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Abstract—SecSpider is a DNSSEC monitoring system that
helps identify operational errors in the DNSSEC deployment
and discover unforeseen obstacles. It collects, verifies, and
publishes the DNSSEC keys for DNSSEC-enabled zones, which
enables operators of both authoritative zones and recursive
resolvers to deploy DNSSEC immediately, and benefit from its
cryptographic protections. In this paper we present the design
and implementation of SecSpider as well as several general
lessons that stem from its design and implementation.

I. INTRODUCTION

The DNS Security Extensions (DNSSEC) [7], [9], [8]
add much needed security to the critical DNS [17] system,
and deployment efforts started a few years ago. Although
the total number of secure zones is still quite small, it has
been growing steadily. Perhaps more importantly, there has
been considerable activity at critical top level DNS zones.
A number of country code top level domains (ccTLDs)
have been signed (in fact some have been signed for a few
years) and the number keeps growing. The U.S. Government
has deployed DNSSEC in the “. gov” zone and all federal
agencies are required to sign their “agency.gov” zones
by the end of 2009. Furthermore, the “. org” zone has also
deployed DNSSEC recently. Other top level domains and the
root zone itself have announced plans to deploy DNSSEC.
At the same time, the increasing awareness of DNS vulnera-
bilities has also further motivated sites to consider DNSSEC
deployment. We believe that the DNSSEC deployment has
reached the tipping point and all organizations should at least
be aware of DNSSEC’s impact on their sites, and ideally
should start considering how to integrate DNSSEC into their
operations.

DNSSEC is the first fully distributed cryptographic system
to be rolled out in the Internet to support one of its core
systems (the DNS). Due to its cryptographic underpinnings,
the DNSSEC deployment faces not only those challenges
that all conventional distributed-systems share, but also
many new types as well. In anticipation of unforeseen
deployment obstacles, we developed the SecSpider DNSSEC
Monitoring System ( http://secspider.cs.ucla.edu ) in 2005
and have been operating this system since then. SecSpider is
a scalable system whose distributed polling design and large-
scale DNSSEC survey corpus allows it to provide operators
with key operational data and global views of both their own
sites and sites that their users may access frequently. This
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allows sites to learn from the current deployment, assess
their own needs, and assess the success (or challenges)
in any experimental deployment. Some of SecSpider’s key
discoveries are presented in Section V. These discoveries
help underscore the critical need for distributed monitoring
in order to discover and diagnose both known and unknown
problems.

As of this writing, SecSpider has been an operational tool
for the DNSSEC community for over 3 years. Our website
has already become a useful part of many operators’ prac-
tices as evidenced by the fact that it served over 2.3 million
page views in 2008 alone. To help the current and future
users of SecSpider get acquainted with the system, this
paper describes its design and implementation, exposes some
insights learned through the system’s design and rollout, and
illustrates some of the system’s key results. Our objective is
to explain how SecSpider operates for sites already using it
for essential monitoring, and for sites that are considering
using it in near future. Section II provides some background
on DNSSEC. Section III describes the SecSpider design and
Section IV presents the underlying implementation details.
Finally, results obtained using SecSpider and information for
potential DNSSEC operators are summarized in Section V.

II. DNS AND DNSSEC BACKGROUND

The Domain Name System (DNS) maps hostnames such
as www.ucla.edu to IP addresses, as well as provides a
wide range of other mapping services ranging from email to
geographic location. In this section we introduce a basic
set of DNS terminology which is used throughout the
text, including resource records (RRs), resource record sets
(RRsets), and zones, followed by an overview of the DNS
Security Extensions.

Security was not a primary objective when the DNS
was designed in mid 80’s and a number of well known
vulnerabilities have been identified [11], [10]. DNSSEC
provides a cryptographic solution to the problem, which
seems pretty simple and intuitive. To prove that data in a
DNS reply is authentic, each zone creates public/private key
pairs and then uses the private portions to sign data. Its
public keys are stored in a new type of RR called DNSKEY,
and all the signatures are stored in another new type of
RR called RRSIG. In response to a query, an authoritative
server returns both the requested data and its associated
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Figure 1. Resolvers preconfigure the root zone’s public key as a trust anchor (7°%)
and can then trace a “chain of trust” from that key down the DNSSEC hierarchy to
any zone’s key that they have encountered.

RRSIG RRset. A resolver that has learned the DNSKEY of
the requested zone can verify the origin authenticity and
integrity of the reply data. To resist replay attacks, each
signature carries a definitive expiration time.

