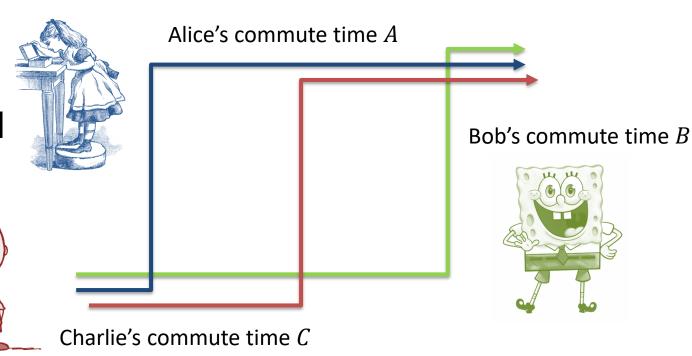
Two Strongly Truthful Mechanisms for Three Heterogeneous Agents Answering One Question

Grant Schoenebeck, Fang-Yi Yu


Information elicitation without verification

- Subjective
 - Are you happy?
 - Do you like the restaurant?

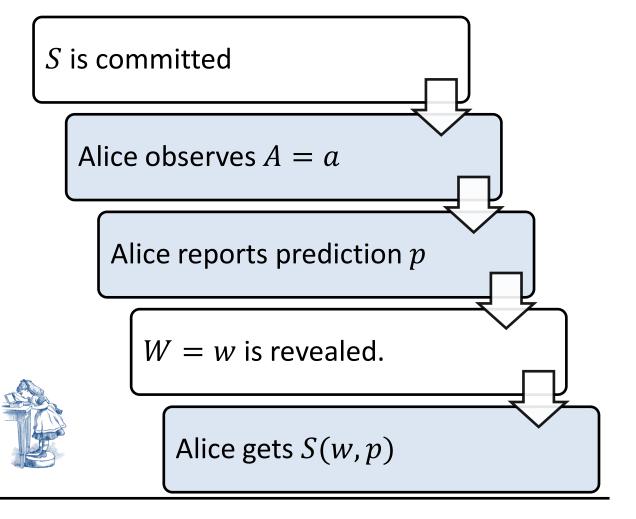
Elicit Information from Crowds

- Agents' signals are dependent.
- Peer's report can elicit agents' truthful reports.
- Agents can report
 - Own signal
 - Prediction on other's signal
 - **—** ...

Contribution

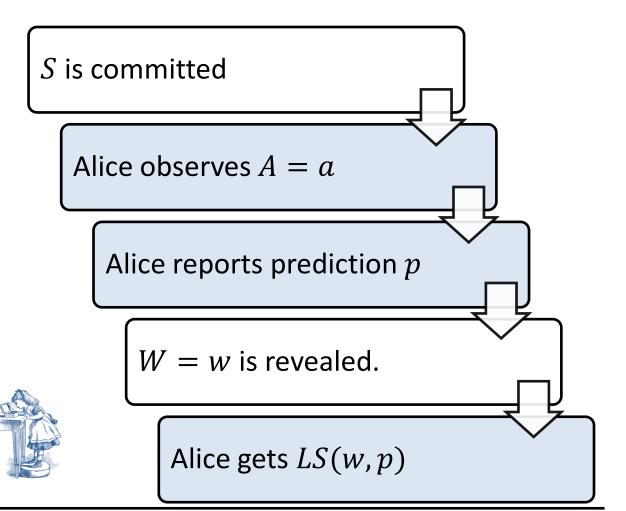
We propose two differential peer prediction mechanisms

- Strongly truthful
 - Truth-telling is strict Bayesian Nash Equilibrium
 - and pays strictly higher than any other equilibria*
- The guarantees hold for
 - three agents
 - single item report
 - asymmetric priors
 - prior free

