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Contagions, diffusion, cascade...

* |deas, beliefs, behaviors, and
technology adoption spread
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— Promoting good behaviors/beliefs %v—:)*

— Stopping bad behavior 2 gl
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e Cascade Model

* Empirical Results: Testing Network Models
— Real Data
— Synthetic Models

e Theoretical Results
— Directed case
— Undirected case
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Social Contagion

* Contagionis a chain reaction that starts with early adopters
and spreads through the social network
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General Threshold Contagion

* General Threshold Contagion GTC(G,D,S) [G 1973; MR 2010]
— Social network: Graph, G
— Reaction: Threshold distribution, D = Uy,
— Early adopters: Seeded nodes, S = {u}




How general is this model?

* Captures many models as special cases
— Independent cascade
— Linear threshold model

— k-complex contagion
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* Empirical Results: Testing Network Models
— Real Data
— Synthetic Models




Experiment Setups

* G:graph
— DBLP co-authorship network with 317,080 nodes
— Stanford web graph with 281,903 nodes
* D:threshold ~ Poisson distribution with different mean A

e S:The ‘earliest’ 25 nodes




Contagion on DBLP Database

* G: DBLP co-authorship network
— 317,080 nodes 1,049,866 edges
— 3.3 average degree

* D: Poisson distribution
e S:The ‘earliest’ 25 nodes

0.9

0.8

0.6

0.5

0.4

0.3

0.2

0.1

10




Outline

* Empirical Results: Testing Network Models
— Real Data
— Synthetic Models

* Configuration Model
* Stochastic Attachment Model




Social Networks

* Can we generate synthetic but “realistic” graphs?
— Configuration models
— Preferential attachment networks




Configuration Model

Configuration model

Original Graph (Karate Club)




Real Network and Configuration Model

° Graph CONTAGION ON DBLP

— DBLP
— Configuration Model

e D: Poisson distribution
e S:The ‘earliest’ 25 nodes

INFECTION OF THE NETWORK (FRACTION)




Having better model for DBLP

* Time evolving graphs?

— A growing network in which
newcomers connect to old nodes.
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Having better model for DBLP

* Preferential attachment network
— Add a new node, create m out-links to old nodes

— Connect old nodes with attachment rule A
* Preferentially with probability o
* Uniformly random otherwise

* How can we model DBLP by PA?




Having better model for DBLP
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— Add a new node, create m out-links to old nodes

— Connect old nodes with attachment rule A
* Preferentially with probability o
* Uniformly random otherwise

* How can we model DBLP by PA?




Stochastic Attachment Model (SA)

e Model

— Add a new node, create m out-links from distribution M to the old
nodes
— Connect old nodes with attachment rule A

* Preferentially with probability «
* Uniformly random otherwise




Parameters for the SA

* Learn parameters from real social network
— Learn M by iteratively remove the minimal degree node
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Parameters for the SA

* Learn parameters from real social network

— Learn M by iteratively remove the minimal degree node
— Try different a: ,0.5,0.75,1

VRN




Stochastic Attachment and Contagions

* Graph:
— DBLP
— Configuration Model
— Stochastic Attachment Network

e D: Poisson distribution
e S:The ‘earliest’ 25 nodes
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* Graph:
— DBLP
— Configuration Model
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Contagion on Stanford Web Graph

* Graph: Stanford Web Graph 1
— 281,903 nodes 2,312,497 edges 0

— 7.3 average degree
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* D: Poisson distribution
e S:The ‘earliest’ 25 nodes
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Contagion on Real Network

* Graph 1
— Stanford Web Graph 0s

— Configuration Model
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* D: Poisson distribution
e S:The ‘earliest’ 25 nodes

0.4
0.3
0.2
0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18




Contagion on Real Network

* Graph 1
— Stanford Web Graph 0s

0.8

— Configuration Model
— Stochastic Attachment Network
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Contagion on Real Network

* Graph 1
— Stanford Web Graph 0s

0.8

— Configuration Model
— Stochastic Attachment Network
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Outline

* Theoretical Results
— Directed case
— Undirected case




How would contagion spread on directed PA?

A) B)
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Theorem in Directed Case

* The fraction of infection would converge to the stable fixed
points of “feedback function” f(x)




Observations
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* Time evolving property
— Reveal both the edges and thresholds sequentially
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Observations

* Time evolving property
— Reveal both the edges and thresholds sequentially

Y, = 0.83
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Observations

* Time evolving property
— Reveal both the edges and thresholds sequentially

Y, = 0.86




Feedback Function

* The probability of a newcomer
get infected
— Distribution of threshold
— M out-links
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Fraction of Infection
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Outline

* Background and Motivation

* Model and Experimental Results
— General Threshold Contagion
— Experiment on Real Network
— Stochastic Attachment Network

* Theoretical results
— Directed cases
— Undirected cases (please see the paper)




Future Work

* Better graph models to approximate contagions on real
networks

* Unclear when the contagions can die out in undirected case
with 0 as a fixed point