In order to authenticate the DNSKEY for a given zone, say
www .ucla.edu, the resolver needs to construct a chain of
trust that follows the DNS hierarchy from a trusted root zone
key down to the key of the zone in question (this is shown in
Figure 1). In the ideal case, the public key of the DNS root
zone would be obtained offline in a secure way and stored
at the resolver, so that the resolver can use it to authenticate
the public key of edu; the public key of edu would then
be used to authenticate the public key of ucla.edu.

There are two challenges in building and maintaining
the chain of trust. First, a parent zone must encode the
authentication of each of its child zone’s public keys in the
DNS. To accomplish this, the parent zone creates and signs
a Delegation Signer (DS) RR that corresponds to a DNSKEY
RR at the child zone, and creates an authentication link
from the parent to child. It is the child zone’s responsibility
to request an update to the DS RR every time the child’s
DNSKEY changes. Although all the above procedures seem
simple and straightforward, one must keep in mind that they
are performed manually, and people inevitably make errors,
especially when handling large zones that have hundreds
or thousands of children zones. Moreover, such manual
coordination is done across different administrative domains,
making it more error prone.

In addition, the parent and child zones belong to different
administrative authorities, each may decide independently if
and when they turn on DNSSEC. This leads to the second
and more problematic challenge. If the parent zone is not
signed, there is no chain of trust leading to the child zone’s
DNSKEY. This orphaned key effectively becomes an isolated
trust anchor for its subtree in the DNS hierarchy. To verify
the data in these isolated DNSSEC zones, one has to obtain
the keys for such isolated trust anchors offline in a secure
manner. DNSSEC resolvers maintain a set of well-known
“trust-anchor” keys (7'%) so that a chain of key sets +
signatures (secure delegation chain) can be traced from some
T to a DNSSEC key K lower in the tree. The original

DNSSEC design envisioned that its deployment would be
rolled out in a top-down manner. Thus only the root zone’s
K would need to be configured in all resolvers’ T sets
and all secure delegations would follow the existing DNS
hierarchy. However as of this writing, neither the root zone
nor most of the Top Level Domains (TLDs) are signed,
and it is unclear when a meaningful portion of the DNS
TLDs will be. Without the root and top level domains
deploying DNSSEC (as is the case today) there could be
potentially millions of isolated trust anchors. In fact various
approaches have been proposed for securely obtaining these
trust anchors and are summarized in other work [22].

In addition to origin authenticity and key learning,
DNSSEC also specifies a way to cryptographically deny the
existence of records. This authenticated denial of existence
is done when the zone is being signed. Each domain name
has an NSEC record associated with it. This NSEC record
specifies what the next domain name is after the current one,
and what type of RRs exist for it. This allows a resolver to
see that the name of the NSEC comes (canonically) before
the query name, but it points to a name that comes after the
query name. Thus, NSEC records allow resolvers to use the
attached RRSIG records as proof that they’re query does
not exist. However, one side effect of this mechanism is
that starting with the zone’s name (the apex), a resolver
can recursively ask for the next name in the zone until it
sees the final NSEC record loop back to the apex. This is
called NSEC walking and makes an entire zone’s contents
visible. A new solution called NSEC3 has been developed
recently that avoids zone enumerations while still providing
authenticated denial of existence [16].

III. THE SECSPIDER DNSSEC MONITORING SYSTEM

SecSpider aims to discover and address challenges faced
by both the operators of secure DNS zones and the opera-
tors of secure resolvers. In order for SecSpider to provide
meaningful monitoring results, we must first define what it
means to be a DNSSEC-enabled zone; next, we must find
DNSSEC-enabled zones to examine; and finally, we must
be able to provide constructive feedback to operators so that
problems can be addressed and fixed.

A. Defining DNSSEC-Enabled

The latest round of DNSSEC specifications [7], [9], [8]
outline many behaviors that DNSSEC-enabled zones must
adhere to. Though they start with serving keys and signa-
tures, they go a fair distance further. SecSpider checks to
see if zones serve their public keys in the DNS resource
records called DNSKEYs. Then, each RRset that is returned
to resolvers must be accompanied by one or more RRSIG
records and those records must be verifiable by at least one
of the DNSKEYs being served. Next, in order to provide
secure denial of existence, DNSSEC-enabled zones must
serve either valid NSEC [9] or NSEC3 [16] records whenever



a resolver queries for a name that does not exist. This allows
resolvers to use DNSKEYSs to cryptographically prove that a
zone does not have the specific record(s) requests.