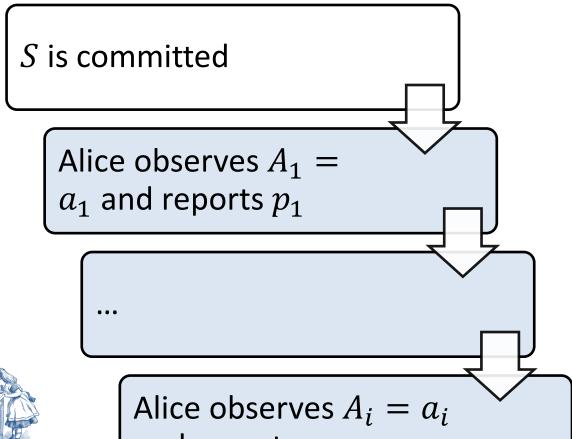


- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

Prediction with Verification


- (W, A) is sampled from a joint distribution P
 - $-W \in \Omega$, ground truth
 - A, Alice's signal
- Proper scoring rule $S(w, p) \in \mathbb{R}$
 - -W=w
 - $-p \in \Delta^{\Omega}$, prediction
 - Alice maximizes S(p, w) by honestly reporting $P(W \mid A = a)$

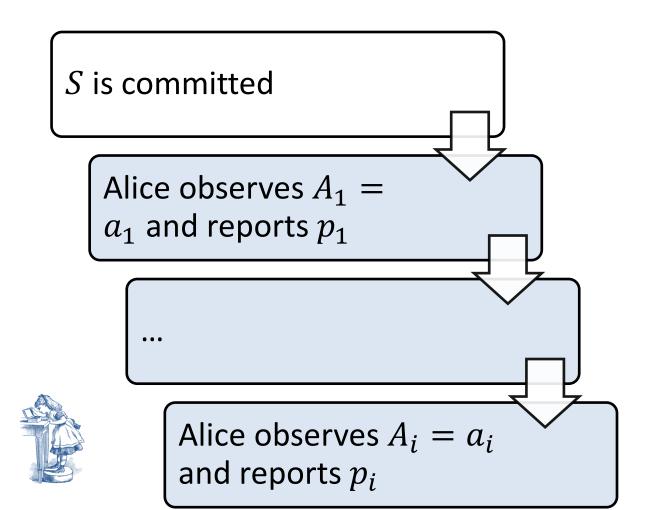
Log scoring rule $LS(p, w) = \log p(w)$


Three properties

- Proper: truth-telling $P_{W|A}$ maximizes LS(p, w)
- Shannon mutual information: $\mathbb{E}_{W,A} \big[LS \big(P_{W|A}, W \big) \big] = MI(W;A)$

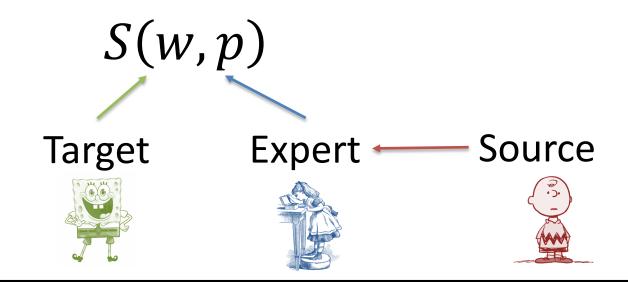
Multiple predictions

- W, A_1, A_2, \dots is sampled from a joint distribution P
- Truth-telling $p_i = P_{W|(A_1,...A_i)}$
- Chain rule $\mathbb{E}[LS(p_i, W) - LS(p_{i-1}, W)]$ $= MI(W; A_i | A_1, ..., A_{i-1})$



and reports p_i

Properties of Log scoring rule


- Proper
 - truth-telling $P_{W|A}$ maximizes LS(p, w)
- Chain rule [KS19]
 - $\mathbb{E}[LS(p_i, W) LS(p_{i-1}, W)] = MI(W; A_i \mid A_1, ..., A_{i-1})$

- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

Proper Scoring Rule S(w, p) in IEWV

- Agents can play one of three roles
 - Target reports his signal and is predicted.
 - Expert makes prediction the target's signal.
 - Source provides information to the expert.

