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Contagions, Diffusion, Cascade…

• Ideas, beliefs, behaviors, and 
technology adoption spread 
through networks

• Why do we need to study this 
phenomena?

– Better Understanding

– Promoting good behaviors/beliefs

– Stopping bad behavior



Influence Maximization

Find the best 𝐾 nodes to maximize adoptions [KKT03]

• Input

– Social network 𝐺

– Model of contagions

– Total number of seeds 𝐾, budget
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Research Question

Find the best 𝐾 nodes to maximize adoptions

• Input

– Stochastic hierarchical blockmodel (SHBM)

– 𝑟-complex contagion 

– Total number of seeds 𝐾, budget

• Output

– Seed set 𝐼, s.t. 𝐼 = 𝐾



Motivation

Can we promote good behaviors/beliefs on a social network if 
we only know the community structure of the network?



Outline

• Stochastic Hierarchical Blockmodel

• 𝑟-complex contagions

• Main result
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Possible information about Networks

• Full information

• Query

– Edge query, node query, …

• Coarser information

– Community structure, 

– Centrality, 

– Betweenness 
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Community Structure

• Social networks often can be 
easily divided into communities 
densely connected internally.
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Hierarchical Community Structure

• Social networks often can be 
easily divided into communities 
densely connected internally.

• A community can be easily is 
divided into many sub-
communities
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Hierarchical Community Structure
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Stochastic Hierarchical Blockmodel (𝑉𝑇 , 𝐸𝑇 , 𝑤, 𝑣)

Connectivity matrix 𝑤 Relative population 𝑣

𝑤 𝑅 = 0.1

𝑤(𝐹) = 0.5

𝑤 𝐴 = 0.8

𝑤 𝐵 = 0.9

𝑤(𝐺) = 0.6

𝑤 𝐶 = 0.85

𝑤 𝐷 = 0.88

𝑤(𝐻) = 0.4 𝑤 𝐸 = 0.87
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Outline

• Stochastic Hierarchical Blockmodel (SHBM)

• 𝒓-complex contagions

• Main result



𝑟-Complex Contagions [CLR 79; GEG13]

• Given an initial seed set 𝐼 =
{𝑢, 𝑣}, and a graph 𝐺
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𝑟-Complex Contagions

• Given an initial seed set 𝐼 =
{𝑢, 𝑣}, and a graph 𝐺

• Node becomes infected if it has 
at least 𝑟 infected neighbor a
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Local activation function 𝑓𝑣(𝑥) = 𝕀[𝑥 ≥ 𝑟]



𝑟-Complex Contagions

• Given an initial seed set 𝐼 =
{𝑢, 𝑣}, and a graph 𝐺

• Node becomes infected if it has 
at least 𝑟 infected neighbor

• The total number of infected 
vertices 𝜎𝑟,𝐺(𝐼)
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𝑓𝑣 𝑥 = 𝕀 𝑥 ≥ 𝑟
𝜎𝑟,𝐺(𝐼)



𝑟-Complex Contagions

• Given an initial seed set 𝐼 =
{𝑢, 𝑣}, and a distribution over 
graphs, ℊ, e.g., SHBM.

• Node becomes infected if it has 
at least 𝑟 infected neighbor

• The total number of infected 
vertices 𝜎𝑟,ℊ 𝐼 = 𝔼ℊ[𝜎𝑟,𝐺(𝐼)]

𝑟, 𝐺, 𝐼 ↦ 𝜎𝑟,𝐺(𝐼)

a
y

z

u

v
w

x



Nonsubmodular vs Submodular InfMax

Submodular InfMax

• linear threshold, independent cascade

• Complexity: 
– (1 − 1/𝑒)-approximation

For all 𝐴 ⊂ 𝐵 ⊆ 𝑉, and 𝑥 ∈ 𝑉
𝑓𝑣 𝐴 ∪ {𝑥} − 𝑓𝑣 𝐴 ≥ 𝑓𝑣 𝐵 ∪ 𝑥 − 𝑓𝑣(𝐵)
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Nonsubmodular vs Submodular InfMax

Submodular InfMax

• linear threshold, independent cascade

• Complexity: 
– (1 − 1/𝑒)-approximation

Nonsubmodular InfMax

• 𝑟-complex contagions, general 
threshold model

• Complexity: 

– NP-hard to approximate within 𝑛1−𝜖

[KKT03]