Finally, each zone is served by a set of name servers. In
order for a zone to be considered DNSSEC-enabled, all of
its name servers must pass these tests. The rationale behind
this is that if only one name server fails to properly serve
DNSSEC and a resolver happens to issue its queries to
that name server, the resolver will likely not know to try
DNSSEC queries to others in the set and just be unable to
use DNSSEC. Given a zone name, these characteristics are
relatively easy to verify using a sequence of DNS queries.
However finding all the DNSSEC-enabled zones is an non-
trivial task, as we explain next.

B. Finding DNSSEC Zones

There are numerous ways to go about building a corpus
of DNSSEC zones to monitor. Our primary way to discover
DNSSEC-enabled zones is letting users submit their zones
directly to the SecSpider website. In addition, search engines
have made a science out of crawling over the World Wide
Web and learning of new web sites. As an obvious side
effect, they learn of DNS zones. Thus, we routinely crawl
a set of DNS zones discovered by a commercial search
engine [18] to discover if any zones have recently enabled
DNSSEC. Furthermore, from our corpus of DNSSEC zones,
we are able to perform NSEC walking to determine if any
of them have DNSSEC-enabled children. Our last process
of finding DNSSEC-enabled zones comes from several DNS
monitors that exist in various locations hosted by our affil-
iates. These monitors continuously crawl DNS name space
search for zones that serve DNSKEYs (just the first of our
requirements above). When these monitors find such a zone,
they begin monitoring that zone. Section V shows the current
number of DNS zones monitored by SecSpider and how they
were obtained.

C. Looking For Trouble

Administering a DNSSEC zone requires some additional
operational tasks beyond those needed to administer plain
old DNS zones. For example, it is important for a zone’s
administrator to know she i) is maintaining a proper secure
delegation from her zone’s parent, ii) has a DNSKEY set that
is “reasonable” in size, iii) is properly executing DNSKEYs
rollovers, and iv) is not unnecessarily introducing replay
vulnerabilities. By contrast, from the perspective of DNS re-
solver operators (who might also operate authoritative zones
of their own), it is important to be able to use DNSSEC by
learning verified DNSKEYs for zones. SecSpider is designed
to meet the needs of both types of operators.

Operators can navigate from SecSpider’s homepage to
their own zone’s drill-down page and use the drill-down page
to see the status of their secure delegations (DS record) from
their parent. This is designed to help detect whether a stale

secure delegation exists (for example if the cryptographic
data at the parent zone does not match the public key at the
child zone). A number of operators have reported that this
SecSpider feature has helped them correct problems ranging
from errors in secondary servers not providing valid data
to issues where servers provided data but resolvers could
not retrieve the data due to issues with large key set sizes.
When the size of the DNSSEC key set is larger than the Path
Maximum Transmission Unit (PMTU) value, it leads to the
DNS responses being lost. SecSpider was the first to discover
and report the PMTU problems related to DNSSEC [21],
[4], [6], and this discovery has subsequently pervaded the
DNSSEC community [23], [5]. One example of action that
has resulted from this is that organizations like the National
Institute for Standards and Technology (NIST) have adjusted
their recommendations from larger keys whose lifetimes are
longer (less frequent rollovers) to smaller keys that are rolled
over more frequently.

In general, identifying when there is an availability prob-
lem with a zone’s DNSKEY set size is more challenging
than simply determining when the zone itself is meeting the
DNSSEC requirements. Different data delivery paths will
allow different maximum size messages. What makes the
size of a key set problematic is a combination of the path
that DNS data may take through the Internet and the various
“middle boxes” (NATs, proxies, VPNs, etc.) encountered
along that path. Thus, the distributed nature of the problem
suggests that a distributed monitoring system is needed to
detect potential failures. Accordingly, SecSpider is not a
single site, but rather it gathers data from a widely dis-
tributed set of pollers (which issue DNS queries) in different
continents and different networks. Distributed monitoring is
critical, because by issuing queries from multiple vantage
points, SecSpider increases the chance that it will see any
latent PMTU problems. Operators can then keep track of
their zones’ statuses on SecSpider’s website to see if they
need to take any action.

SecSpider tracks all of its known DNSSEC zones for
consistency over time and across its multiple polling lo-
cations to detect vulnerabilities in DNSSEC deployment
such as key rollover errors and records that are vulnerable
to replay attacks. While capturing all of the RRsets for
a zone would allow an exact account of its vulnerability,
simply tracking its signing practices and some of its crucial
infrastructure records (i.e. NS and glue records) is sufficient
to indicate when a zone is experiencing commonly seen
cryptographic operational problems. For example, tracking
the proper execution of DNSKEY rollovers is done as a
subset of SecSpider’s vulnerability monitoring. DNSKEYs
are among the types of records being tracked by SecSpider.
By observing and storing past record sets and signatures,
SecSpider also automatically tracks potential replay vulnera-
bilities for a zone’s infrastructure records such as NS records,
DNSKEY records, and A records associated with name



servers. In early deployment a few years ago, SecSpider
began prominently featuring replay vulnerability statistics
and this coincided with a measurable change in signature
lifetimes and reduction in vulnerable records[19].

