Which way to decentralization: A Comparative Study of DNS and ENS

ERIC OSTERWEIL
LIXIA ZHANG
Internet Namespace: the state of affairs

- DNS has been a core supporting component since the dawn of the Internet
- A growing (mis)perception: the DNS namespace is “centrally controlled”
- Several blockchain-based naming systems appeared lately, each claiming to provide “decentralized namespace”
 - One example: Ethereum Name Service (ENS)
Ethereum Name System

- Ethereum is built on using public keys as identifiers (self certifying names, SCN)
- Added ENS to replace keys by (DNS-like) names as the primary identifiers for users
 - Users need **semantic** names
 - i.e. meaningful to human being
- ENS name resolution:
 - name \rightarrow SCN \rightarrow on-chain record
DNS, ENS comparison: focus on 3 questions

1. Who are the control parties for name assignments
2. How each of the two systems provide name registration and authentication
3. How each system performs name resolution

• The answers to all the above questions directly relate to how/where the data of each system is stored
 • ENS stores all data on a single crypto chain.
Concepts & Terminology Clarification

• Self-certifying name: using a crypto key as an entity’s name

• Immutable ledger through cryptographic chaining

• Two different types of immutable ledgers
 1. Identity-based crypto chaining: ledger
 • e.g. Hyper Ledger https://en.wikipedia.org/wiki/Hyperledger
 2. Anonymous crypto chaining: blockchain
 • Use SCNs, hide real user identities
Blockchain 101

- No trusted party; no (relation to real world) identity
- support claimed *decentralization* by 3 pillars:
 - *truth* determined by voting via *proof of work* (or stake, or space)
 - Ensuring *immutability* of truth by chaining all voted records on a *single chain*
 - All things on chain = truth
 - *transparency* by making all chain records public
Q1: who controls the namespace

2 sub-questions:

• Who controls the name assignments under the root node

• Starting from each child name N_C under the root: who controls the name assignments of N_C: the parent node N_P, or N_C itself
The control of root domain

- DNS: everyone at ICANN78 knows
 - Unclear the same is true for everyone else

- ENS:
 - Allocation of TLDs is managed by multisig contract by 7 people
 - yet to be observed in action; up to now ENS has allocated one TLD of .eth
 - Decentralized Autonomous Organization (DAO) of Ethereum users supposedly governs various other aspects of the root domain (to be studied)
 - devils are in the details:
 - users’ voting power ≈ their stake in Ethereum
 - due to anonymity, no truth about DAO members (how many, who they are) – out of reach of law enforcement
The control of other domains

- Observation: name assignment and registration are tied together
- DNS: example.com owner makes decision on name assignments/revocations and handles registration (for names directly under it)
- ENS: example.com owner makes decision on name assignments/revocations, which has no effect unless/until the corresponding records added to the Ethereum chain
 - Taking multiple steps, has a cost
Adding a name to Ethereum chain: steps & cost

- Reserve a name:
 - Send commitment request ($)
 - Send registration request ($)
 - In addition: .eth registrar charge $5/year per name; shorter names cost more

- Set “resolver” contract ($)
 - Can contain Ethereum identifier, other blockchains identifier, IPFS pointers, etc. (adding new types costs $)
 - Can use default public resolver contract (limitation)
 - Miners check new contracts, bid on the addition to the chain
 - rich miners likely to win, get richer, increase future chance
 - Modification to existing records: set new contract ($)
Preliminary measurements

- Will be discussed in Wednesday's DNSSEC and Security Workshop
 - ~3.7% of “Text” types in ENS point to email addresses
 - ~4.7% point to URLs (DNS-based)
 - ~4.5% point to twitter.com
 - ~5.3% point to domains in .com, .org, .xyz, .me, ...
Q2: Name authentication

- DNS: through DNSSEC
 - Retrieving DNSSEC info via the same process as name resolution

- ENS: on chain record = authenticated data
Q3: Name resolution

- DNS: lightweight look up of *distributed database*, heavy use of caching
- ENS: name \rightarrow SCN \rightarrow on-chain record
 - 2 options: run a full node oneself (costly if doable at all), or pay for a lookup service ($, choice of most users)
 - Steps:
 - Hash the ENS name to get the domain’s *master contract* from the chain
 - The master contract points to a *registrar contract* (responsible for the record of name-identifier mapping)
 - Use the Ethereum identifier to find on-chain record

More digging needed to fully understand all the operations...
Next step: validate the following Hypothesis

- Networking needs a unified *semantic* namespace
 - Blockchain systems adding DNS-like names
 - sugar-coating over their SCN operations

- Blockchains operate with anonymous keys in absence of trust, thus cannot lead to decentralization
 - Anonymity \rightarrow proof by resources \rightarrow rich gets richer \rightarrow concentration of power
 - No trust \rightarrow single chain \rightarrow need centralized servers to perform expensive lookup
Expected Outcome

- Document a comparison of
 - ICANN’s formulation and decision making process
 - ENS DAO’s formulation and decision making process
- Similarly, document DNS’ vs. ENS’ name registration and authentication processes
- Finally, document an analyses of resolution process in the two systems

Focusing on Security, Scalability, and Resiliency of the solutions, and consequent implications on (de)centralization.

https://inso.gmu.edu/docs/Blockchain_Naming___DNS.pdf
Departing words (I): why semantic namespace

- Human society operates on trust
- Human society is protected by laws
- Both trust and laws require unique identifiers in a semantic namespace
 - Which is the Domain Name System we have today
Departing words (II): which way to decentralization

- Blockchain-based designs do not lead to a decentralized naming system
 - Due to economy of scale, proof by resources leads to centralization
 - Due to absence of trust → replicated single chain, unscalability leads to centralization

- As a distributed database, DNS is a completely decentralized name system, with democratic root governance to assure name uniqueness, that blockchains claimed to achieve

- Decentralizing the Internet: enabling direct user-to-user communications to run apps without reliance on clouds
 - Offer users cloud-independent identities (e.g. DNS names)
 - Together with cloud-independent security solutions.