Nonhomogeneous Kleinberg's Small World Model: Cascades and Myopic Routing

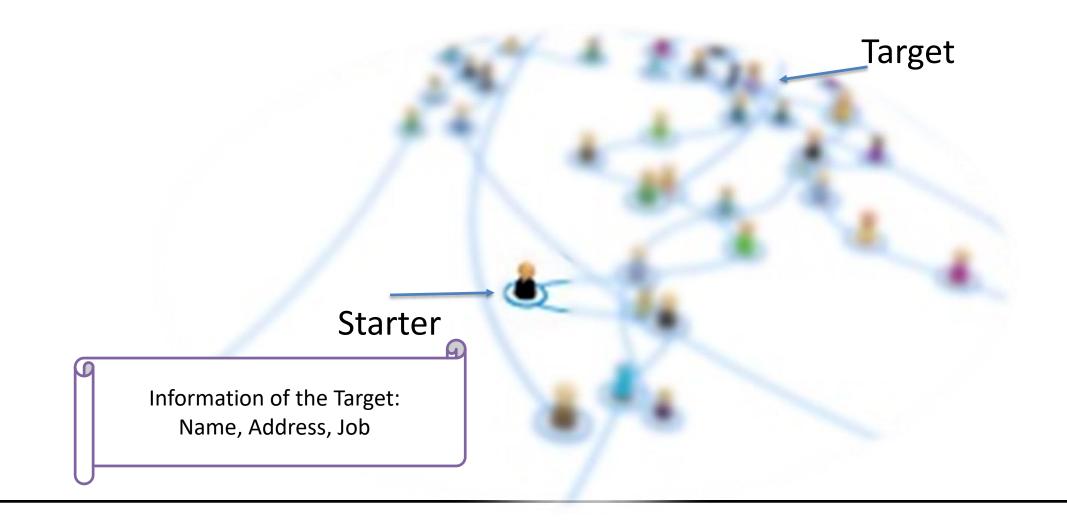
Jie Gao, Grant Schoenebeck, Fang-Yi Yu

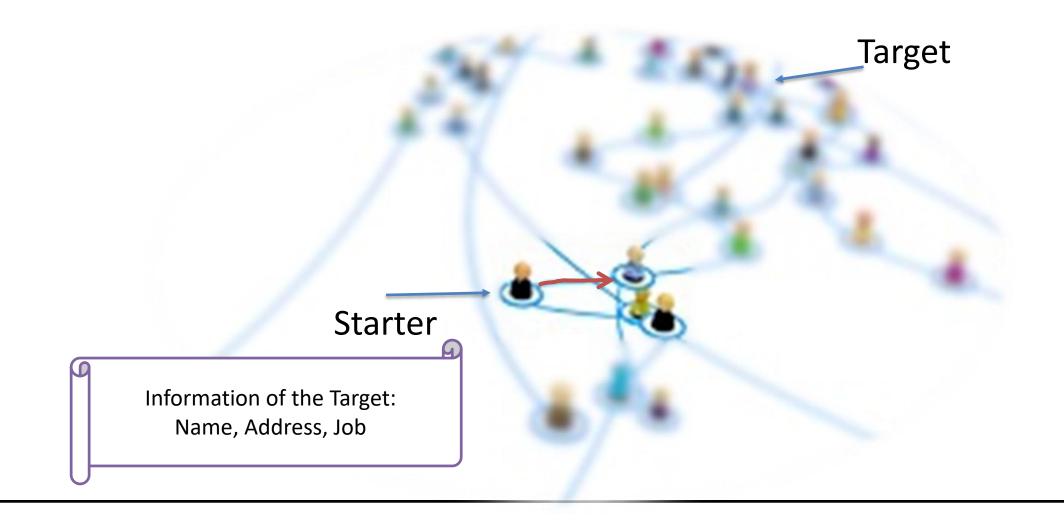
What is a social network?

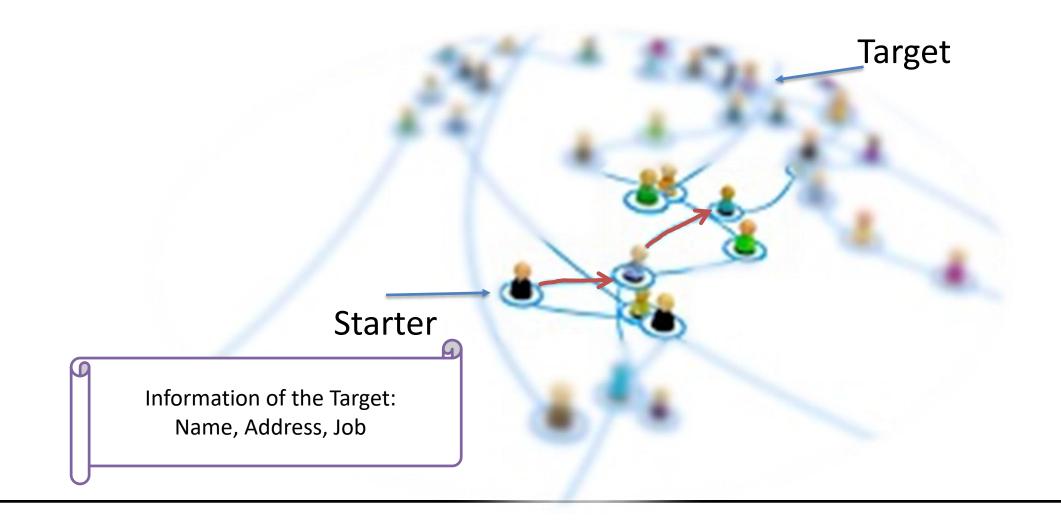
- Social network models interactions between individuals
 - Individuals behave freely.
 - Society shows special properties