– NP-hard to approximate within 𝑛1−𝜖 on 
SHBM if nodes can have different 
thresholds 𝑟 [ST17]



Outline

• Stochastic Hierarchical Blockmodel

• 𝑟-complex contagions

• Main result



Research Question

Find the best 𝐾 nodes to maximize adoptions

• Input

– stochastic hierarchical blockmodel, ℊ = (𝑉𝑇 , 𝐸𝑇 , 𝑤, 𝑣)

– 𝑟-complex contagion 

– Total number of seeds 𝐾, budget

• Output

– Seed set 𝐼 to maximize 𝜎𝑟,𝒢 𝐼 s.t. |𝐼| = 𝐾.

𝑤 𝑅 = 0.1

𝑤(𝐹) = 0.5

𝑤 𝐴 = 0.8,

𝑣 𝐴 = 30%

𝑤 𝐵 = 0.9,

𝑣 𝐵 = 10%

𝑤(𝐺) = 0.6

𝑤 𝐶 = 0.85,
𝑣 𝐶 = 20%

𝑤 𝐷 = 0.88,
𝑣 𝐷 = 20%

𝑤(𝐻) = 0.4
𝑤 𝐸 = 0.87,
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– 𝑟-complex contagion 

– Total number of seeds 𝐾, budget
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– Seed set 𝐼 to maximize 𝜎𝑟,𝒢 𝐼 ≈ max
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Main result

Given 𝑟, budget 𝐾, and a SHBM (𝑉𝑇 , 𝐸𝑇 , 𝑤, 𝑣) with 𝑛 → ∞, we 
should put all seed into a community 

𝑡∗ = argmax 𝑣 𝑡 𝑛 ⋅ 𝑤 𝑡 𝑟

– Large communities

– Proper separation

– Dense tree
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𝑤 𝐴 = 0.8,
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𝑤 𝐵 = 0.9,
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𝑤(𝐺) = 0.6

𝑤 𝐶
= 0.85, 𝑣 𝐶
= 20%

𝑤 𝐷
= 0.88, 𝑣 𝐷
= 20%

𝑤(𝐻) = 0.4 𝑤 𝐸 = 0.87,
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Observation 1

• Does r-complex contagion spread with constant number on
Erdős-Rényi Graph 𝒢(𝑛, 𝑝) ? [JLTV12]

Subcritical 𝑝 = 𝑜
1

𝑛
1
𝑟

doesn’t spread

Critical 𝑝 =
𝑐

𝑛
1
𝑟

spread with constant probability 

Supercritical 𝑝 = 𝜔
1

𝑛
1
𝑟

spread with high probability



Main Result

Given 𝑟, budget 𝐾, and a SHBM (𝑉𝑇 , 𝐸𝑇 , 𝑤, 𝑣) with 𝑛 → ∞, we 
should put all seed into a community 

𝑡∗ = argmax 𝑣 𝑡 𝑛 ⋅ 𝑤 𝑡 𝑟
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Main Result

Given 𝑟, budget 𝐾, and a SHBM (𝑉𝑇 , 𝐸𝑇 , 𝑤, 𝑣) with 𝑛 → ∞, we 
should put all seed into a community 

𝑡∗ = argmax 𝑣 𝑡 𝑛 ⋅ 𝑤 𝑡 𝑟

Critical, 
𝑐

𝑛
1
𝑟

Subcritical 𝑤(𝑅)

𝑤(𝐴) 𝑤(𝐵)



Observation 2

Given two isolated 𝐺(𝑛, 𝑝) with 

𝑝 = 𝑐𝑛−1/𝑟, and budget 𝐾, to 
maximize the infection you should:

1) Go all in (𝐾, 0)

2) Hedge your bet: (𝐾/2, 𝐾/2)
𝐺(𝑛, 𝑝) 𝐺(𝑛, 𝑝)



Take-Home Messages

• For nonsubmodular influence maximization (e.g., 𝑟-complex 
contagion), putting seeds together to create synergy is more 
beneficial.  

• In sharp contrast to submodular influence maximization (e.g., 
Linear Threshold, Independent Cascade) where we should 
spread the seeds to avoid waste of seeds’ power.



