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Contagions, diffusion, cascade…

• Ideas, beliefs, behaviors, and 
technology adoption spread 
through network

• Why do we need to study this 
phenomena?

– Better Understanding

– Promoting good behaviors/beliefs

– Stopping bad behavior
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and spreads through the social network



General Threshold Contagion

• General Threshold Contagion GTC(G,D,S) [G 1973; MR 2010]

– Social network: Graph, G

– Reaction: Threshold distribution, 𝐷 = 𝑈Δ
– Early adopters: Seeded nodes, 𝑆 = {𝑢}
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How general is this model?

• Captures many models as special cases

– Independent cascade

– Linear threshold model

– k-complex contagion
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Experiment Setups

• G: graph

– DBLP co-authorship network with 317,080 nodes

– Stanford web graph with 281,903 nodes

• D: threshold ~ Poisson distribution with different mean 𝜆

• S: The ‘earliest’ 25 nodes



Contagion on DBLP Database

• G: DBLP co-authorship network 

– 317,080 nodes 1,049,866 edges 

– 3.3 average degree

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Social Networks

• Can we generate synthetic but “realistic” graphs?

– Configuration models

– Preferential attachment networks

– …



Configuration Model

Original Graph (Karate Club) Configuration model



Real Network and Configuration Model

• Graph

– DBLP

– Configuration Model

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Having better model for DBLP

• Time evolving graphs?

– A growing network in which 
newcomers connect to old nodes.



Having better model for DBLP

• Preferential attachment network

– Add a new node, create m out-links to old nodes

– Connect old nodes with attachment rule 𝔸

• Preferentially with probability 𝛼

• Uniformly random otherwise

• How can we model DBLP by PA?
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Stochastic Attachment Model (SA)

• Model

– Add a new node, create m out-links from distribution M to the old 
nodes

– Connect old nodes with attachment rule 𝔸

• Preferentially with probability 𝛼

• Uniformly random otherwise



Parameters for the SA

• Learn parameters from real social network

– Learn M by iteratively remove the minimal degree node
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Parameters for the SA

• Learn parameters from real social network

– Learn M by iteratively remove the minimal degree node

– Try different 𝛼: 0, 0.25, 0.5, 0.75, 1



Stochastic Attachment and Contagions

• Graph: 

– DBLP

– Configuration Model

– Stochastic Attachment Network

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Stochastic Attachment and Contagions

• Graph: 

– DBLP

– Configuration Model

– Stochastic Attachment Network

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Contagion on Stanford Web Graph

• Graph: Stanford Web Graph

– 281,903 nodes 2,312,497 edges

– 7.3 average degree

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18



Contagion on Real Network

• Graph

– Stanford Web Graph 

– Configuration Model

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Contagion on Real Network

• Graph

– Stanford Web Graph 

– Configuration Model

– Stochastic Attachment Network

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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Contagion on Real Network

• Graph

– Stanford Web Graph 

– Configuration Model

– Stochastic Attachment Network

• D: Poisson distribution

• S: The ‘earliest’ 25 nodes
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How would contagion spread on directed PA?

A) B)



Theorem in Directed Case

• The fraction of infection would converge to the stable fixed 
points of “feedback function” 𝑓 𝑥
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• Time evolving property

– Reveal both the edges and thresholds sequentially
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Observations

• Time evolving property

– Reveal both the edges and thresholds sequentially

1 2 1 3 1

𝑌5 = 0.8



Observations

• Time evolving property

– Reveal both the edges and thresholds sequentially
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Observations

• Time evolving property

– Reveal both the edges and thresholds sequentially

1 2 1 3 1 2 2

𝑌7 = 0.86



Feedback Function

• The probability of a newcomer 
get infected

– Distribution of threshold

– M out-links

Stable point

Stable fixed points



Feedback Function

Stable point

Stable fixed points



Outline

• Background and Motivation

• Model and Experimental Results

– General Threshold Contagion

– Experiment on Real Network

– Stochastic Attachment Network

• Theoretical results

– Directed cases

– Undirected cases (please see the paper)



Future Work

• Better graph models to approximate contagions on real 
networks

• Unclear when the contagions can die out in undirected case 
with 0 as a fixed point


