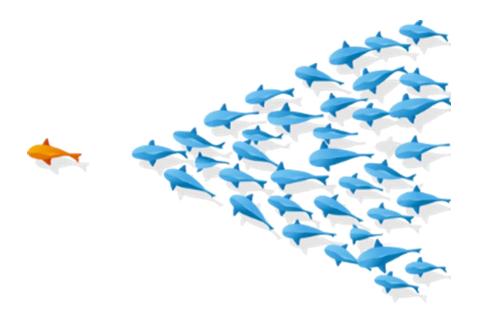
Think Globally, Act Locally: On the Optimal Seeding for Nonsubmodular Influence Maximization

Grant Schoenebeck, Biaoshuai Tao, Fang-Yi Yu

Contagions, Diffusion, Cascade...

- Ideas, beliefs, behaviors, and technology adoption spread through networks
- Why do we need to study this phenomena?
 - Better Understanding
 - Promoting good behaviors/beliefs
 - Stopping bad behavior



Influence Maximization

Find the best *K* nodes to maximize adoptions [KKTo3]

- Input
 - Social network G
 - Model of contagions
 - Total number of seeds K, budget

Influence Maximization

Find the best *K* nodes to maximize adoptions [KKTo3]

- Input
 - Social network G
 - Model of contagions
 - Total number of seeds K, budget
- Output
 - Seed set I, s.t. |I| = K

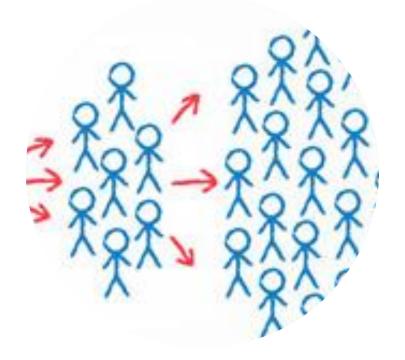
Research Question

Find the best *K* nodes to maximize adoptions

- Input
 - Stochastic hierarchical blockmodel (SHBM)
 - *r*-complex contagion
 - Total number of seeds K, budget
- Output
 - Seed set I, s.t. |I| = K

Motivation

Can we promote good behaviors/beliefs on a social network if we only know the community structure of the network?



