the operational complexities, cryptographic
overheads, and other implications of the DoT protocol.

III. METHODOLOGY

Among our most foundational findings is that the inter-
communication timing pattern in which users interact online
(such as times a user posts messages on message boards)
is an observable that is (itself) sufficient to deobfuscate and
perform attribution if measurements can be taken from a
specific network vantages with one second time resolution.
Our basic observation is that even if traffic is encrypted by
a PPT, the set of postings (at specific times, from specific
network locations) forms a distinguishable fingerprint of user
activity. This Pattern of Life (PoL) (i.e., the temporal pattern
of message postings, and related meta-transactions to DNS) is
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Fig. 1: This Figure contrasts using local DNS (loDNS) to public DNS (pDNS), with example traffic flows for each.

sufficiently distinguishable so that overcoming encryption is
not necessary for deobfuscation. To quantify this PoL, we use
techniques from statistical time series analysis.

Our next observation is that knowing where to instrument
monitoring is the next key (after PoL) for deobfuscation. To
simplify the Internet’s topology, without loss of generality,
we developed a projection of the Internet’s large and complex
structure into a reduced set of fixed stages of protocols’ control
flow, which we call “Scopes”.

A. Scopes

The Internet is a large and complex system, composed of
hundreds of thousands (if not millions) of separate adminis-
trative networks. The Classless Inter-Domain Routing (CIDR)
Report [12] measures upward of 931,903 separately routable
network prefixes that are distributed across over 74,728 distinct
Autonomous Systems (ASes), as of May 2023 [12]. In order to
use our methodology to deobfuscate network sources that are
using Privacy Preserving Technologies (PPTs), measurements
must be made at specific locations along the network paths
between clients and the services they transact with. Because
PPTs operate in very different ways from each other, our
generalizable approach leverages knowledge of how these
technologies specifically operate and coarsens the Internet’s
complex technology. From the starting premise that being
able to observe all network paths throughout the Internet
would be infeasible but would enable deobfuscation, we have
constructed a methodology to identify what specific subset of
locations are necessary and sufficient.

The intuition behind scopes is to project the protocols’
control flows that are being used. In order to transact with an
Internet service (such as a message forum), users first perform
Domain Name System (DNS) resolution [10], followed by
a transport-layer connection to a service (e.g. a message
forum service). Each of these stages can take on different
forms that depend on how service operators deploy their
infrastructures. Some web-based message forums may use
Content Distribution Networks (CDNs), some may use local
instances at fixed locations. Similarly, some DNS providers
offer resolution services from single networks, and some
distribute across many locations. Furthermore, there are vast

DNS DNS DNS
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Access network
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Access-to-resolver scope
Internet

Public Resolver
(pDNS) scope

Resolver-to-AuthZones
scope (Internet)
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SLD scope
(service’s DNS)

VPN provider
scope

Service scope

Access-to-service
scope (Internet)

Access-to-VPN
scope (Internet)

VPN-to-service
scope (Internet)

VPN-to-resolver
scope (Internet)

Fig. 2: This Figure illustrates the network scopes involved in
user communications for DNS and with an Internet service,
such as a message forum.

and complex topologies of inter-domain routing networks that
often exist between endpoints of communication. In order to
accommodate the varying degree of complexity in different
networks, Scopes quantizes the protocols’ communications
into general regions (illustrated in Figure 2). For example,
when a user configures a public DNS resolver, and that service
iterates through the DNS delegation hierarchy to resolve the
domain name of the website for a message forum, we break
this into the following Scopes:

• The user’s Access network, or their Internet Service
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Provider (ISP) scope: where all of a user’s traffic origi-
nates and returns to.

• The Access-to-resolver scope: the set of inter-domain
networks that connect the ISP to a public resolver.

• The public DNS (pDNS) resolver scope: the network(s)
responsible for operating the DNS resolution service.

• The Resolver-to-Authoritative Zones scope: the poten-
tially large portion of the Internet where inter-domain
transit routing occurs.

• The DNS root zone scope: the networks responsible for
DNS resolution of the root zone.

• The Top-Level Domain (TLD) scope: where resolution of
a given TLD (such as .com, .edu, .org, etc.).

• The Second-Level Domain (SLD) scope: the specific
authoritative zone for an Internet service (such as
gmu.edu, dhs.gov, etc.).

Next, we use a similar projection method to model the control
flow of a user transacting with an Internet service. The scopes
involved in these transactions are:

• The user’s Access network (ISP), again.
• The Access-to-service scope: an amalgamation of the

large set of inter-domain networks that connect users’
access/ISP networks to a specific service scope.

• The Service scope: the specific network(s) that an Internet
service (like a message forum) are operated on.

In addition to the above scopes that befit a basic Internet
transaction (whether an HTTP [13], HTTPS, TLS [3], etc.),
our Scopes methodology includes semantics for when other
common PPTs are used. Some PPTs, such as DNS-over-
TLS (DoT) and DNS-over-HTTPS (DoH), implement their
protections along the same control path as plain old DNS
(poDNS). As a result, these PPTs make use of the same
network scopes that are used for poDNS. In contrast, however,
some PPTs use different control flows. For example, Virtual
Private Networks (VPNs) create encrypted tunnels between
endpoints. One common form of VPN is for clients to encrypt
network traffic and send it to a VPN provider, and for that
provider to act as the source/destination of the resulting
(unencrypted) network flows across the Internet. This has
the effect of making the VPN provider’s network appear
to be the endpoint of clients’ Internet traffic, but results in
tunneled communications between the provider and the client.
To accommodate this PPT, we are able to extend the existing
Scopes to include:

• Access-to-VPN scope: where VPN-tunneled traffic is sent
from a client’s access/ISP network to the VPN provider.