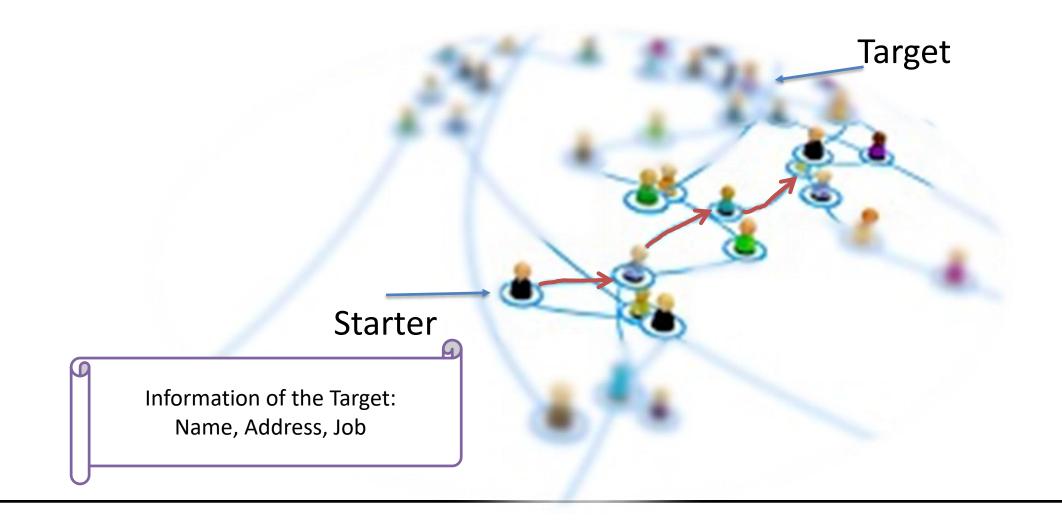
Outline

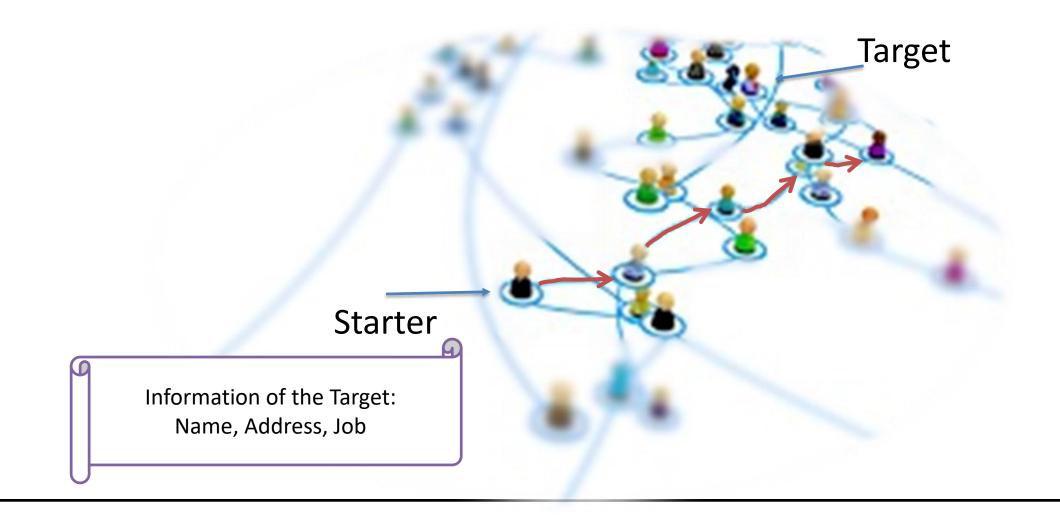
- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline
- k-Complex Contagions Model





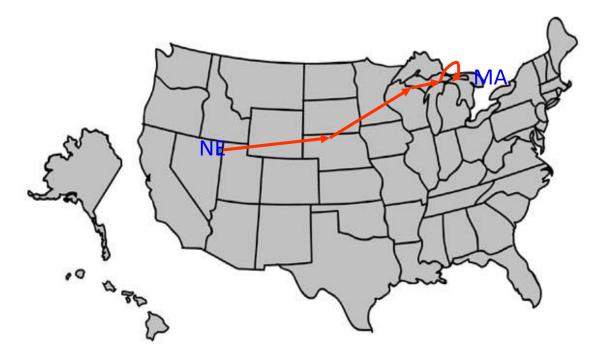






Small World Model

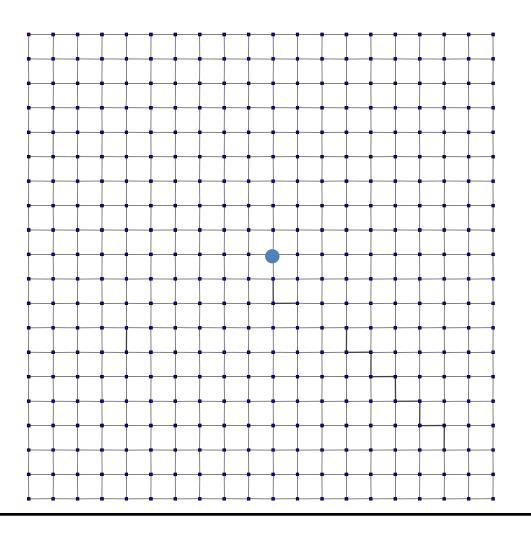
 Six degrees of separation--- very short paths between arbitrary pairs of nodes



Watts/Strogatz model, Newman–Watts model

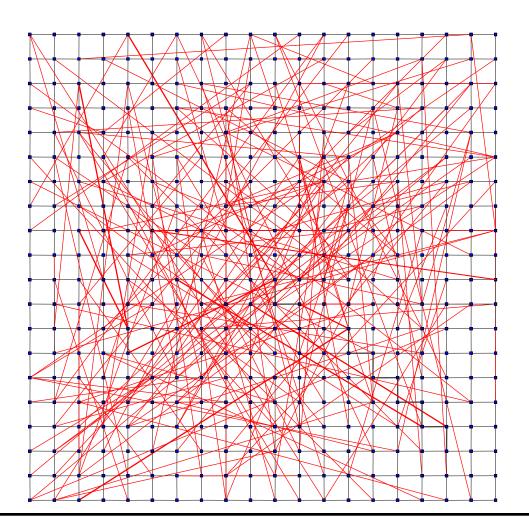
- . the second se - - - - - - - - - 🙆 - - - - -. the second second second second second and a second second second second second the second se
- *n* people on a ring/ torus