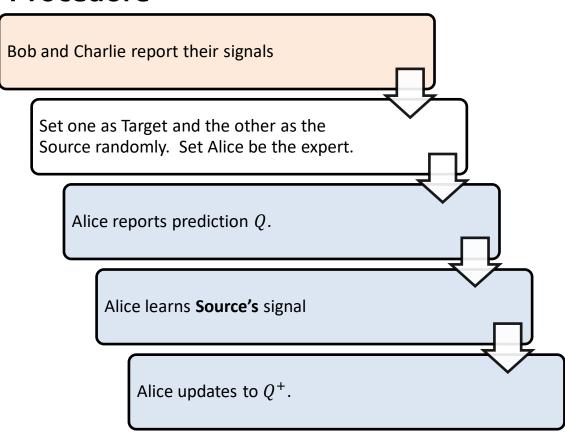
- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

Differential Peer Prediction Mechanisms

Bob and Charlie report their signals

Set one as Target and the other as the Source randomly. Set Alice as the expert.

Alice reports her initial prediction Q on Target's signal.


Alice learns Source's signal.

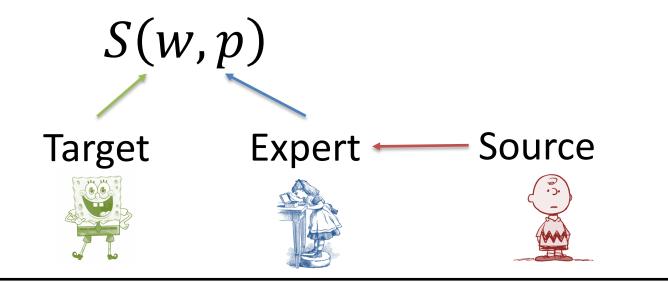
Alice updates her improved prediction Q^+ on **Target's** signal.

- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

Source Differential Peer Prediction

Procedure

Payment (if Bob is the Target)


- Bob gets zero.
- Alice gets sum of scores, $LS(Q^+, B) + LS(Q, B)$
- Charlie gets the improved score, $LS(Q^+, B)$

Source wants to improve the expert's prediction

Truthful report from Expert and Source

- Agents can play one of three roles
 - Target reports his signal and is predicted.
 - Expert makes prediction the target's signal.
 - Source provides information to the expert.

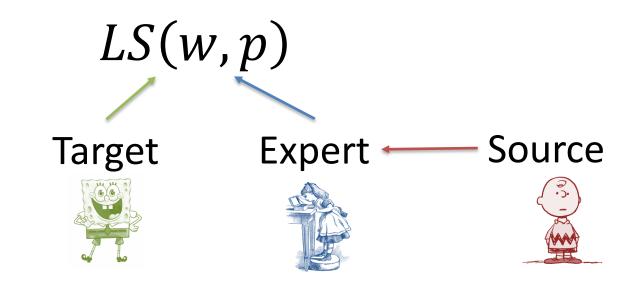
log scoring rule is proper

Strongly truthfulness

Procedure

Bob and Charlie report their signals Set one as Target and the other as the Source randomly. Set Alice be the expert. Alice reports prediction *Q* for **Target's** signal. Alice learns Source's signal Alice updates to Q^+ for **Target's** signal.

Payment (if Bob is the Target)


- Bob gets zero.
- Alice gets sum of scores, $LS(Q^+, B) + LS(Q, B)$
- Charlie gets the difference, $LS(Q^+, B) - 3LS(Q, B)$
- Total payment $2(LS(Q^+,B) LS(Q,B))$ whose expectation is $2MI(C;B \mid A)$

- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

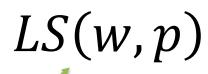
Truthful report from Target

- Agents can play one of three roles
 - Target reports his signal and is predicted.
 - Expert makes prediction the target's signal.
 - Source provides information to the expert.

log scoring rule is proper

Truthful report from Target

- Agents can play one of three roles
 - Target reports his signal and is predicted.
 - Expert makes prediction the target's signal.
 - Source provides information to the expert.
- Proper scoring rule
 - Truthfulness the second argument


Expert —— Source

Truthful report from Target

- Agents can play one of three roles
 - Target reports his signal and is predicted.
 - Expert makes prediction the target's signal.
 - Source provides information to the expert.
- Proper scoring rule
 - Truthfulness the second argument
 - First argument?

