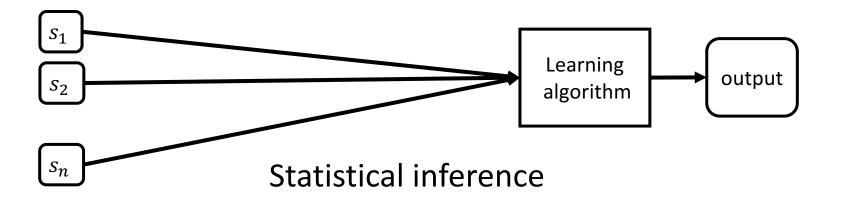


Information Elicitation Mechanisms for Statistical Estimation

Yuqing Kong, Peking University

Grant Schoenebeck, Biaoshuai Tao, Fang-Yi Yu, University of Michigan

Motivation Question


How can we do statistical estimation via crowdsourcing if workers are

- Selfish and want to maximize their revenue
- Bayesian with complicated signal structure

Statistical inference and Crowdsourcing

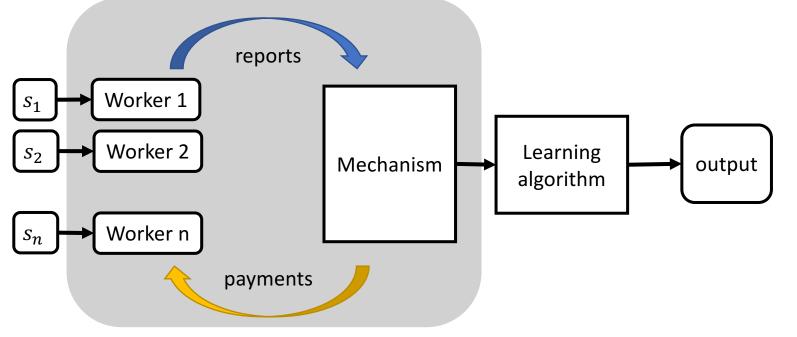
There is a device that can estimate gravitational acceleration with a small random errors.

• How can we estimate the gravitational acceleration μ at NYC if we have time and the device at hand?

• On crowdsourcing platforms?

Metric mechanism on Jeffery prior

- 1. Agents report (\hat{s}_i) after observing signals (s_i)
- 2. For agent *i*
 - 1. Target: a random agent *j*
 - 2. Competitor: a random agent k
- 3. Pay agent *i*


 $1[\|\hat{s}_{j} - \hat{s}_{k}\| > \|\hat{s}_{j} - \hat{s}_{i}\|].$

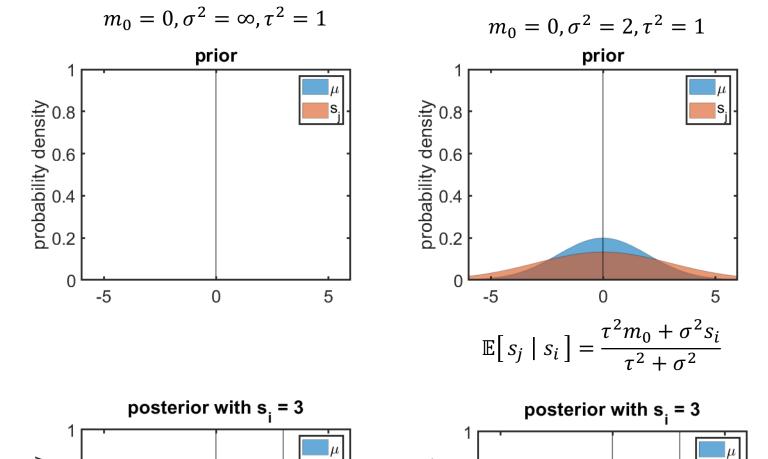
Theorem (metric mechanism) If $\sigma = \infty$ and $n \ge 4$, the metric mechanism is informed-truthful

- Truth-telling strategy profile ($\hat{s}_i = s_i$)
 - a Bayesian Nash equilibrium and
 - the highest social welfare
- Oblivious strategy profile
 - a strictly smaller social welfare

General Two-step Gaussian

1. Each agent reports a signal and a prediction of the posterior mean (\hat{s}_i, \hat{t}_i) .

Crowdsourcing + Statistical inference

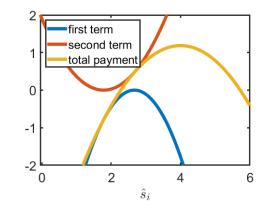

Signal Structure

Two-step Gaussian distribution $(n, m_0, \sigma^2, \tau^2)$

- Prior mean $m_0 \in \mathbb{R}^d$ where d = 1.
- Covariance matrices $\sigma^2, \tau^2 \in \mathbb{R}^{d \times d}$

Ground truth $\mu \sim \mathcal{N}(m_0, \sigma^2)$

Agent *i*'s private signal $s_i \sim \mathcal{N}(\mu, \tau^2)$ i.i.d. with $i \in [n]$


- 2. For agent *i*,
 - 1. Target: a random agent *j*
 - 2. Competitor: all other agents
- 3. Compute *L*, *M* and average signal \hat{t}_{-i}
- 4. Prediction score

$$-L\left(\hat{s}_{j}-\hat{t}_{i}\right)^{2}+M\left(\hat{s}_{j}-\hat{t}_{-i}\right)^{2}$$

5. Information score

$$-M(\hat{s}_{i}-\hat{t}_{-i})^{2}+L(\hat{s}_{i}-\hat{t}_{j})^{2}$$

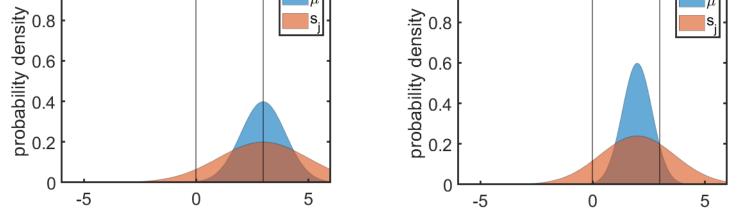
Theorem (proxy BTS) If $n \to \infty$, the proxy BTS mechanism is informed-truthful

- 1. Each agent reports (\hat{s}_i, \hat{t}_i)
- 2. For agent $i \in G_0$, pick a target j randomly
- 3. Compute *T*

space

4. Prediction score

$$-\left(\hat{s}_{j}-\hat{t}_{i}\right)^{2}$$


5. Information score

 $- \| (T\hat{s}_{i} - \hat{t}_{i}) - (T\hat{s}_{i} - \hat{t}_{i}) \|$

Theorem (disagreement mechanism) If $n \ge 3d + 3$, the disagreement mechanism is informed-truthful

Discussion and Conclusion

• Streamline agents' report requirement: signal, posterior mean, or posterior belief

- Go beyond finite and simple signal structure:
 - exponential family, graphical model, ...
- Elicit information through geometry of parameter