Strong Ties



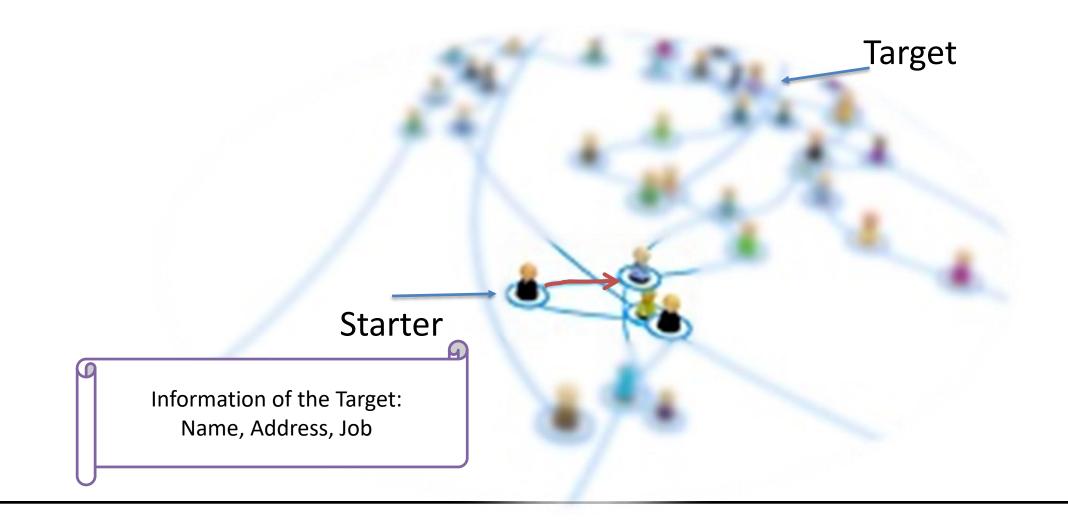
- *n* people on a ring/ torus
- Strong ties within distance q

Weak Ties



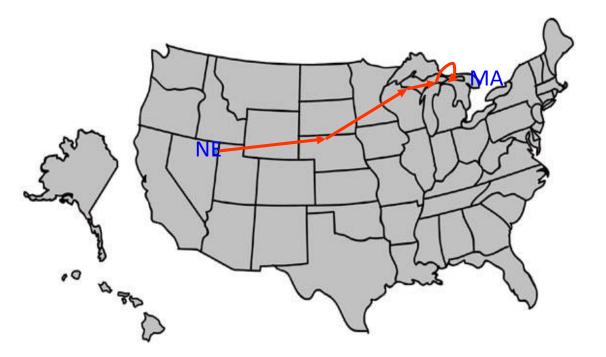
- *n* people on a ring/ torus
- Strong ties within distance q
- Weak ties: $p_{uv} = p$

Algorithmically Small World



Small World Model 2.0

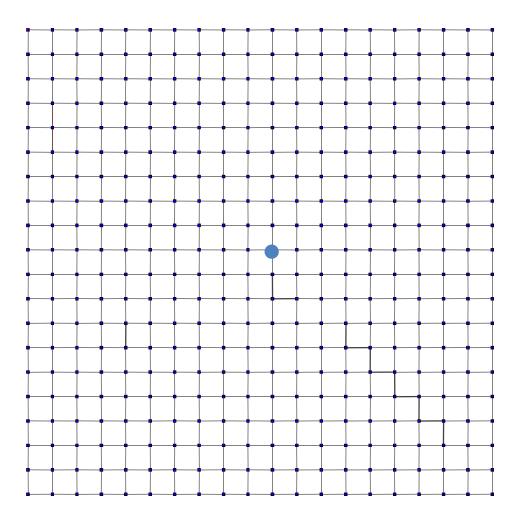
- Six degrees of separation--- very short paths between arbitrary pairs of nodes
- Decentralized routing----Individuals with local information are very adept at finding these paths



Kleinberg's Small World Model[2000]

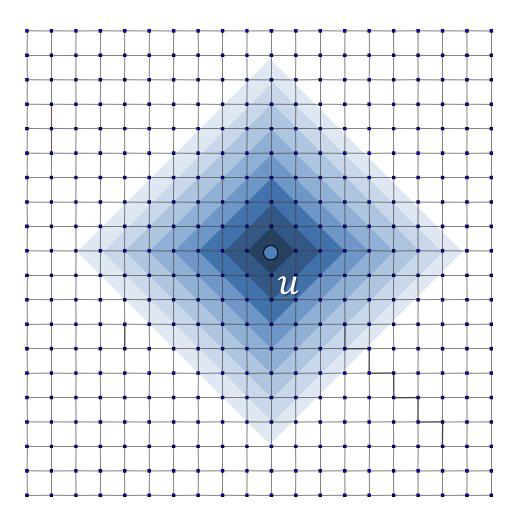
- the second se · · · · · · the second second second second the second second second second second .
- *n* people on a *k*-dimensional grid

Strong Ties



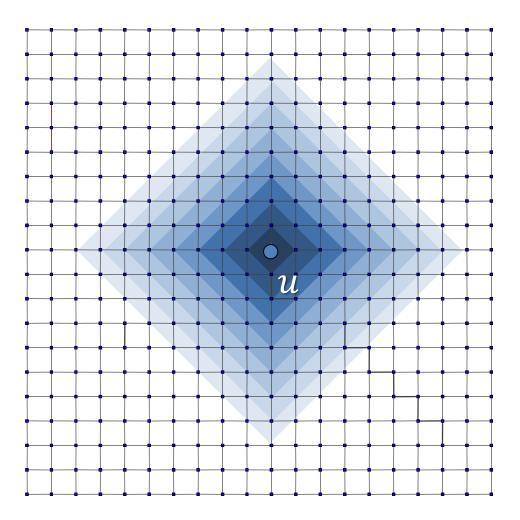
- *n* people on a *k*-dimensional grid
- Strong ties within distance q

Weak Ties

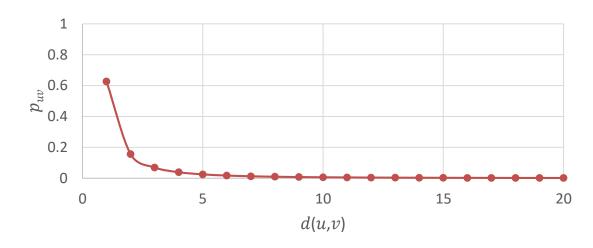


- *n* people on a *k*-dimensional grid
- Strong ties within distance q
- Weak ties: $p_{uv} \sim \frac{1}{d(u,v)^{\gamma}}$

Weak Ties

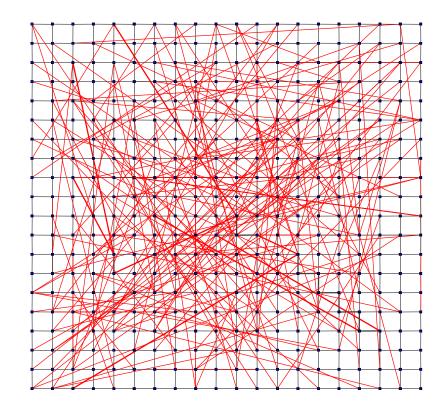


- *n* people on a *k*-dimensional grid
- Strong ties within distance q
- Weak ties: $p_{uv} \sim \frac{1}{d(u,v)^{\gamma}}$