• The VPN Provider scope: where encrypted tunnels termi-
nate, and where de-encapsulated client traffic is sent to
Internet destinations (appearing to come from that VPN
endpoint/egress).

• The VPN-to-resolver scope: which is a similar amalga-
mation to the Access-to-resolver scope (defined above),
but separated in our model as it may have some degree
of disjointness from other transit paths.

Some of the scopes that are necessarily involved in com-
munications are inherently composed of single (or a small
number of) administrative organizations. Examples include the

ISP scope, to DNS root zone scope, each TLD scope, each
SLD scope, VPN provider scopes, and the Service scopes.
We classify these scopes are low-order scopes, because of the
low-order of administrative entities that they contain. While
the administrative diversity within these scopes is small, the
Internet is composed of many instantiations of these low-
order scopes. Conversely, some other scopes amalgamate large
numbers of inter-domain ASes. Examples of these include the
Access-to-resolver scope, Resolver-to AuthZones scope, and
the VPN-to-service scope. We broadly classify these other
scopes as amalgamation scopes.

Example Control Flow: When users make use of a public
DNS resolver (pDNS), such as 1.1.1.1, 8.8.8.8, etc.,
Figure 3a illustrates how we map the resulting network traffic
into our methodology. Similarly, Figure 3b depicts the control
flow of protocol traffic when users employ a VPN with a pDNS
resolver. These figures illustrate which network scopes traffic
traverses, and where relevant measurements can be made.
Depending on which set(s) of PPTs are being used, different
segments of traffic may be encrypted on in the clear. However,
our foundational observation is the pattern of life of these
network communications is necessary for these protocols.

Deobfuscating with Scopes: The Scopes methodology allows
us to pinpoint which sets of scopes are necessary and suffi-
cient to monitor in order to deobfuscate sources. Our results
illustrate where high accuracy, high recall@k, and low rank
are achievable from sets of low-order scopes. These scopes
are the most useful, compared to amalgamation scopes which
are not, because the latter include size and diversity that could
make monitoring intractable. For example, results that indicate
fulsome monitoring is necessary in the Resolver-to-AuthZones
scope (an amalgamation scope) would imply needing to moni-
tor all resolver traffic throughout the inter-domain transit space
of the Internet. Instead, we center our evaluation on low-order
scopes. Whereas gaining the cooperation of some of these may
prove to be prohibitive, the feasibility of instrumenting them
is far more realistic.

B. Model Overview

This subsection is provided to give an overview for the high
level steps of the algorithms used. Detailed pseudocode for
the algorithm is provided in Appendix A and in depth steps
describing why each step was included, the values used for
each algorithm and the process taken to arrive at each value
is provided in the following subsections.

The model used for preprocessing the data and deobfuscat-
ing users to IP addresses follows the following stages. The
hypothesis behind this approach is that when users commu-
nicate online in a live discussion, they leave traces of their
communication throughout the Internet. These traces are time-
varying signals, time series, which can identify the user. These
time series persist to varying degrees even when users attempt
to hide their identity with PPT. These identifying features’
performance can be compared, and the degree of privacy per
scope can be quantified.
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Fig. 3: This Figure illustrates the follow of data across scopes for public DNS (pDNS) and using a VPN. The traffic flows
cross the same scopes whether encryption is used or not (pDNS, DoT, DoH, etc.) are all encompassed.

1) Data from PCAPs is grouped on a per IP basis: if the
IP is seen in the packet or occurs within a time window
of other packets being sent (Appendix Algorithm 1 Lines
1–15)

2) Feature selection based on available scopes (Appendix
Algorithm 1 Line 17)

3) Sliding-sum over features extracted for each scope (Ap-
pendix Algorithm 1 Line 18)

4) Features are transformed using Topological Data
Analysis-Persistence Landscape to capture multivariate
PoL (Appendix Algorithm 1 Line 19 and Appendix
Algorithm 5)

5) Above steps are repeated for features of the service of
interest (e.g. a message board) (Appendix Algorithm 2)

6) PoLs seen in scopes are compared in PoL of the users on
the service of interest using normalized cross-correlation
for the time the persona was using the service (Appendix
Algorithm 4 and Algorithm 3)

7) Time series with the highest normalized cross-correlation
are determined to be the same persona. (Appendix Algo-
rithm 3)