Open Problems on Influence Maximization

• Information about graphs

– Community structure, Centrality, Betweenness 

– Node query, Edge query

• Beyond submodular contagions models

– 𝑟-complex contagions

– general threshold [GGSY16]

– 2-quasi-submodular [ST17]



Technical Lemma

Let 𝐸𝑘
𝑛: the event that 𝑘 seeds do not infected the graph 𝐺(𝑛, 𝑝) with 

𝑝 = 𝑐𝑛−1/𝑟. For all 𝑘 ≥ 𝑟 − 1
Pr 𝐸𝑘+2

𝑛 Pr 𝐸𝑘
𝑛 < Pr(𝐸𝑘+1

𝑛 ) Pr(𝐸𝑘+1
𝑛 )

as 𝑛 → ∞.

𝑘 + 2 𝑘 𝑘 + 1 𝑘 + 1<

Both graphs are not infected Both graphs are not infected



Erdős-Rényi Graphs 𝒢(𝑛, 𝑝) with 𝑝 = 𝑐𝑛
−1

𝑟

Equivalent (when 𝑛 → ∞) 
inhomogeneous random walk on ℝ:
• Start at 𝑥 = 𝑘;
• In each iteration 𝑖:

– move to the left by 1 unit;

– sample 𝜉𝑖 ∼ Poisson 𝑖−1
𝑟−1

⋅ 𝑐𝑟 , 
move to right by 𝜉𝑖 units;

• Terminate if hits 𝑥 = 0;
Two cases:
• Hit 𝑥 = 0: not infected, 𝐸𝑘

𝑛

• Go to infinity: infected

0 𝑥𝑥 − 1 𝑥 − 1 + 𝜉𝑖



Back to our technical lemma

Let 𝐸𝑘
𝑛: the event that 𝑘 seeds do not infected the graph 𝐺(𝑛, 𝑝) with 

𝑝 = 𝑐𝑛−1/𝑟. For all 𝑘 ≥ 𝑟 − 1
Pr 𝐸𝑘+2

𝑛 Pr 𝐸𝑘
𝑛 < Pr(𝐸𝑘+1

𝑛 ) Pr(𝐸𝑘+1
𝑛 )

as 𝑛 → ∞.

(𝑘 + 2, 𝑘) (𝑘 + 1, 𝑘 + 1)

Both graphs are not infected

Hit (0,0)

A
B



A coupling argument

𝐴, 𝐵 are symmetric, 𝓔𝒔𝒚𝒎𝒎 𝐴 hits the 𝑥-axis, 𝓔𝒔𝒌𝒆𝒘

We couple the two walks 𝐴, 𝐵 in the same way until...



When 𝐴, 𝐵 are symmetric to 𝑦 = 𝑥, 𝓔𝒔𝒚𝒎𝒎



When 𝐴 hits the 𝑥-axis, 𝓔𝒔𝒌𝒆𝒘

• Both needs to move 𝑆 + 1 units 
to reach (0, 0).

– 𝐴: 𝑆 + 1 steps sequentially.

– 𝐵: 𝑆 steps in 𝑥-direction and 1 step 
in 𝑦-direction in parallel.

• 𝐵 is easier to reach (0, 0), as the 
Poisson mean is increasing.

(𝑠, 1)

(𝑠 + 1, 0)

𝜉𝑖 ∼ Poisson
𝑖 − 1

𝑟 − 1
⋅ 𝑐𝑟



When 𝐴 hits the 𝑥-axis, 𝓔𝒔𝒌𝒆𝒘

• Both needs to move 𝑆 + 1 units 
to reach (0, 0).

– 𝐴: 𝑆 + 1 steps sequentially.

– 𝐵: 𝑆 steps in 𝑥-direction and 1 step 
in 𝑦-direction in parallel.

• 𝐵 is easier to reach (0, 0), as the 
Poisson mean is increasing.



Beyond Dense Tree

• Find the densest community

Supercritical

Critical

Subcritical 𝑤(𝐵)

𝑤(𝐶)

𝑤(𝐸) 𝑤(𝐹)

𝑤(𝐷)

𝑤(𝐺)



Beyond Dense Tree

• Decompose into dense subtree

– Find the densest community

– Dynamic programming

Supercritical

Critical Θ
1

𝑛
1
𝑟

Dense subtree 

𝜔
1

𝑛
1+

1
𝑟

Nearly isolated 

𝜊
1

𝑛2

𝑤(𝑅)

𝑤(𝐴) 𝑤(𝐵)

𝑤(𝐶)

𝑤(𝐸) 𝑤(𝐹)

𝑤(𝐷)

𝑤(𝐺)