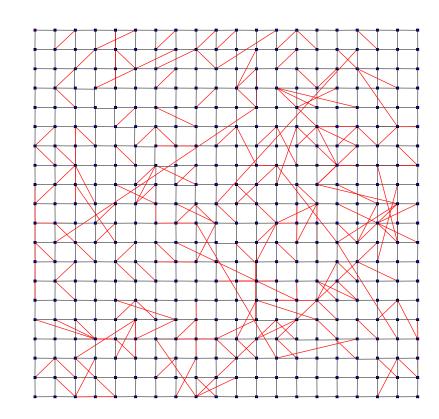


Weak Ties with Different γ

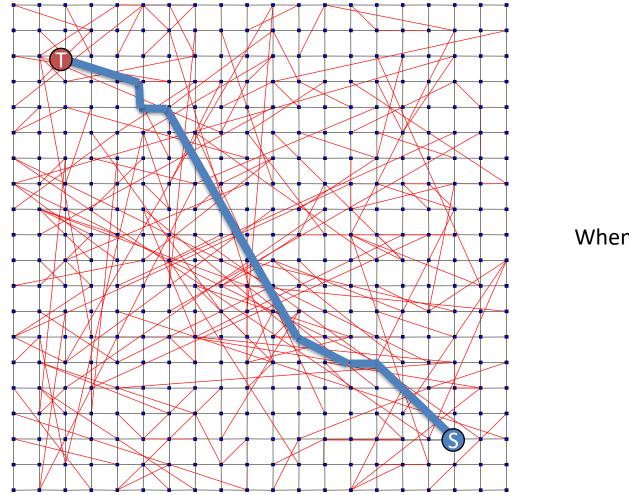
Small γ



Large γ



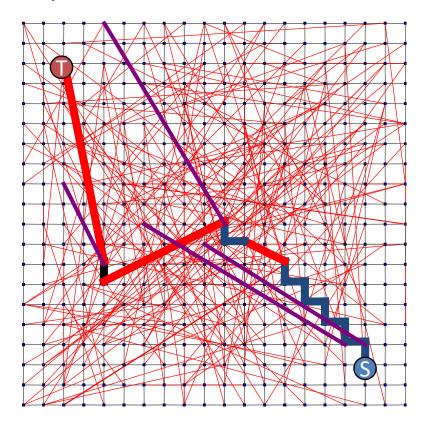
Decentralized Routing on Kleinberg's Model



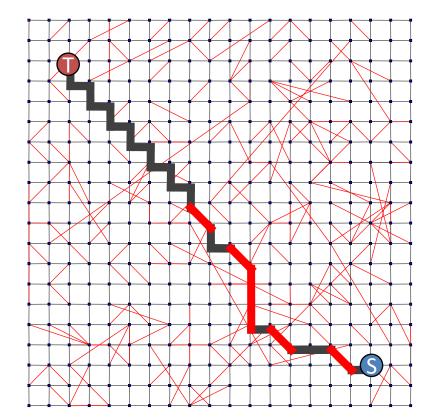
When $\gamma = 2$

Weak Ties with Different γ

When $\gamma < 2$



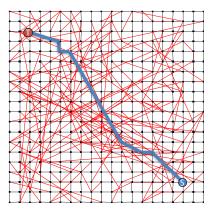
When $\gamma > 2$

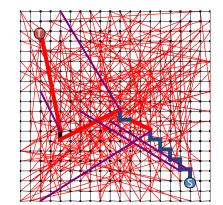


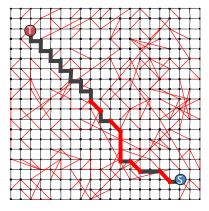
Threshold Property

If $\gamma = 2$ and $p, q \ge 1$, there is a decentralized algorithm A, so that the delivery time of A is $O(\log^2 n)$.

If $\gamma \neq 2$, there is a constant $\xi > 0$, so that the delivery time of any decentralized algorithm is $\Omega(n^{\xi})$.