C. Data Preprocessing
First the time series on a per user basis must be created

from the raw data available at the scopes. Our methodology
is designed to ingest packet captures from separate network
scopes, Scope ∈ Scopes. All scopes were included initially
for the experiments, and subsets of scopes and features were
evaluated to provide recommendations for deployment. The
model accepts PCAPs, although other formats that capture
the same features can be used. Data is grouped into data
frames, tables/arrays used by machine learning algorithms,
by IP address. This grouping isolates different user’s features
before transforming them into time series. Each IP address’s
POL also captures information indirectly related to them (e.g.,
communications that could have resulted from a client com-
munication/other client communication that the client could

use, estimates of cached data). It is only possible to determine
if one packet is related to another with complete knowledge
of each system involved. As the goal of this model is to
work without complete knowledge of every system, it must
make an educated guess if a packet is related to other users.
The experiments presented here use a simple model for this
purpose and use steps later on, TDA, to attempt to remove
noise in the data. A small time window is used to detect data
that may be related to an IP address but does not have the IP
address in the packet. A packet is related to the IP address
if a packet from or to the IP was sent within the window of
the other packet. Equation 1 defines this set of packets per IP.
This is to best estimate the information that could influence
a client’s state. The time window used is based on the DNS
TTL for the domain/message board of interest. This process
is carried out for each scope individually because different
features may appear different and have varying degrees of
important information encoded. Pseudocode for this step can
be found in Algorithm 1.

ipHitip = {packet ∈ Scope

|packet.src = ip ∨ packet.dst = ip}

cacheHitip = {packet ∈ Scope

|min(packet.time− p.time|p ∈ dip) < S.cache.ttl}

dip = ipHitip ∩ cacheHitip (1)

Feature selection is then performed on the dataframe to
preserve only the most performant features (e.g., IP packet
length, per-flow inter-segment time spacing). A complete list
of features extracted and tested can be found in Table I.
These features were selected because of their ability to be
transformed into time series and contain state or personal
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Packet Field Description
frame.time Packet Timestamp
ip.src IP Source Address
ip.dst IP Destination Address
ip.proto Transport Protocol
ip.len Packet Size
tcp.dstport TCP Destination Port
tcp.connection.syn TCP SYN Flag State in Packet
tcp.ack TCP ACK Flag State in Packet
tcp.len TCP Segment Length
tcp.reassembled.length TCP Reassembled Len
HTTP.request HTTP Request Data
tcp.time relative Time Since Flow Began
tcp.time delta Inter-segment Time Delta
tcp.payload Data in TCP Segment
dns.qry.name DNS Query Name
dns.opt.client.addr4 EDNS0 Client Subnetv4
dns.opt.client.addr6 EDNS0 Client Subnetv6
dns.opt.client.addr EDNS0 Client Subnet

TABLE I: Features extracted from PCAPs.

information. Additionally, previous work has shown time and
packet length as key identifiers in machine-learning models
for deanonymization [14] [15]. Deployment of the model does
not require all features from this list. Each feature was tested
independently and in combination with other features. Not
every feature is available at every scope, and some PPTs block
our insight into some features. If this happens, the feature is
removed from evaluation at the given scope in these cases.
This is done by detecting features that have zero variance
across all clients.

Based on the extracted features in each scope, the model
transforms each feature per scope per IP into a time series
using a one-second sliding sum with a one-second skip as
seen in Equation 2. This is done to transform tabular data into
a time series. A rolling sum was chosen to avoid losing any
variability in the communications. A one-second time window
was chosen through a grid search of possible values. These
time series can be subselected to form different univariate and
multivariate time series.

If a multivariate time series is chosen, it must be trans-
formed into a univariate time series. This is done using the
techniques from topological data analysis in this evaluation.
Specifically, the L2 norm of the series’s TDA persistence
landscape (TDA-PL) is based on the work done in [16]. This
method was chosen over others because it has been shown to
be able to capture the topological and geometric information
of multivariate time series for similar problems. Additionally,
the output of the persistence landscape function exists in a
measure space under the L2 norm, allowing it to be used with
traditional machine learning algorithms and techniques.

The method takes an input multivariate time series, t, and
splits it up using a sliding window with user-defined size
and skip, such as in Equation 3. This results in a series of
point clouds. For each of these windows, the Vietoris-Rips
filtration, rips filtration, calculates the persistent homology in
the form of a set of birth-death pairs. Persistent homology will
compute topological features of a point cloud by building up
a simplicial complex of the point cloud and capturing how the
topology changes over time. A simplex is a generalization
of a triangle to higher dimensions. A simplicial complex

is a collection of simplices where, for each n-simplex, all
(n-1)-simplices are included in the complex. The Vietoris-
Rips filtration was chosen due to its speed at computing
a good representation of the persistent homology. This is
helpful due to the time complexity of the inherent mathching
problem. The Vietoris-Rips filtration computes a simplicial
complex by ordering all point pairs by their distance from
each other. It then begins adding 0-simplices and 1-simplices
(lines between points) to the simplicial complex in order
from closest points to further away points. It forms a higher
dimensional simplex for a group of points if they all have
1-simplices between them (they are fully connected). The
Vietoris-Rips filtration requires a maximum distance for its
computation where it will not stop adding 1-simplices when
the distance between the points involved is above this value.
Additionally, this set can be limited to simplices of a max
dimension, known as a n-skelton. This is done to focus the
analysis on specific types of topological features. This is
desired as persistent homology is an expensive computation.
When persistent homology is computed it quantifies when
a topological feature is first and last seen and stores these
values as the birth and death, respectively. These birth-death
pairs encode the persistent homology of the point cloud. The
set of birth-death pairs for each window can not be easily
compared to each other and are not stable under perturbation.
Different functions can move the birth-death pairs into a space
where statistical machine-learning algorithms can be applied.
Our model uses the persistence landscape function to gain
order to gain the properties mentioned. This moves the birth-
death pair sets into a measure space. The persistence landscape
takes each birth-death pair and turns it into two connected line
segments. For a given birth-death where the birth with b and
the death d the first line segment begins at (b, 0) and ends at
(((d − b)/2) + b, (d − b)/2). The other line segment for the
pair starts at (((d − b)/2) + b, (d − b)/2) and ends at (d, 0).
This transformation is done for all birth-death pairs in the
set. The persistence landscape then defines the kth landscape
as the set of k-max points of the persistence landscape. The
resulting persistence landscapes can then be compared to each
other using the L2 norm. The algorithm used for TDA can
be found in Algorithm 5. This transforms the landscapes into
a single-point summary of the persistent homology. Putting
these together into a time series gives insight into how the
topology of our original multivariate time series varied over
time. This process is summarized in Equation 4. A grid
search of possible hyperparameters for TDA-PL was done
to determine the best values. The grid search was run over
the window size, window skip, n-skelton/dimension of the
homology, number of persistence landscapes to keep, and
Vietoris-Rips max distance. The complete similarity function
discussed here can be found in Algorithm 4.