SecSpider summarizes the list of DNSKEYs that is sees
consistently across all of its pollers into an observed
DNSSEC keys file. Whenever a zone is scheduled to be
polled, SecSpider issues its queries from all pollers. This
means that in order for an adversary to spoof their way
into SecSpider’s observed keys list, they would have to
fool all of its pollers positioned all around the world at
the precise time they query a specific zone. Moreover, they
would have to do so for all name servers of the target zone.
Based on DNS best practices, zones should be served by at
least 2 name servers in separate locations. The implications
of SecSpider’s observed keys file is that it reflects the
operational reality of which keys are in use consistently and
correctly.

D. Design Requirements

Based on SecSpider’s roles as both a monitoring system
and an operational tool for zone operators and resolver
operators, several key design requirements have emerged:
i) clearly the system must meet the scalability needs of
DNSSEC’s target deployment, ii) monitoring a distributed
system (like DNSSEC) is best done by a distributed network
of monitors, iii) SecSpider must be able to capture and
diagnose any complex distributed behaviors of DNSSEC, iv)
in order to continue to be able to diagnose unforeseen issues,
the design must support a model in which diagnostics and
enhancements can evolve along with the discoveries of new
problems, and v) SecSpider, itself, must be robust against
failures and its components (including operators that use its
data) must have trusted channels to coordinated with each
other over.

IV. THE SECSPIDER IMPLEMENTATION

A monitoring system for DNSSEC must be robust and se-
cure itself. The SecSpider system’s design, implementation,
and deployment have produced both a useful resource and
a set of more general design lessons.

SecSpider’s implementation uses a 3-tier architecture in
which a single master coordinates a globally distributed
network of polling daemons (pollers). The first tier (front
end) is responsible for serving read-only content to users, the
middle tier (coordinator) performs scheduling and analysis,
and the third tier is a backend database (Figure 2).

Through the design and evolution of SecSpider, several
fundamental design insights have been gained that pertain
to distributed monitoring of DNSSEC, as discussed in Sec-
tion III-D.

A. Front End

SecSpider’s front end presentation is primarily done via
replicated instances of simple Apache webservers and DNS
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Figure 2. The 3-tier architecture of SecSpider for scalability and isolation.

name servers that run in FreeBSD jails [14]. The website
remains an effective and highly accessible mechanism for
inspecting SecSpider data. However, over the four year de-
ployment, we continue to experiment with other distribution
mechanisms. For example, secspider.cs.ucla.edu
DNSSEC name servers in California and Colorado can
provide some additional DNSKEY verification data in the
form on a new type of RR, called the DLV record [26].
Currently, we are exploring a new peer to peer distribution
mechanism that is planned to be available in late fall 2009.

Regardless of the actual SecSpider information distri-
bution mechanism, the front end tier is restricted from
communicating with the other tiers. All of the components
of this tier serve read-only data to users, and do not have any
online communication channel with SecSpider’s backend
processing. Thus, all data that needs to be presented is
pushed to these front end boxes and served directly from
them. The only channel of communication from the front
end to the other components is the user submitted zone
names. In other words, a user may request SecSpider to add a
particular zone to its monitored set and this in turn populates
a local front-end repository. The middle-tier (coordinator) is
not notified of or interrupted by submissions, and instead
simply polls the front-end repository for submissions when
the coordinator is ready. This design illustrates that the
monitoring and processing duties of a system (especially a
security system) can be, and perhaps should be, implemented
as isolated and atomic services whenever possible. The
application of this principle has allowed SecSpider’s front
end to decouple the scaling requirements of the presentation
layer from the polling and analysis that is done in the other
tiers. If the system becomes subject to an attack or an
intrusion the backend can remain unaffected.



B. Coordinator

This component is the heart of SecSpider. The coordinator
is so named because it interfaces with SecSpider’s set of
distributed pollers and “coordinates” the process by which
they interrogate and measure various aspects of each zone.
In particular, every query issued by SecSpider ultimately
begins at the coordinator.

Active Polling: When a polling cycle starts, SecSpider
creates a new schedule of the zones it will poll. It does this
to reduce the odds that an adversary can observe SecSpider,
guess its query pattern, and attempt to coordinate spoofed
replies. After generating the query schedule for a run,
SecSpider must poll each zone from all of its pollers in
near synchrony; otherwise data inconsistencies are likely to
happen if the polling by different pollers is spread out over
time. Because SecSpider makes a conservative assumption
that inconsistencies in the results obtained by different
pollers signal potential faults or attacks, the polling policy
attempts to minimize its own bias by reducing the time
between polls from different locations.