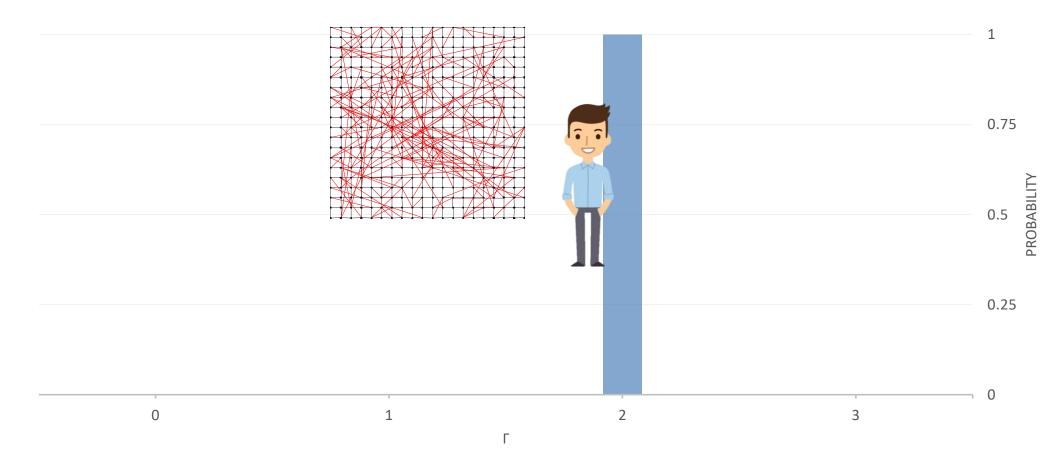






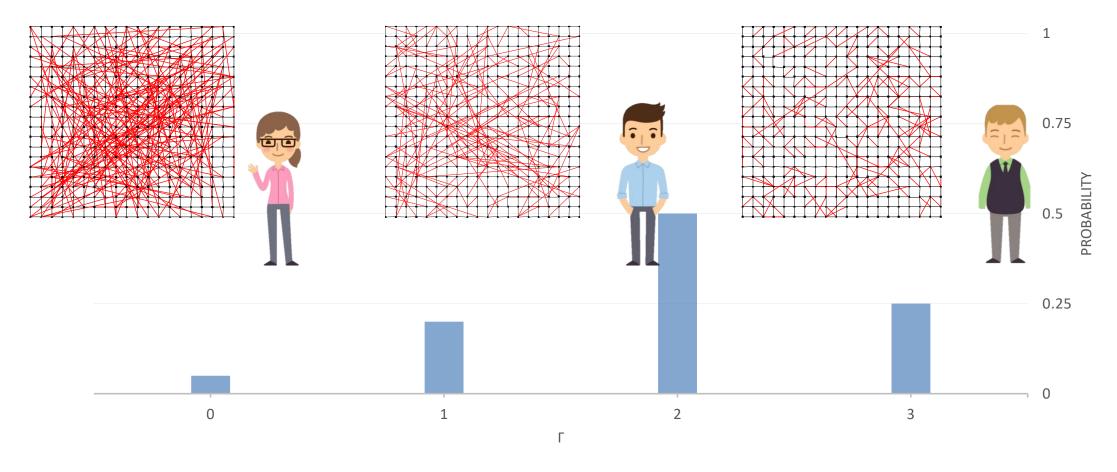
Threshold Property

Histogram of γ



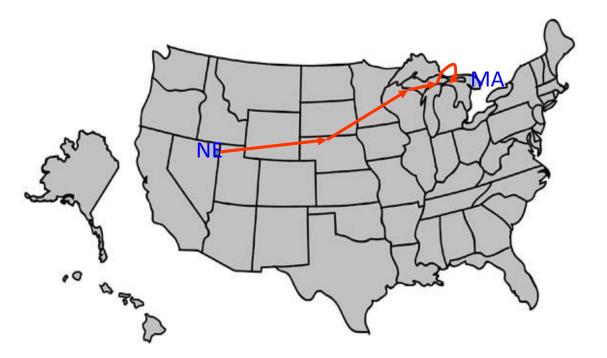
Diversity

Histogram of γ



Small World Model 2.0.1

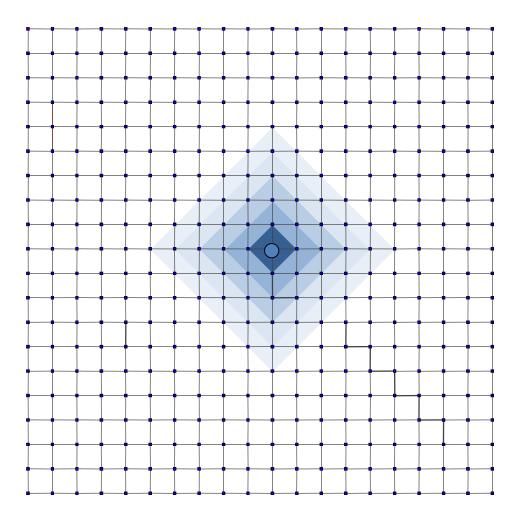
- Six degrees of separation--- very short paths between arbitrary pairs of nodes
- Decentralized routing----Individuals with local information are very adept at finding these paths



Outline

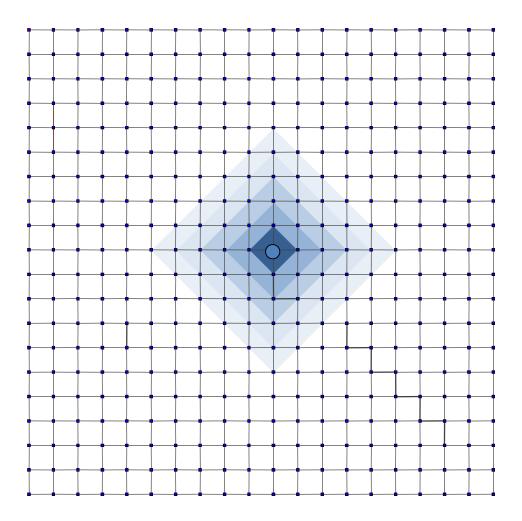
- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline
- k-Complex Contagions Model

Recall: Kleinberg's Small World Model



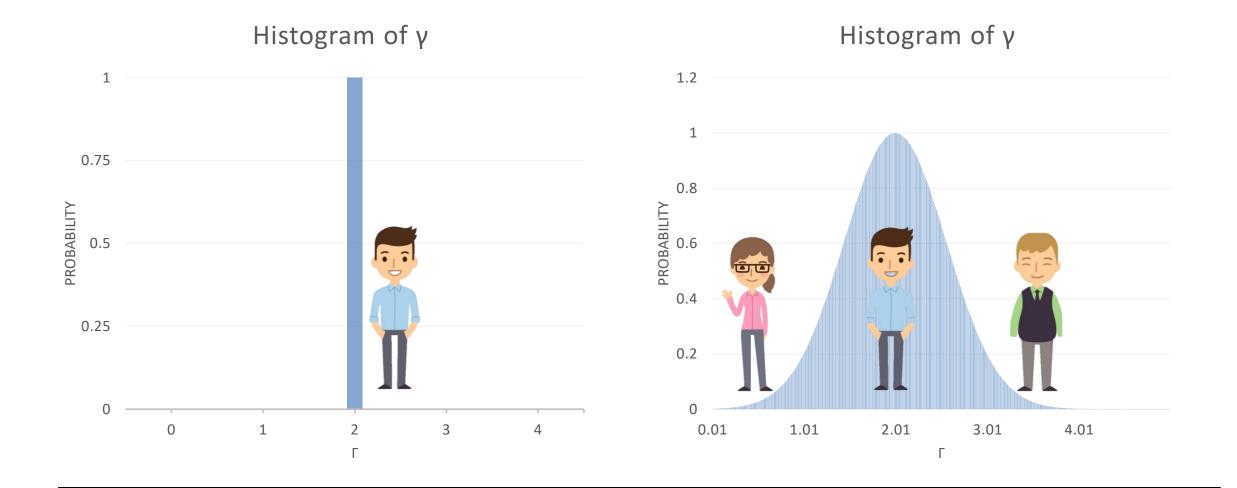
- *n* people on a *k*-dimensional grid
- Strong ties within distance q
- Weak ties: $p_{uv} \sim d(u, v)^{-\gamma}$

Nonhomogeneous Kleinberg's $HetK_{p,q,D}(n)$



- *n* people on a *k*-dimensional grid
- Strong ties within distance q
- Weak ties: u has γ_u from D, and p ties sample from $p_{uv} \sim d_{uv}^{-\gamma_u}$.