Target

Reversed Log scoring rule

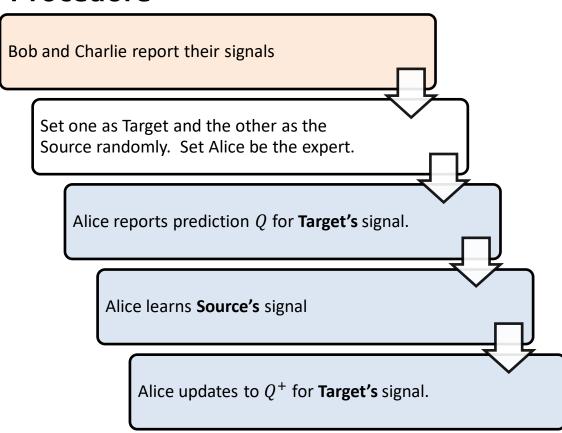
Symmetry between Target and Source

$$\mathbb{E}[LS(Q^+,B) - LS(Q,B)] = MI(C;B \mid A)$$

Reversed Log scoring rule

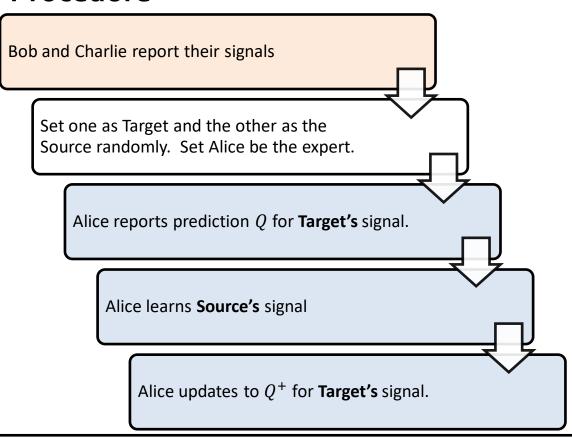
$$R(w) = LS(Q^+, w) - LS(Q, w)$$

Target



Target Differential Peer Prediction

Procedure


Payment (if Bob is the Target)

- Alice gets sum of scores, $LS(Q^+, B) + LS(Q, B)$
- Bob gets the difference, $LS(Q^+,B) - LS(Q,B)$ whose expectation is $MI(C;B \mid A)$

Target wants to get predicted well.

Strongly truthfulness

Procedure

Payment (if Bob is the Target)

- Alice gets sum of scores, $LS(Q^+, B) + LS(Q, B)$
- Bob gets the difference, $LS(Q^+, B) - LS(Q, B)$
- Charlie gets -2LS(Q,B)
- Total payment $2(LS(Q^+, B) LS(Q, B))$ whose expectation is $2MI(C; B \mid A)$

Comparison

Target incentive

- Use Target's (Bob's) report as the ground truth
- Pro and Con
 - Log scoring rule only*
 - Parallel process

Source incentive

- Use Source's (Charlie's) report to improve prediction $Q \rightarrow Q^+$
- Pro and Con
 - works for all scoring rule
 - sequential process

Payment	Target DPP	Source DPP
Alice (Expert)	$LS(Q^+,B) + LS(Q,B)$	$LS(Q^+,B) + LS(Q,B)$
Bob (Target)	$LS(Q^+,B) - LS(Q,B)$	0
Charlie (Source)	-2LS(Q,B)	$LS(Q^+,B) - 3LS(Q,B)$
Total	$2(LS(Q^+,B) - LS(Q,B))$	$2(LS(Q^+,B) - LS(Q,B))$

- Proper scoring rule with verification
 - Log scoring rule and mutual information
- Differential Peer Prediction Mechanisms
 - Proper scoring rule in IEWV
 - Source-DPP
 - Target-DPP
- Connection to BTS

Related Work in Peer Prediction

Target-incentive mechanism

- Bayesian Truth Serum
 - Each i agent reports her signal x_i and prediction p_i on other's signal
 - Prediction score: measure the quality the prediction p_i
 - Information score: $LS(Q^+, x_i) LS(Q, x_i)$

Source-incentive mechanism

- Robust BTS [Witkowski, Parkes 2011]
- Knowledge-Free Peer Prediction [Zhang, Chen 2014]

Aggregated prediction One agent's prediction

Question and Discussion