The polling itself is not as simple as issuing a set of
DNS queries and then recording the answers. As described
in Section III, all of the name servers for each zone are
probed to determine if they meet the requirements of being
DNSSEC-enabled. Furthermore, when queries by some, but
not all, pollers fail, SecSpider must retry them with different
parameters; we discuss this further below. Because of the
state needed for each zone on each poller, SecSpider uses
separate threads for each zone from each poller.

SecSpider uses a queue-poller-queue design (seen in Fig-
ure 3) to schedule zones from the backend, issue polling
queries, and store the results back to the backend. The
first queue allows scheduling to ramp up at its own pace,
the polling is an orchestrated set of queries to distributed
pollers that can take its own time, and the second queue
allows polling results to be serialized at whatever pace the
backend can support. The choice of a queue-poller-queue
model illustrates a common property of distributed polling
systems and a useful approach; polling is an inherently I/O
bound process that can often proceed in fits and starts.
A decoupled design such as the queue-poller-queue model
has allowed SecSpider to maintain the greatest amount of
polling throughput that both the backend and the polling
can jointly accommodate. If, for example, a poller is slow
to respond, the system will eventually time it out, but the
design schedules its queries at the granularity of zones. Thus,
all queries to any zone’s name servers will be issued at the
same time, and a slow poller will not cause a head of line
blocking problem.

After the polling schedule is created, each zone object is
entered into the loader queue. Tasks from this queue are
consumed by a pool of threads. Each SecSpider poller is
assigned to several threads in the pool. In order to ensure

Poller

Figure 3. The queue-poller-queue model is one in which producers and
consumers of queue have a loosely-coupled relationship to the polling work.

that a zone is polled at the same time from each poller,
tasks that are dequeued from the loader queue are then split
amongst one thread from each poller and their polling is
started at the same time. The reasons for actually splitting
the zone out and using threads instead of simple event loops
is that each zone may seem quite different from each poller’s
vantage point.

When querying for a zone’s DNSKEYs, one might naively
assume that the data for that zone would be equally accessi-
ble from any vantage point. However, this is not always the
case. In particular, some pollers can have notably different
response rates. We have observed that when a poller has
difficulty querying for a DNSKEY, it can manifest itself
in one of two ways: i) a truncated response is received!
or ii) the query times out and no response is received.
Truncated messages are anticipated; they are designed to
prompt resolvers retry their query either over TCP or with
a larger message size. However, persistent unresponsive
behavior is not. DNSSEC timeouts can result from unfore-
seen interactions within the Internet and the Path Maximum
Transmission Unit (PMTU).

As we discussed in Section III-C, one important recent
observation is that messages can be dropped if they are
too large. In this case, the server replied correctly and fit
the DNS response inside the resolver’s specified maximum
packet size, but the network between the server and resolver
(e.g. the poller) did not permit this large packet size and the
response does not reach the poller. When SecSpider sees
that a poller has been unable to get a DNSKEY it performs a
PMTU walk where varying maximum query message sizes
are tried to determine what the proper size should be. We
discuss this further in Section V.

After each zone has been polled (and potentially PMTU
walked) from each poller, it is enqueued in SecSpider’s
dumper queue. This allows polling to occur at its own rate

INote that DNS messages can indicate that the nameserver only had
room to send some of the data it wanted. This is indicated to resolvers by
setting the TC bit in the DNS message header.



while serialization and storage to the backend can be done
asynchronously from the dumper queue.

After the zone polling has concluded, SecSpider re-
examines each zone in order to logically build the secure
delegation hierarchy. SecSpider uses the existing DS records
(and checks to see if they verify properly) to identify where
valid secure delegations exist, and what the roots of the
observable islands of security are. This allows people to
observe DNSSEC’s rollout state, but also lets operators
check that their delegations are verifying properly.

The last stage in SecSpider’s active polling is NSEC
walking. As described in Section II, each zone forms a chain
of NSEC records that point from one domain name to the
“next” canonical name in the zone, and specify what types
of records exist for that name. Though this was done so that
a name server could provide secure denial of existence, it
allows us to start at one name and learn all of the other
names and record types in the zone. When there are no
more names, the last valid name in the zone points back to
the beginning (the zone apex). SecSpider walks over each
zone’s names looking for new DS records for child zones.
Whenever a name exists with a DS record, it indicates that
the zone has a secure delegation for that name. Of course,
this doesn’t always mean there actually is a valid zone
attached to that delegation. So, SecSpider uses that name
to check if there is a zone there that is DNSSEC-enabled. If
so0, then the zone is permanently added to the polling corpus.
Though this seems very simple and straight forward, there
are some (largely undisclosed) complexities involved with
NSEC walking in practice.