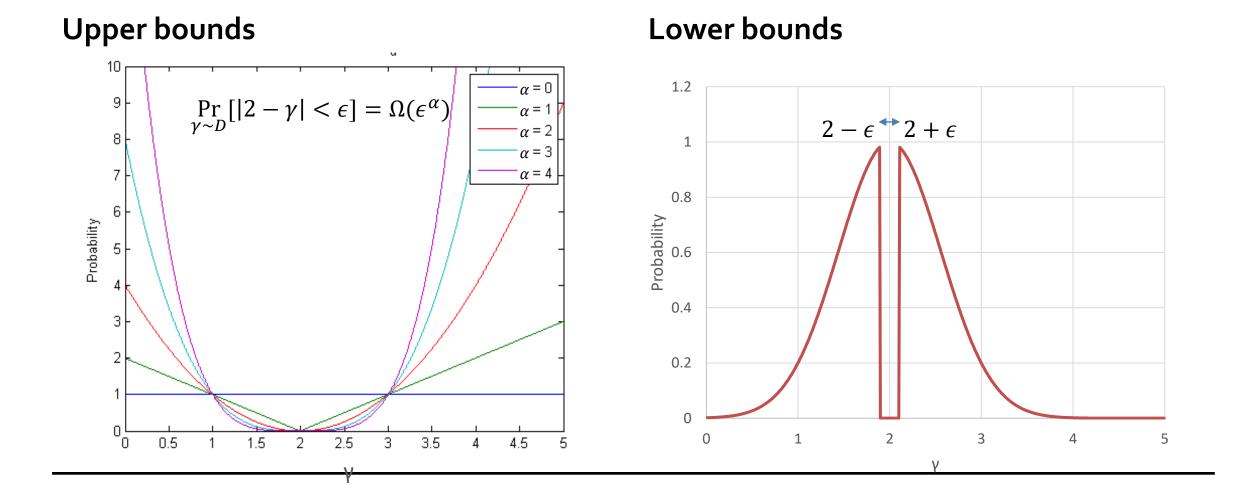
A More Natural Histogram



Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorems
 - Proof Outline
- k-Complex Contagions Model

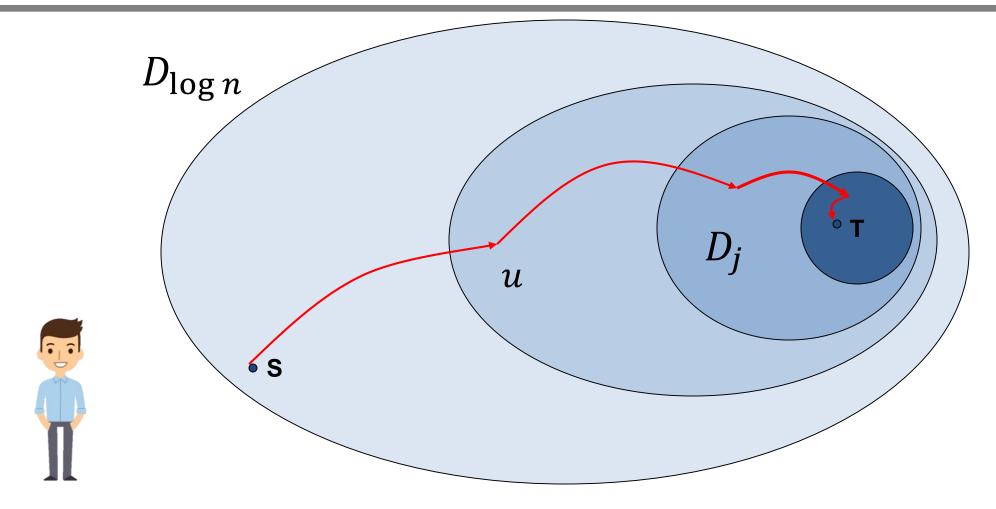
Theorems



Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline (upper bound)
- k-Complex Contagions Model

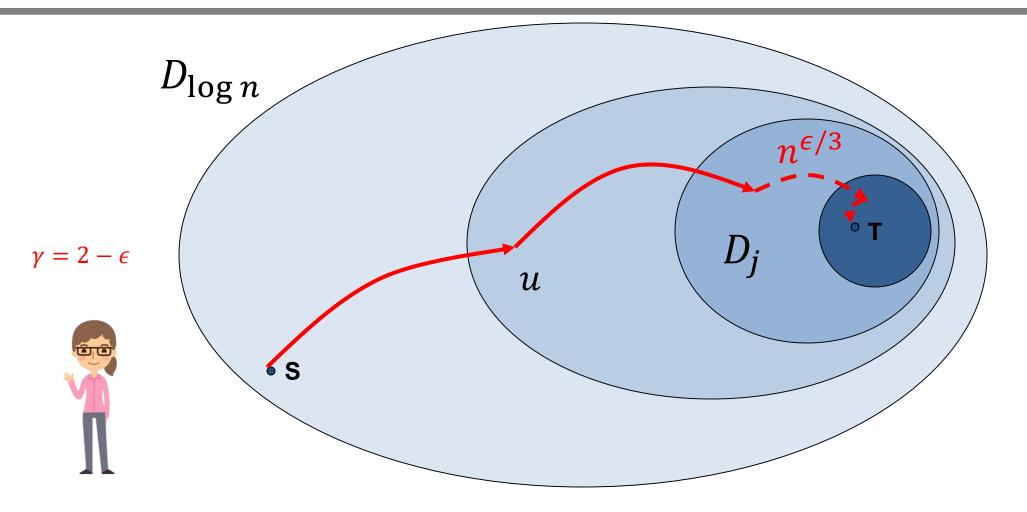
When
$$\gamma = 2$$



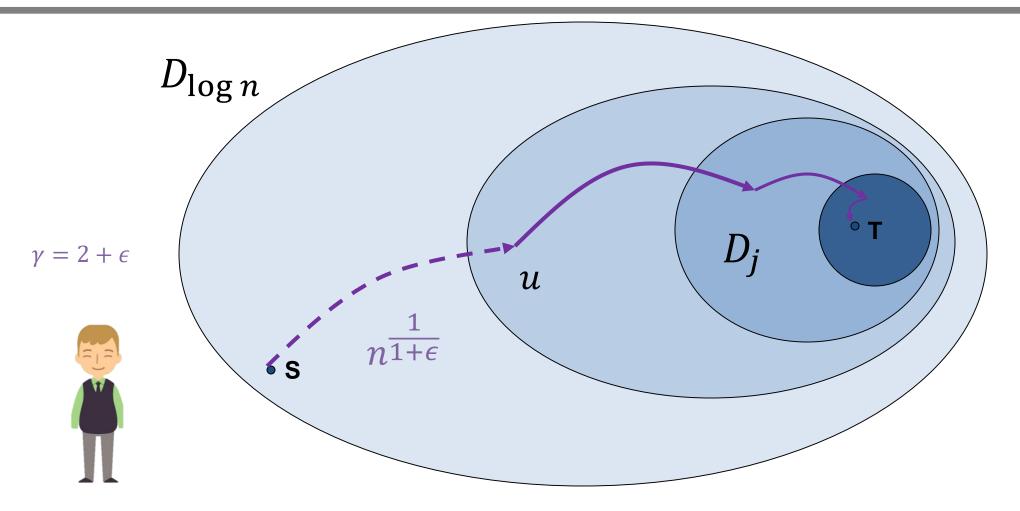
Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline (lower bound)
- k-Complex Contagions Model