tsip = x0, . . . , xn

xi =
∑
{p ∈ featuresip|
p.time ≥ i ∧ p.time < i+ 1} (2)
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Wip = x0, . . . , xn

|xi = yi, . . . yi+windowSize|yj = tsip[j] (3)

univariateT imeSeriesip =

{L2(PersistenceLandscape(V ietorisRips(w)))

|w ∈Wip} (4)

The data of communications on the server can be captured
in different manners, but should be transformed so that it is
on the same scale as the network data (i.e., a one-second
rolling sum of features). The model assumes the following PAI
from the server for each message: message text, the user who
posted the message, and the time stamp of when the message
was first seen. The pseudocode for this step can be found in
Algorithm 2.

D. Deobfuscation Model

The output POL time-series for each IP’s network traffic is
then compared to the POL of the user’s messages. There are
many options for similarity functions at this stage. The results
presented use the normalized cross-correlated (NCC) as the
similarity function. Equation 5 defines NCC where f(x) is
the complex conjugate of f(x). Cross-correlation is chosen as
it is designed to detect when two time series vary similarly
over time. This captures if there is a certain IP address whose
traffic elsewhere in the network is usually seen before activity
from an unknown user is seen.

Normalized cross-correlation between time series is done
by taking the time series of an unknown user on the server
and iteratively going through every time series from possible
source IP addresses. First, the source address is filtered down
to only include the same time range as the unknown user’s
activity (a small amount of buffer room can be added here
to account for network delay). This is done to remove noise
on either end of the communication of interest. The user
may have been using another site prior that would include
unrelated traffic, or an incorrect user may have sent unrelated
messages. This minimizes both of these types of noise. Then,
the normalized cross-correlation is computed between the two-
time series, and the best, highest value is selected. The source
IP with the best normalized cross-correlation is labeled as
the IP that generated the traffic. This method evaluates the
performance of the scopes by looking at which scopes went
into a given time series. The pseudocode for this step can be
found in Algorithm 3.

cross corx,y(τ) =
E[(xt − µx)(yt+τ − µy)]

σxσy
(5)

This approach ranks its output time series, where those
with the highest normalized cross-correlation rank highest
and indicate the highest likely deobfuscated attribution (e.g.,
the IP where the user is most likely communicating from).
Additionally, the method can return a list of the k most likely
IP addresses for an analyst to search through. This technique

Fig. 4: The full 100-client GNS3 simulated topology.

could then be applied to all users of a group of collaborating
users to determine their origin. Those users could then be
tracked from conversation to conversation and site to site to
increase confidence in the results and determine other venues
where conversations between the same users are occurring
(e.g., creating a social network of users of interest).

IV. EVALUATION

To evaluate our methodology, we used a multiyear-long
message log of a well-known large-scale real-world social
network application [17]. The dataset consisted of 948,169
topic-driven interaction sites, was fully anonymized, and used
timestamps to log users and conversational threads. To evaluate
network behaviors we developed a simulation environment and
recreated message postings with, and without, combinations of
plain old DNS, DNS over HTTPS, DNS over TLS, and Virtual
Private Networks.

Our full simulations involved 100 clients replaying random
threads from the social network site, depicted in Figure 4.
We decomposed network traffic (e.g., which scope traffic
came from, packet headers, interarrival times, TCP segment
information, and more) into features that our methodology
consumed. After an initial grid search of all available features,
we examined one and two-feature combinations. We then
computed accuracy (absolute identification of identity) and
recall@k (likelihood the correct answer is in the top k results).
We used this approach to create a functional cybersecurity
analyst dashboard, with a search-engine-like interface that can
indicate most likely deobfuscated sources for personas, ranked
and sorted by NCC, as seen in Figure 5.

Our methodology relies on being able to measure data
and meta-data that result from combinations and interactions
between a variety of network protocols. To evaluate the ability
to perform deobfuscation, we generated network traffic using
NLnet Labs’ unbound DNS resolver v1.13.1 (running plain
old DNS, DNS over TLS, and DNS over HTTPS), ISC Bind
servers v9.18.1 running as the Root, TLD and an SLD within
a GNS3 topology that we designed to map our network
scope methodology into explicit routing and transport services,
illustrated in Figure 6.