While the format and protocol surrounding NSEC records
makes the concept of walking very clear, certain operational
practices make it difficult to do this at any significant
scale. One of the first issues with NSEC walking is that
many zones (especially ccTLDs) are quite large. Walking
their entire set of domains takes a non-trivial amount of
time. Another and more subtle limitation of blindly NSEC
walking is that some name servers host both a parent and
its children zones. The implication for NSEC walking is
that one name may be in a parent, then the next would
be the apex of a child. After reaching the end of the child
zone, the NSEC will point back to its own apex (not the
apex the NSEC walker started with). Thus, the NSEC walk
can get caught in a loop (seen in Figure 4) and simply
fail to ever walk passed the first child zone. Because of
operational realities like these, SecSpider’s NSEC walking
randomly jumps forward by creating a random domain name
that would be canonically sorted after the current domain
name and using the random name in the next query. During
this entire process, SecSpider sets a time limit on each zone
and after any walk has exceeded that time, SecSpider moves
to the next zone. Therefore, each walk is a random sampling
of a large zone’s records, and over time SecSpider visits an
increasing number of them.
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Figure 4.  When a name server hosts a parent and any of its children
zones, NSEC walking will loop when the child zone loops back to its own
apex rather than continuing with the parent zone’s names.

Polling Infrastructure: Each of SecSpider’s pollers is a
lightweight DNS repeater called rdnsD [24]. These pollers
accept DNS queries from SecSpider over a secure channel
and then re-issue them either to their local resolver, or to a
name server that SecSpider specifies. The coordinator simply
issues a DNS query to the desired poller, with a DNS OPT
resource record code in the message. This code tells the
poller where to re-send the message. The poller simply strips
the OPT code from the query and issues it to the specified
server. This allows SecSpider to query specific authoritative
DNS name servers from any of its polling vantages. The
communications between the coordinator and all of its
pollers (seen in Figure 5) are secured by using TSIG [25]
symmetric authentication (one of DNS’ standard symmetric
key facilities). Each poller uses a separate TSIG key to
authenticate its message exchanges with the SecSpider’s
coordinator. This ensures that an adversary can neither send
her own messages through SecSpider, nor spoof messages
that belong to SecSpider once polling has begun.

This design illustrates a fundamental tradeoff one faces
when designing a distributed polling system: a more central
design may choose to hold query logic close to a central
coordinator and keep remote simple thin-client pollers (as
SecSpider does), or distribute the query logic to smarter
fat-client pollers. The SecSpider design has demonstrated
some tangible benefits gained from the thin-client approach.
A fat-client approach might seem more appealing from, for
example, an efficiency point of view because the coordinator
might issue a single request to “begin polling” and all DNS
queries could then be issued directly from each poller and
results summarized before being sent back to the coordi-
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Figure 5. The locations of SecSpider’s current pollers.

nator. This design would minimize round trips between the
coordinator and its pollers. On the other hand, the thin-client
approach requires one round trip from the coordinator to
the poller and another round trip from the poller to a name
server for each query, and this can add noticeable network
overhead when compared to a fat-client system. However,
monitoring systems like SecSpider are used to discover,
diagnose, and illustrate unforeseen problems with an evolv-
ing deployment system. Thus, the polling patterns needed
by SecSpider are constantly evolving. For example, before
the PMTU problem was identified, SecSpider only issued
a single generic DNSKEY query for each of a zone’s name
servers. After discovering the PMTU problem, SecSpider
began using a finite state machine to determine details of
how to issue DNSKEY queries with different buffer sizes for
different name servers of the same zone, using both UDP
and TCP, and more. Having a thin-client system allowed this
change to be easily implemented, tested, and deployed at the
coordinator without any upgrade or change to the remote
pollers that are hosted by different organizations. Thus, in
the face of an ever-changing set of requirements, the thin-
client approach has allowed SecSpider the greatest agility in
discovering and addressing new problems.