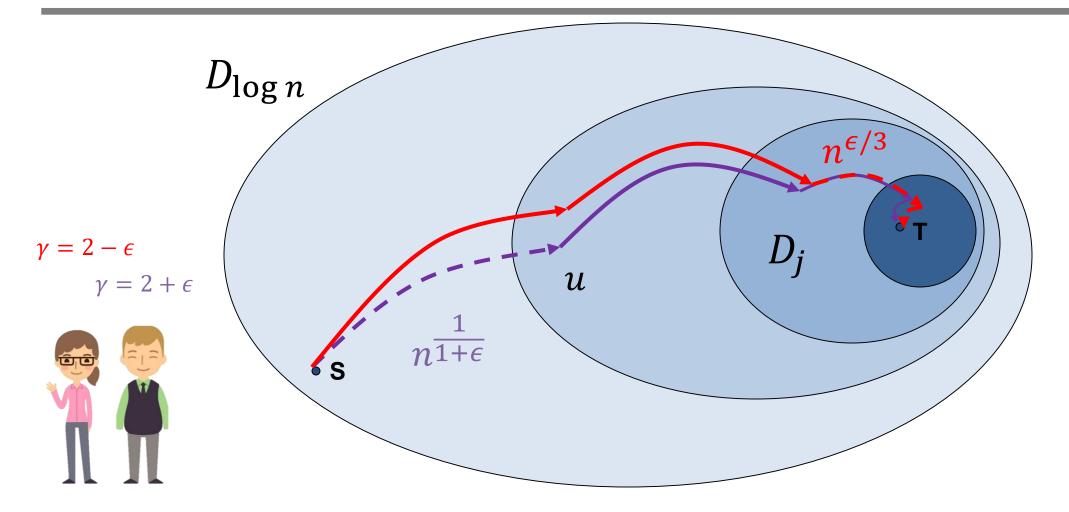
When $\gamma < 2$, weak ties are too random



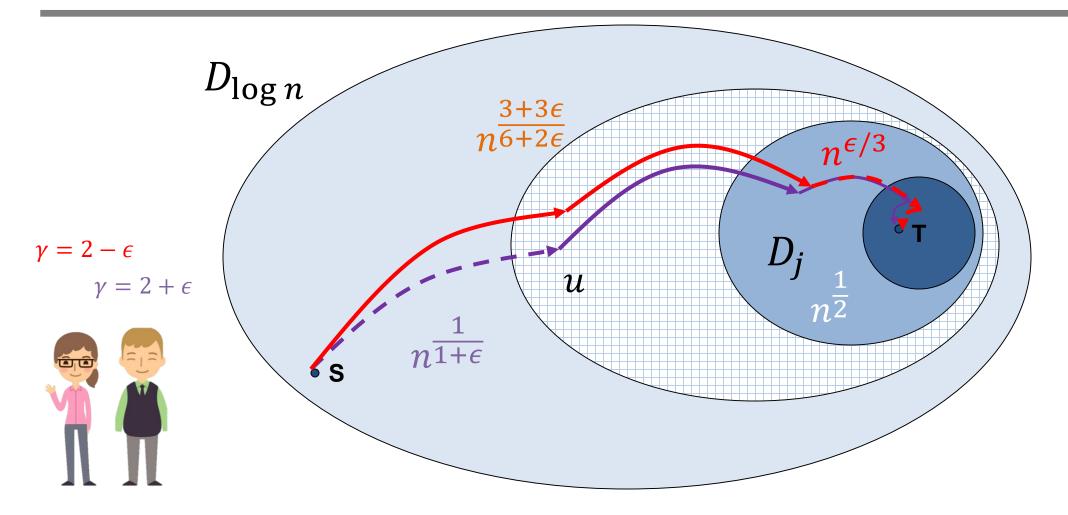
When $\gamma > 2$, weak ties are too short



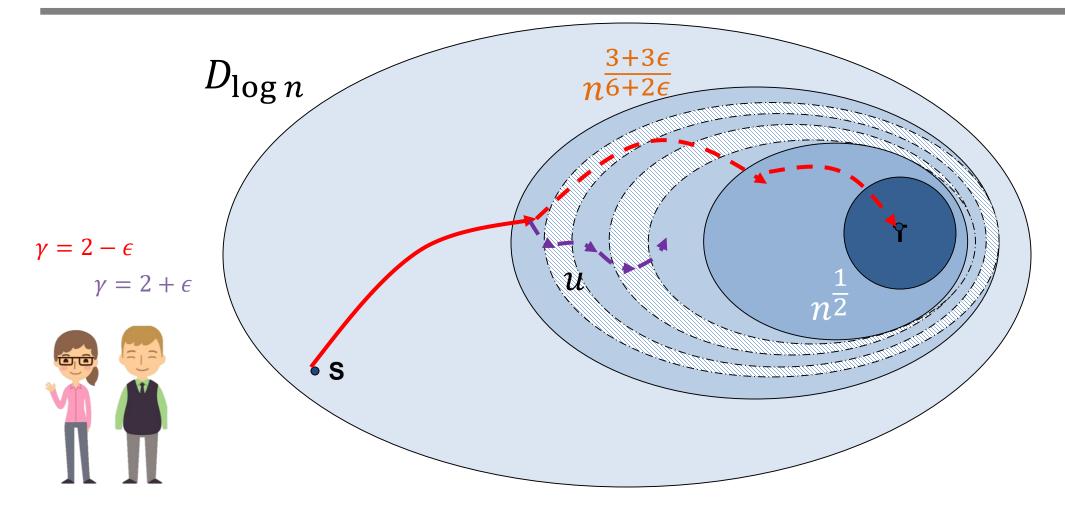
Mixture of Both



Mixture of Both



Mixture of Both



Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline
- k-Complex Contagions Model

Thanks for your listening

Upper Bound — Non-negligible Mass Near 2

• Fixed a distribution D with constant $\alpha \ge 0$ where $F_D(2 + \epsilon) - \epsilon$ $F_D(2-\epsilon) = \Omega(\epsilon^{\alpha})$ for any integer k > 0 and η > 0, there exists $\xi = 3 + \alpha + k$, such that a k-complex contagion $CC(HetK_{p,q,D(n)}, k, I)$ starting from a k-seed cluster I and where $p > k, q^2/2 \ge k$ takes at most $O(\log^{\xi} n)$ time to spread to the whole network with probability at least 1 - n - n η over the randomness of $Het K_{p,q,D(n)}$.