In our simulations, we limited the size of our groups of
interest to a representative group size of five members, as
indicated by the literature [18]. We selected random engaging
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Fig. 5: Proof-of-Concept (PoC) cybersecurity analyst dash-
board

conversations from our dataset where multiple users posted
multiple times. We defined engaging as a conversation were
multiple users posted more than five times each. We then
selected the five most talkative users from these conversations.
This process was repeated until we reached our desired number
of groups. Our evaluations simulated 20 groups, including
actual message board conversations and unrelated background
traffic (randomly going to other sites every 15-30 seconds).
To demonstrate the utility of this approach, our methodology
is designed to first, ingest network packet traces from the
simulation as PCAP files and convert network traffic into per-
IP address data frames. When each IP address is seen in traffic
or is believed to exist in a DNS cache (estimated with a
time window), our methodology adds a time-based entry into
that IP address’ corresponding dataframe. Next, a 1-second
sliding sum is created over features extracted from network
traces in each scope where measurements exist. These features
include IP packet length and per-flow inter-packet timing.
After applying this windowing, we perform feature selection
across scopes. We then repeat these steps for features from
the message board/service. Then, in one of the most central
steps in our methodology, we compare the PoLs of measured
features against the PoLs seen by message exchanges on the
message board. This comparison allows us to cross-correlate
candidate sources with the observed PoL on the actual network
service (i.e. the message board). Our final step is to evaluate
how accurately our highest-correlated result correctly identifies
the actual source. Among the benefits of this approach is
an empirical spectrum of where measurements can be taken
across the Internet to provide the best accuracy and recall@k
for deobfuscation.

A. ISP Selection

Our simulations simulated 10 ISPs with clients uniformly
distributed across them. Our model showed that the perfor-
mance at an ISP was equal to the percentage of clients on that
ISP multiplied by the performance of an ISP in general. When
tracking down a specific user, this equated to finding the user
with the metrics provided for a given experimental setup if the

user’s ISP was monitored and being unable to find the user if
the incorrect ISP was monitored.

B. Results Layout

The results of the experiments completed are summarized
in the following graphs and accompanying text. The results
for a given PPT are shown for the best-performing setup for a
given scope across all metrics. For example, the Service scope
shows the results for the best-performing model that only uses
data from the Service scope. If more than one scope is used,
the two scope names are separated with a hyphen. ISPs in the
experiments were labeled ISP1, ISP2, ..., ISP10. If two scopes
have equal accuracy, their order has no significance. If a scope
performs with all metrics 0 for a given PPT setup, the model
could not make any prediction when only given the scope.
This could be true for different reasons, including the scope
being absent in the experiment or no user-origin IP was ever
seen in that scope (the model will only be able to evaluate the
IP which it has seen in the dataset). The global scope in the
graphs refers to performance when the model has access to
every scope in the topology.

C. Comparison of PPTs

Some PPT setups have different scopes available. When
DoT or DoH were used with a VPN (i.e., DoT+VPN and
DoH+VPN), the origin IP cannot be seen at the resolver or
service, and thus, the model performed with 0 accuracy for
those scopes. By contrast, when DNS, DoT, and DoH were
used with no VPN, those PPTs have no metrics for the VPN
scope.

The model presented achieved above 90% accuracy for most
PPT combinations at multiple scopes as seen in Figure 7. DoH
and DoT do provide additional privacy-preserving capabilities
over plain old DNS at the ISP, Resolver, or Service scopes.
Our approach’s strong ability to deobfuscate sources indicates
that each these PPTs do not appear to provide enough privacy
to be considered a complete solution. With the addition of
a VPN, there is a noticeable shift in which scopes can be
monitored, as now some scopes which previously performed
very well cannot be used at all.

D. Baseline

Initially, to evaluate our model, we ran a simulation where
no clients were using any PPT, and our model had complete
knowledge of the communications. It found that it was able
to identify personas with 98% and up when monitoring from
several different scopes. When the service, access-to-service,
client resolver or client ISP are monitored the model achieved
a perfect score. Although some of these best features may
appear intriguing, it must be recalled that as part of our data
preprocessing, we were able to remove irrelevant data in a
given scope and only monitored DNS requests to the server,
because (without a PPT) DNS query names were visible. As
a result of this preprocessing, some variables always return
that same value for every packet. This results in the features
providing the same information with a scalar difference, which
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Fig. 6: This figure maps how we project our logical scopes topology into a GNS3 topology.

Fig. 7: Comparison of deobfuscation accuracy for various
scopes

is removed due to the normalization in our cross-correlation
calculation, resulting in those features being similar to a count
of relevant packets.

E. DNS PPT

The baseline simulations and analysis are repeated but with
the addition of all clients using DoH. The model results
indicate how well the model can deobfuscate a source address
using specific features and scopes. The model can identify the
correct user with the same performance as when no PPT was
used. The only changes of note is that performance decreased
by 3% to 95% at the client’s resolver and by 4% to 95% at
the client’s ISP. This shows that our methodology overcomes
DoH’s protections 95% of the time. No decryption is needed to
gain these results, and the model shows that even monitoring
the number of packets over time to the resolver reveals enough
pattern of life to perform to deobfuscate the client with high
accuracy.