Content Generation: After the active polling has fin-
ished, SecSpider generates the content that it will push
to its front-end. It is important to note that SecSpider’s
data is cryptographically signed and verified by its various
components starting when its pollers receive answers from
name servers until a user downloads it. The DNS messages
(including queries from the coordinator and responses sent
by the pollers back to the coordinator) use TSIG cryptogra-
phy, the coordinator makes a local secure connection to the
backend database, DNSKEY data served through web site
is signed by SecSpider’s operational GPG key, and all DLV
records are signed and verifiable by the dlv.secspider.cs.ucla.
edu DNSKEY. Thus, the security between each component of
SecSpider speaks to the general principle that as components
become loosely coupled, it becomes increasingly important
to secure their communications against any intervention

SS_POLLER

SS_ZONE_STATS + SS_ZONE

;\ SS_| SS_! _STATS

SS_SET_STATS

;\ SS_RRSET

SS_PMTU_STATS

SS_DS_STATS

SS_RR SS_RRSIG SS_DNSKEY sS_DS

Figure 6. The ERD of SecSpider’s database.

(such as insider threats or compromised components).

After SecSpider performs internal verification of the re-
trieved data, it creates a drill-down page for each monitored
DNSSEC zone that lists many monitoring statistics, among
those are the list of the zone’s DNSKEY records and its DS
record(s). These are presented in HTML, but also in separate
flat files. These files include the actual RRSIG values, and
a list of which pollers observed the values. The purpose of
these files is to let operators and scripts easily download
the records for any given zone, and easily see whether any
discrepancy exists among the records observed by all the
pollers. If an adversary spoofs the results for a subset of
pollers, the discrepancy will reveal the attacks. Even if an
adversary manages to spoof the results of all the SecSpider
pollers, given the data and values are all publicly available,
vigilant zone owner can still notice the attacks by looking
up SecSpider results periodically.

Furthermore, all of the keys that are seen consistently
across SecSpider’s pollers and across long enough time
periods are then entered into SecSpider’s global trust-
anchors file. This is one of SecSpider’s main contributions.
The implications of SecSpider’s distributed framework, and
cryptographic checks are that it can furnish resolvers with
verified DNSKEY records in a readily usable form of trust-
anchors foday. Furthermore, SecSpider uses its GPG key
to cryptographically sign each of these flat files so that if
someone is interested in verifying the origin authenticity
they can do so.

C. Database

SecSpider stores all of its data in a MySQL relational
database. The schema is split into two major types of table: i)
DNS tables and ii) statistics tables. The Entity Relationship
Diagram is seen in Figure 6.

DNS tables are designed so that all of the DNS RRsets
and RRs that SecSpider tracks are categorized as either being



Submission Source | Percent |

User Submissions 30.79%
DNS Monitors 51.28%
Web Crawling 10.75%
NSEC Walking 7.18%

Table I
THIS TABLE SHOWS THAT THE LARGEST CONTRIBUTOR TO
SECSPIDER’S CORPUS HAS BEEN PASSIVE MONITORS OF DNS. NEXT
HAS BEEN USER SUBMISSIONS, FOLLOWED BY WEB CRAWLING AND
NSEC WALKING.

verifiable DNSSEC records or not. Verifiable records are
those with valid (i.e. not expired) RRSIG records attached.
These are records that SecSpider uses to maintain the state
of DNSSEC-enabled zones. Other records are considered as
un-verified and are only used for historical measurements
and analysis.

Statistic tables track various types of data that are
observed during each run. A good example is the
SS_NAMESERVER_STATS table in which each row has
an observation date and tracks what a name server reports
as its version number?, and statistics such as whether it is
DNSSEC-enabled. These tables are all transactional (mean-
ing they only grow over time).

D. Implementation Summary

As of this writing, SecSpider has been an operational
tool for the DNSSEC community for over 3 years. Our
website [1] has already become a useful part of many
operators’ practices as evidenced by the fact that it served
over 2.3 million page views in 2008 alone. We currently
track approximately 18,000 DNS zones in our database.
SecSpider pollers operate at NL Net Labs (Netherlands),
Colorado State University (US - Central), Tsinghua Uni-
versity (China), Cable Modem in Los Angeles (US - West),
Toshiba Corporation (Japan), Switch (Switzerland), and Telx
(US - East). SecSpider’s backend database currently uses
several tables with multi-millions of rows. To date, the
statistics describing the name servers of zones, the avail-
ability of DNSKEY RRsets, and the transitions that zones
make between DNSSEC-enabled and not have generated
tables with 17 million, 15 million and 17 million records
respectively.

V. SECSPIDER MONITORING RESULTS

SecSpider has an increasingly long history of providing
operational insights into DNSSEC’s behavior [2], [27], [4].
In addition to that, SecSpider’s data has also demonstrated
its usefulness to academic research [21], [19], [20], [15].