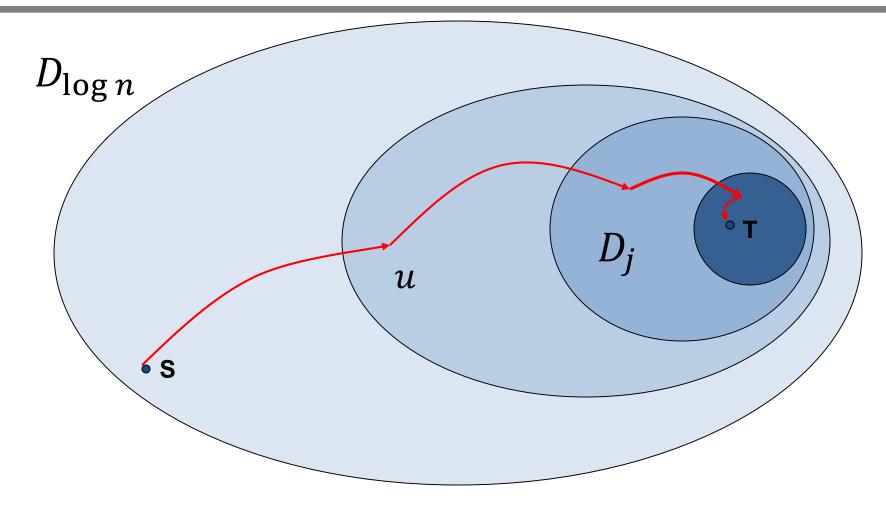
Upper Bound — Fixed k

• Given a distribution D and an integer k > 0, such that $\Pr_{\gamma \leftarrow D} [\gamma \in [2, \beta k)] > 0$ where $\beta_k = 2(k + 1)$, for all $\eta > 0$ there exists $\xi > 0$ depending on D and k such that, the speed of a k-complex contagion $CC(HetK_{p,q,D(n)}, k, I)$ starting from a k-seed cluster I and $p > k, q2/2 \ge k$ is at most $O(\log^{\xi} n)$ with probability at least $1 - n^{-\eta}$.

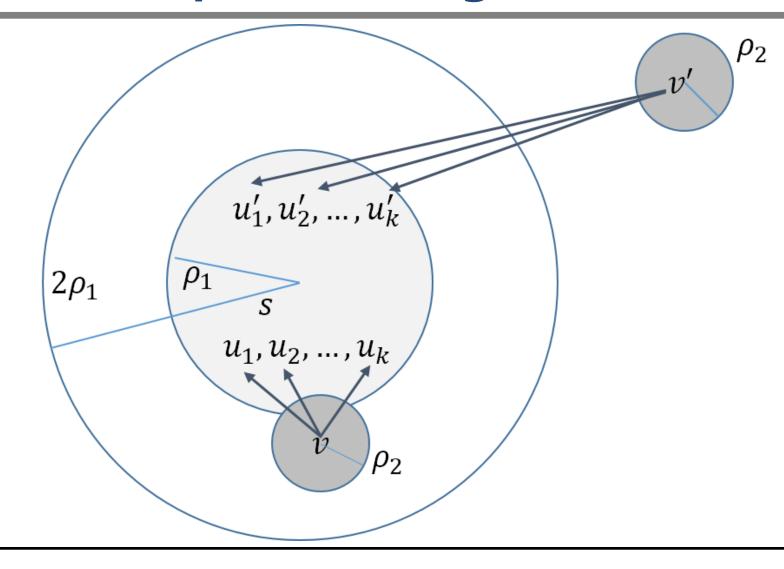
Lower Bound

• Given distribution D, constant integers k, p, q > 0, and $\varepsilon > 0$ such that $F_D(2 + \epsilon) - F_D(2 - \epsilon) = 0$, then there exist constants $\xi, \eta > 0$ depending on D and k, such that the time it takes a k-contagion starting at seed-cluster I, $CC(HetK_{p,q,D(n)}, k, I)$, to infect all nodes is at least n^{ξ} with probability at least $1 - O(n^{-\eta})$ over the randomness of $HetK_{p,q,D(n)}$.

Idea of Myopic Routing Upper Bound



Idea of Complex Contagion Lower Bound



- Number of nodes within region D_j 2^{2j}
- Probability of node u connecting to a node $v \in D_j$

$$K_{2+\epsilon}d_{uv}^{2+\epsilon_u}$$

• Probability for node u entering region D_j

$$\Omega\left(\frac{\epsilon}{2^{j\epsilon}}\right) \text{ if } \epsilon > 0 \text{ and } \Omega\left(\frac{|\epsilon|}{2^{(\log n - j)\epsilon}}\right) \text{ if } \epsilon < 0$$

• Probability entering region D_i

$$\Omega\left(\int_{0}^{\epsilon_{0}} \frac{\epsilon}{2^{j\epsilon}} \epsilon^{\alpha-1} d\epsilon\right)$$

or
$$\Omega\left(\int_{0}^{\epsilon_{0}} \frac{\epsilon}{2^{(\log n-j)\epsilon}} \epsilon^{\alpha-1} d\epsilon\right)$$

Proof Sketch for lower bound

- $\gamma > 2$ the weak ties will be too short (concentrated edges)
- $\gamma < 2$ the weak ties will be too random (diffuse edges)

A Very Brief Summary — History

- Kleinberg's small world model models social networks with both strong and weak ties, and the distribution of weak-ties, parameterized by γ.
 - He showed how value of γ influences the efficacy of $\ensuremath{\mathsf{myopic}}$ routing on the network.
 - Recent work on social influence by k-complex contagion models discovered that the value of γ also impacts the spreading rate

A Very Brief Summary — Our Work

- A natural generalization of Kleinberg's small world model to allow node heterogeneity is proposed, and
 - We show this model enables myopic routing and k-complex contagions on a large range of the parameter space.
 - Moreover, we show that our generalization is supported by realworld data.