When running the simulation and analysis with DoT, the
model results show a similar level of privacy protection as with
DoH: our approach is highly effective at deobfuscation. These
results show the same monitoring limitations and flexibility
observed for DoH, including no need to decrypt communica-
tions. We can see that, while DoT provides almost the same
level of privacy as DoH, more is needed in a comprehensive
privacy solution.

When operationalizing our methodology in our dashboard,
recall@k is one of the most important measures for this type
of model. This is because it quantifies the experience and trust
an analyst can have in such a tool. A high recall@k tells the
analyst the likelihood that the correct answer is within the top
k returned results allowing them to have an understanding for
the “search” performance of the model.

When using multivariate time series analysis with this
dataset we see that there is varying impact when adding a
second feature. For some stronger scopes, our top performing
scopes, there is little to no change. On the other hand with
some weaker scopes there can be a fairly significant drop in
performance when adding unhelpful features. Performance can
drop by 3̃0% accuracy in some cases. This shows that there is
still a need for an experienced analyst to be able to get the most
out of the model. We have seen that can sometimes occur that
two features when combined produce results that our lower
than both of the input features individual performance.

F. VPN with DoT and DoH

When the client uses a VPN for all of their traffic (i.e.
sending both DNS and HTTPS traffic through the VPN),
some scopes that previously performed well no longer produce
strong results. Monitoring at the client’s resolver, the DNS
root, TLD, SLD, access-to-service, and server now can not
deobfuscate client on their own as they cannot see the client’s
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Fig. 8: Highest performing deobfuscation in scopes when using
DoT and VPN

Fig. 9: Highest performing deobfuscation in scopes when using
DoH and VPN

original IP but only the VPN’s IP. As a result, these scopes
now show as 0 for all metrics.

While Figure 9 shows DoH with VPN is slightly more
privacy-preserving than DoH, our methodology can still de-
obfuscate with roughly 90% accuracy. On the other hand,
Figure 8 shows DoT with VPN provides significantly more
privacy-preserving capabilities than any other method we
tested. Accuracy drops by around 28%-33%, and recall@k
follows a similar pattern. This is interesting as DoT and
DoH are believed to provide the same privacy and security
protections as they both use TLS.

In our experiments, we have seen that subnet information is
leaked when using a VPN. This is due to the service employing
techniques best to serve the clients with a better CDN location,
specifically EDNS client subnet zero [19]. This information
could be used in a multistage analysis of our existing method,
where the leaked subnet information determines the client’s
ISP or VPN. This would be followed by tapping the given
scope, which would allow for deobfuscation of the client.
Figure 8 and Figure 9 show the best possible performance
of our methodology, with full visibility of all Internet traffic.

G. MultiScope Performance

There is an important takeaway when applying our method
for using multiple features on the data set provided. Traffic

PPT No-TDA TDA
DoH 100% 100%
DoT 100% 99%
DoH+VPN 96% 93%
DoT+VPN 68% 34%

TABLE II: Preservation of POL when TDA is used

cannot always be observed from an optimal scope. For ex-
ample, traffic from a user’s resolver may not be available.
However, using multivariate analyses over multiple scopes
together can produce equivalent results. We have seen that the
method presented can be used to transform multivariate time
series of network data into univariate time series using TDA
that can capture the pattern of life of users online. Although
the current method does not provide results that are strictly
better than the univariate version of the model, it can be seen
that the transformation using TDA often does not lose any
resolving accuracy while taking advantage of multiple features
from different scopes. Table II shows the best multivariate
performance compared to the best univariate performance for
different PPT. This comparability is an important finding as
this is not an obvious outcome from using the techniques. TDA
inherently transforms the data into a smaller space; thus, the
ability to do so while still preserving the key features of the
pattern of life is very promising future work.

H. The Playbook

To operationalize our methodology, the first step is to scrape
the message board in question. Specifically, for the user in
question, scrape as many messages as possible (across all
threads the user was using on the site if possible) and the
time each message was posted (as much resolution on the time
stamp as possible). Our methodology then looks for the pattern
of life (POL) of these messages across monitored traffic to
determine the origin IP of the user. The best monitoring places
depend on the user’s Privacy Preserving Technology (PPT).
Some scopes always work to find the user: such as the user’s
origin ISP. Though, clearly, one cannot always know the user’s
origin ISP without some guilty knowledge. One could monitor
every ISP, but this is not realistic.

Some scopes give general information, which can be a
helpful place to start. The access-to-service or resolver scopes
would be ideal as we can quickly determine if an IP’s POL
matches our user (e.g. an origin IP or a VPN server). If there
is no precise match, then our user is likely using some PPT,
and as a result, we need to move our monitoring closer to the
user’s source.

Suppose we know that the user did not use any PPTs. In
that case, we can monitor where the HTTPS traffic passed
through (e.g. origin ISP or access-to-service) or anywhere the
complete DNS went (i.e., resolver. Note: root DNS, TLD, and
SLD only have a partial view of the DNS traffic due to caching
at the resolver. If the client also caches DNS, then the resolver
would also not have a complete view of the DNS). Monitoring
at any of these scopes is very similar, so tapping them is equal.

If the user only uses a DNS PPT, we can find them using
the same techniques as if no PPT were used. We have found
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only a minor degradation in performance when adding a DNS
PPT.