Recent events such as [12] have served as timely forcing-
functions for DNSSEC’s deployment. As of this writing we

2Users can query name servers for a record called VERSION.BIND of
type CH, and by convention many name servers will report their software
name and version number.
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Figure 8. This Figure shows that as the number of secure delegations has
grown (the upper curve), so too has the incidence of misconfigured secure
delegations (the lower curve).

have begun to see an unprecedented level of adoption for
DNSSEC. Table I shows the break down of how SecSpider
has learned of DNSSEC zones through its different discov-
ery channels. However, more interesting is Figure 7 which
shows that after the summer of 2008 (when the [12] security
advisory was issued), the adoption rate of DNSSEC has
significantly increased. This makes it a critical time for tools
and observations to inform operators and augment DNSSEC
in places where its design is failing. One such place is in the
context of how resolvers securely learn the correct DNSKEYS
for the zones they encounter.

SecSpider’s data set has also proven useful in track-
ing operational practices surrounding the secure delegation
hierarchy. This was discussed during a recent operation
presentation [3]. Figure 8 shows that recent increases in
the number of secure delegations have corresponded with
increases in misconfigured secure delegations (the lower
curve) as well.

Perhaps one of the most significant findings from SecSpi-
der’s measurement apparatus to date is the quantification and
demonstration of the previously unobserved PMTU problem
that DNSSEC faces. When a timeout occurs for a DNSKEY
query, SecSpider presumes a large message size resulted in
a PMTU problem?. A recent study [13] done at one of the
DNS root servers found roughly half of the global DNS
traffic observed requested message sizes of 4,096 bytes.
Therefore, SecSpider begins with this same value. If that
value causes a failure, SecSpider then retries the query
(from the same poller) with half the message size. SecSpider
uses this process to increase and decrease message sizes
(following a binary search, depicted in Figure 9) until it
determines what the proper request size should be in order
to get an un-truncated message in one try.

While our pollers now have logic added to resolve a
PMTU issue, a typical resolver does not. If the resolver uses

3Note, SecSpider checks name servers to ensure they are online and
reachable before querying for any DNS data.
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a maximum message size that the path between it and server 4,096
will not support it does not know that it is falsely advertising ,/ 2,048 —
a maximum message size that the network path cannot ’ / 1,024 g‘:r';‘:r
support. This is further complicated because the maximum SecSpider + - / 1,536 S—

message varies depending on both which server the resolver
is querying and which path routing provides to that server.
During a PMTU failure, a resolver receives no response and
therefore will not fallback to TCP and generally will not try
a different message size. Thus, some resolver/server pairs
effective DoS themselves and the corresponding DNSSEC
zones appear unreachable. Without an external monitoring
project such as SecSpider, the problem is hard to detect.
Zone administrators cannot control the PMTU and the
PMTU varies depending on the resolver location. However,
the zone administrator can learn that PMTU issues are
occurring with SecSpider pollers. A response to a DNSKEY
query message is often the most problematic response. Some
zones will create responses that contain 4 public keys and 4
signatures. Contrast this with the response for a typically IP
address query whose answer would contain a small number
of A (IPv4) or ARAA (IPv6) records and signatures. The
net result is that selecting a large key set may simplify
some key rollover operations and selecting large key sizes
may increase cryptographic security, but the cost is message
size and if the message is too large some portions of
the Internet will be unable to resolve data from the zone.

Poller /

Figure 9. Here one can see how the message size begins at 4,096 when
the PMTU is actually 1,500. After a failure, 4,096 is halved to 2,048 which
also fails. The next unit is 1,024, which succeeds. The binary search then
continues to search for the exact value and increases the message size until
the exact size is found.

SecSpider illustrates this on zone drill-down pages so that
administrators can be aware of the problem and consider
the trade-offs between the benefits of large key sets and the
benefits of global reachability.

VI. CONCLUSIONS AND IMPLICATIONS FOR OPERATORS

We feel that operational evidence supports our view
that a distributed global monitoring has been, and will
continue to be, a pivotal part of ensuring the success of
the DNSSEC deployment. The above results are just a



sample of the how monitoring plays an essential role in the
deployment of DNSSEC. The data is freely available and
widely used in the DNSSEC operational community. The
data from SecSpider is influencing operational practices and
helping inform the larger DNS operation community by both
identifying challenges and highlighting successes. Individual
zones interested in deploying DNSSEC are encouraged to
track their progress on SecSpider. Drill-down pages provide
a site with a snapshot of how their zone is viewed from
multiple location around the world. SecSpider also provides
one with a view of secure sites that your resolvers may be
accessing. If a site is having trouble obtaining secure records
a particular zone, SecSpider can be used to determine how
other resolvers view the same data.
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