## **General Threshold Model for Social Cascades**

Jie Gao, Golnaz Ghasemiesfeh, Grant Schoenebeck, **Fang-Yi Yu** 





# Contagions, diffusion, cascade...

- Ideas, beliefs, behaviors, and technology adoption spread through network
- Why do we need to study this phenomena?
  - Better Understanding
  - Promoting good behaviors/beliefs
  - Stopping bad behavior



## Outline

- Cascade Model
- Empirical Results: Testing Network Models
  - Real Data
  - Synthetic Models
- Theoretical Results
  - Directed case
  - Undirected case

## Outline

- Cascade Model
- Empirical Results: Testing Network Models
  - Real Data
  - Synthetic Models
- Theoretical Results
  - Directed case
  - Undirected case

• Contagion is a chain reaction that starts with early adopters and spreads through the social network



 Contagion is a chain reaction that starts with early adopters and spreads through the social network



 Contagion is a chain reaction that starts with early adopters and spreads through the social network



 Contagion is a chain reaction that starts with early adopters and spreads through the social network



# **General Threshold Contagion**

- General Threshold Contagion GTC(G,D,S) [G 1973; MR 2010]
  - Social network: Graph, G
  - **Reaction:** Threshold distribution,  $D = U_{\Delta}$
  - **Early adopters**: Seeded nodes,  $S = \{u\}$



# How general is this model?

- Captures many models as special cases
  - Independent cascade
  - Linear threshold model
  - k-complex contagion

## Outline

- Cascade Model
- Empirical Results: Testing Network Models
  - Real Data
  - Synthetic Models
- Theoretical Results
  - Directed case
  - Undirected case

## **Experiment Setups**

- G: graph
  - DBLP co-authorship network with 317,080 nodes
  - Stanford web graph with 281,903 nodes
- D: threshold ~ Poisson distribution with different mean  $\lambda$
- S: The 'earliest' 25 nodes

## **Contagion on DBLP Database**

- G: DBLP co-authorship network
  - 317,080 nodes 1,049,866 edges
  - 3.3 average degree
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## Outline

- Cascade Model
- Empirical Results: Testing Network Models
  - Real Data
  - Synthetic Models
    - Configuration Model
    - Stochastic Attachment Model
- Theoretical Results
  - Directed case
  - Undirected case

## **Social Networks**

- Can we **generate** synthetic but "realistic" graphs?
  - Configuration models
  - Preferential attachment networks

— ...

## **Configuration Model**

**Original Graph (Karate Club)** 

#### **Configuration model**





# **Real Network and Configuration Model**

- Graph
  - DBLP
  - Configuration Model
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## Having better model for DBLP

- Time evolving graphs?
  - A growing network in which newcomers connect to old nodes.



# Having better model for DBLP

- Preferential attachment network
  - Add a new node, create **m** out-links to old nodes
  - Connect old nodes with attachment rule  $\mathbb A$ 
    - Preferentially with probability  $\alpha$
    - Uniformly random otherwise
- How can we model DBLP by PA?

## Having better model for DBLP

- Preferential attachment network
  - Add a new node, create m out-links to old nodes
  - Connect old nodes with attachment rule  $\mathbb A$ 
    - Preferentially with probability  $\alpha$
    - Uniformly random otherwise
- How can we model DBLP by PA?

## **Stochastic Attachment Model (SA)**

- Model
  - Add a new node, create m out-links from distribution M to the old nodes
  - Connect old nodes with attachment rule  $\mathbb A$ 
    - Preferentially with probability  $\alpha$
    - Uniformly random otherwise

- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node



- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node



- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node





- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node



- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node



- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node





- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node



- Learn parameters from real social network
  - Learn M by iteratively remove the minimal degree node
  - Try different  $\alpha$ : 0, 0.25, 0.5, 0.75, 1



## **Stochastic Attachment and Contagions**

- Graph:
  - DBLP
  - Configuration Model
  - Stochastic Attachment Network
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## **Stochastic Attachment and Contagions**

- Graph:
  - DBLP
  - Configuration Model
  - Stochastic Attachment Network
- D: Poisson distribution
- S: The 'earliest' 25 nodes



# **Contagion on Stanford Web Graph**

- Graph: Stanford Web Graph
  - 281,903 nodes 2,312,497 edges
  - 7.3 average degree
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## **Contagion on Real Network**

- Graph
  - Stanford Web Graph
  - Configuration Model
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## **Contagion on Real Network**

- Graph
  - Stanford Web Graph
  - Configuration Model
  - Stochastic Attachment Network
- D: Poisson distribution
- S: The 'earliest' 25 nodes



## **Contagion on Real Network**

- Graph
  - Stanford Web Graph
  - Configuration Model
  - Stochastic Attachment Network
- D: Poisson distribution
- S: The 'earliest' 25 nodes



# Outline

- Cascade Model
- Empirical Results: Testing Network Models
  - Real Data
  - Synthetic Models
    - Configuration Model
    - Stochastic Attachment Model
- Theoretical Results
  - Directed case
  - Undirected case

#### How would contagion spread on directed PA?



## **Theorem in Directed Case**

• The fraction of infection would converge to the stable fixed points of "feedback function" f(x)







- Time evolving property
  - Reveal both the edges and thresholds sequentially





- Time evolving property
  - Reveal both the edges and thresholds sequentially

 $Y_3 = 1$ 



- Time evolving property
  - Reveal both the edges and thresholds sequentially

 $Y_4 = 0.75$ 



- Time evolving property
  - Reveal both the edges and thresholds sequentially



- Time evolving property
  - Reveal both the edges and thresholds sequentially



- Time evolving property
  - Reveal both the edges and thresholds sequentially



- Time evolving property
  - Reveal both the edges and thresholds sequentially



## **Feedback Function**

- The probability of a newcomer get infected
  - Distribution of threshold
  - M out-links



#### **Feedback Function**



# Outline

- Background and Motivation
- Model and Experimental Results
  - General Threshold Contagion
  - Experiment on Real Network
  - Stochastic Attachment Network
- Theoretical results
  - Directed cases
  - Undirected cases (please see the paper)

## **Future Work**

- Better graph models to approximate contagions on real networks
- Unclear when the contagions can die out in undirected case with 0 as a fixed point