If the user uses a VPN, the goal should be to find a scope
pre-VPN or at the VPN. These can be used to find the origin
IP. Unfortunately, this is a much larger space with many more
scopes. If the VPN or user’s ISP identified a different way
then this would become a much easier problem. Once a pre-
VPN scope is found it is reasonable to be able to find the user
if they are using DoH and harder but still possible if they are
using DoT.

V. FUTURE WORK

MultiScope Performance: There is still work to be done
to determine how to best normalize and weight features from
different scopes prior to the transformation in order to gain
the most benefits from using TDA in this manner. There also
may be a benefit in combining features originating from the
same scope and different scopes in different ways.

It is additionally interesting that the largest performance
drop with TDA was also the most challenging to deobfuscate
when the univariate model was used PPT. Performance with
DoT and VPN dropped by 34%, half the performance when
the univariate model was used. The reason for this drop being
larger than the others is unknown and should be investigated
further as it is not known to attribute this change to a success
of DoT and VPN or a shortcoming of the model.

Dashboard: The cybersecurity dashboard provides a gen-
eral interface to using our methodology to deobfuscate sources.
Our future work will evolve and enhance its basic utility
to augment its current focus, and include more operational
cybersecurity analyst use-cases.

VI. RELATED WORK

This work exists in the broader domain of the classification
of encrypted communications. Machine learning approaches
have dominated this field in recent years due to their abil-
ity to overcome noisy data and model complex problems.
Most work in this field has focused on tabular and flow
summary statistics. Important work has been done using these
techniques in botnet detection [20], traffic classification [21],
VPN detection [22] [23], and tor deobfuscation [15] [24].
Although these techniques can be effective at some classes
of problems, they leave some performance on the table by
transforming data that is inherently a time series into summary
statistics. In addition, these techniques use an overly simplified
representation of the Internet. These techniques, at large, focus
on the inputs and outputs of a simplified system when, in
reality, if one of these models were to be deployed, one
would need to decide where to capture the traffic on the
Internet. It is not a given that all places on the Internet would
provide the same level of performance. This work addresses
this concern to aid the analyst in knowing the best places
to drop monitors across the Internet, given the threat model
and PPT deployed. Additionally, it is an open problem for
best-combining information from different scopes across the
Internet once they are gathered.

Another related field is that of author attribution and ac-
count linking. This field is concerned with determining if
two personas online belong to the same real-world individual
utilizing text analysis [25] [26]. This problem has many
similarities to the goal of our work, but our work is focused on
network patterns of life instead of natural language processing
techniques. This field has access to much larger text datasets
and thus can take advantage of large transformer models.
Unfortunately, such an open dataset does not exist for the work
covered in this paper, so simulations of a much smaller size
in terms of users and number/length of conversation must take
place. This makes deep learning models out of the question
due to the limited size of the datasets that can be reasonably
simulated. Our work has shown that accessing the message text
is sometimes unnecessary to link a user to their IP address.

The techniques used for time series analysis with TDA have
shown success in other complex multivariate domains [27].
TDA has shown success in modeling gene expression [28],
cryptocurrency scam analysis [29], network anomaly detec-
tion [30], passive IOT classification [31], and network activity
prediction [32]. Persistence landscapes [33] [34] specifically
have shown success in financial market analysis [35], cryp-
tocurrency prediction [36], internet of things device classifi-
cation [37], deep learning layers [38], and medical applica-
tions [39]. These works have shown that TDA and persistence
landscapes are not only capable of performing competitively
for machine learning and time series analysis tasks but can
outperform other methods. The topological features captured
through TDA are challenging for classical statistics models to
capture. It is for these reasons TDA was the tool chosen for
this work.

VII. CONCLUSION

In this paper, we illustrate the effectiveness of using
our novel methodology to successfully deobfuscate network
sources who are using Privacy Preserving Technologies (PPTs)
to hide their source addresses while conducting malfeasance
on public forums. Using a deidentified multiyear-long message
log from a large scale social network site, we illustrated that
a Pattern of Life (PoL) can readily be constructed and used to
correctly deobfuscate source addresses, even when DNS over
TLS (DoT), DNS over HTTPS (DoH), and/or Virtual Private
Networks (VPNs) were used. We found that our proof of
concept cybersecurity dashboard was able to correctly identify
obfuscated sources with between 0.9 to 1.0 accuracy (out
of 1.0), depending on which PPTs were in use and where
observations were made.

REFERENCES

[1] I. A. B. (IAB). (2014, Nov.) Iab statement on internet confidentiality.
[Online]. Available: https://mailarchive.ietf.org/arch/msg/ietf-announce/
ObCNmWcsFPNTIdMX5fmbuJoKFR8/

[2] R. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics,”
IETF, RFC 9110, June 2022. [Online]. Available: http://tools.ietf.org/
rfc/rfc9110.txt

[3] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” IETF, RFC 8446, Aug. 2018. [Online]. Available: http:
//tools.ietf.org/rfc/rfc8446.txt

https://mailarchive.ietf.org/arch/msg/ietf-announce/ObCNmWcsFPNTIdMX5fmbuJoKFR8/
https://mailarchive.ietf.org/arch/msg/ietf-announce/ObCNmWcsFPNTIdMX5fmbuJoKFR8/
http://tools.ietf.org/rfc/rfc9110.txt
http://tools.ietf.org/rfc/rfc9110.txt
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc8446.txt


12

[4] G. Thrush, “Airman accused of leak has history of racist and violent
remarks, filing says.” The New York Times (Digital Edition), pp. NA–
NA, 2023.

[5] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and
P. Hoffman, “Specification for DNS over Transport Layer Security
(TLS),” IETF, RFC 7858, May 2016. [Online]. Available: http:
//tools.ietf.org/rfc/rfc7858.txt

[6] P. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),”
IETF, RFC 8484, Oct. 2018. [Online]. Available: http://tools.ietf.org/
rfc/rfc8484.txt

[7] A. Zomorodian, “Topological data analysis,” Advances in applied and
computational topology, vol. 70, pp. 1–39, 2012.

[8] L. Wasserman, “Topological data analysis,” Annual Review of Statistics
and Its Application, vol. 5, pp. 501–532, 2018.

[9] F. Chazal and B. Michel, “An introduction to topological data analysis:
fundamental and practical aspects for data scientists,” Frontiers in
artificial intelligence, vol. 4, p. 108, 2021.

[10] P. Mockapetris and K. J. Dunlap, “Development of the domain name
system,” in Proceedings of ACM SIGCOMM. New York, NY, USA:
ACM, 1988, pp. 123–133.

[11] P. Ramaswami, “Introducing google public dns,” December 2009, https://
googleblog.blogspot.com/2009/12/introducing-google-public-dns.html.

[12] G. Huston. Bgp cidr report. [Online]. Available: https://www.cidr-
report.org/as2.0/

[13] M. Thomson and C. Benfield, “HTTP/2,” IETF, RFC 9113, June 2022.
[Online]. Available: http://tools.ietf.org/rfc/rfc9113.txt

[14] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow
correlation attacks on tor using deep learning,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1962–1976. [Online]. Available:
https://doi.org/10.1145/3243734.3243824

[15] M. B. Sarwar, M. K. Hanif, R. Talib, M. Younas, and M. U. Sarwar,
“Darkdetect: Darknet traffic detection and categorization using modified
convolution-long short-term memory,” IEEE Access, vol. 9, pp. 113 705–
113 713, 2021.

[16] M. Gidea and Y. Katz, “Topological data analysis of financial time
series: Landscapes of crashes,” Physica A: Statistical Mechanics and
its Applications, vol. 491, pp. 820–834, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378437117309202

[17] T. C. Developers. Reddit corpus (by subreddit). [Online]. Available:
https://convokit.cornell.edu/documentation/subreddit.html
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Algorithm 1 Data Wrangling: O(n2)

Require: S, a list of scopes (a scope is a list of PCAPs)
Require: w, window to use for TTL approximation

1: function DATAPROCCESSING
2: output← []
3: for all scope ∈ S do
4: for all pcap ∈ scope do
5: for all packet ∈ pcap do
6: append(output[packet.srcIP ], packet)
7: append(output[packet.dstIP ], packet)
8: for all ip ∈ output do
9: if overlap(output[ip], packet.time,w)

then
10: append(output[ip], packet)
11: end if
12: end for
13: end for
14: end for
15: end for
16: for all ip ∈ output do
17: downselect features for output[ip]
18: output[ip]← rollingSum(output[ip])
19: output[ip]← TDAPL(output[ip])
20: end for
21: return output ▷ A mulitvariate time series for every

IP address
22: end function

Algorithm 2 Server Log Prep: O(n2)

Require: F , a list of message board log files
1: function LOGPROCCESSING
2: output← []
3: for all file ∈ F do
4: for all message ∈ file do
5: append(ouput[message.user],message)
6: end for
7: end for
8: for all user ∈ output do
9: output[user]← rollingSum(output[user])

10: output[ip]← TDAPL(output[ip])
11: end for
12: return output ▷ A mulitvariate time series for every

username
13: end function

but our work used NCC, Algorithm 4, and TDA, Algorithm 5,
to determine time series similarity.

Algorithm 3 Deobfuscation Model: O(n4)

Require: I , POL of each IP (Algorithm 1)
Require: U , POL of each user (Algorithm 2)

1: function DEOBFUSCATIONMODEL
2: output← []
3: for all user ∈ U do
4: bestIP ← 0.0.0.0
5: best← 0
6: ranking ← []
7: for all ip ∈ I do
8: s← similarity(ip, user)
9: if thens > best

10: best← s
11: bestIP ← ip
12: end if
13: ranking.push([s, ip])
14: end for
15: output[user]← [bestIP, sort(ranking)]
16: end for
17: return output ▷ An ordered list of IPs for each

username ordered by similarity
18: end function

Algorithm 4 Time-series Similarity: O(n2)

Require: a, b, time series to compare
1: function SIMILARITY
2: b← copyRange(b, a)
3: return NCC(a, b) ▷ The similarity from 0 to 1
4: end function

Algorithm 5 TDAPL: O(n2)

Require: t, a time series
Require: w, window size
Require: d, dimension of homology to use
Require: m, max filtration distance
Require: l, number of landscapes to compute

1: function TDAPL
2: output← []
3: windows← split(t, w)
4: for i← 0, length(windows) do
5: ph← ripsF iltration(windows[i], k,m) ▷

O(n2)
6: pl← persistenceLandscape(ph, l) ▷

O(n log(n))
7: l2← L2(pl) ▷ O(n)
8: output[i]← l2
9: end for

10: return output ▷ A univariate time series
11: end function
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