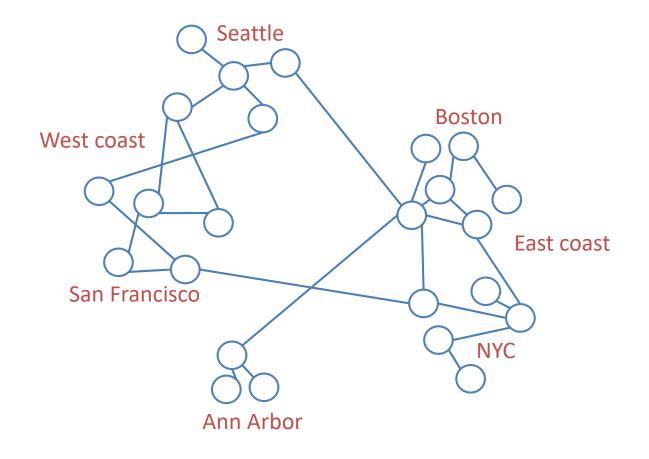
Outline

- Stochastic Hierarchical Blockmodel
- *r*-complex contagions
- Main result

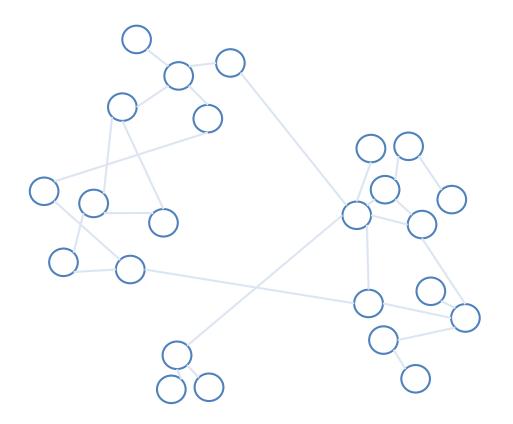
Outline

- Stochastic Hierarchical Blockmodel
- *r*-complex contagions
- Main result

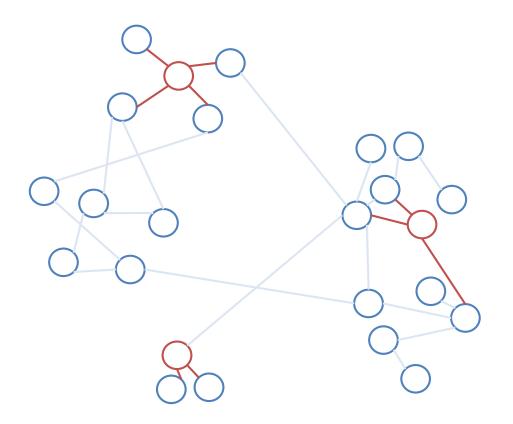
• Full information



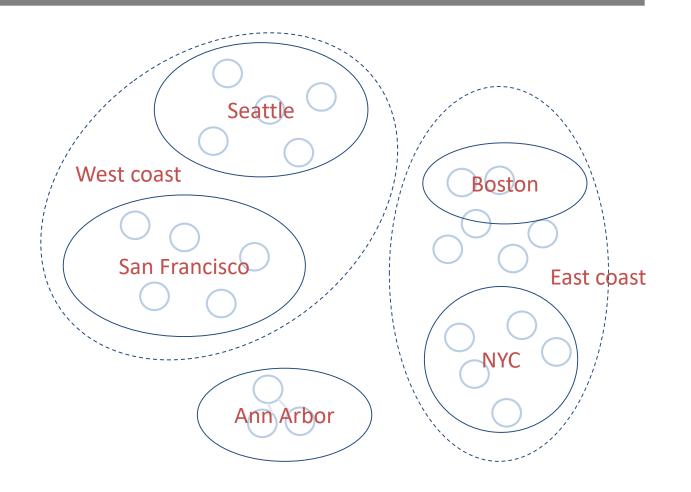
- Full information
- Query
 - Edge query, node query, ...



- Full information
- Query
 - Edge query, node query, ...

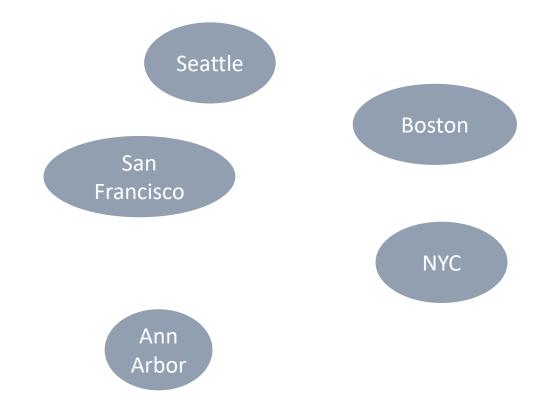


- Full information
- Query
 - Edge query, node query, ...
- Coarser information
 - Community structure,
 - Centrality,
 - Betweenness



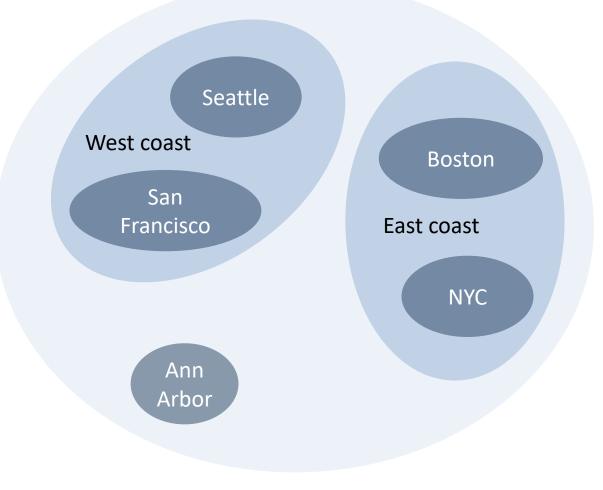
Community Structure

• Social networks often can be easily divided into communities densely connected internally.

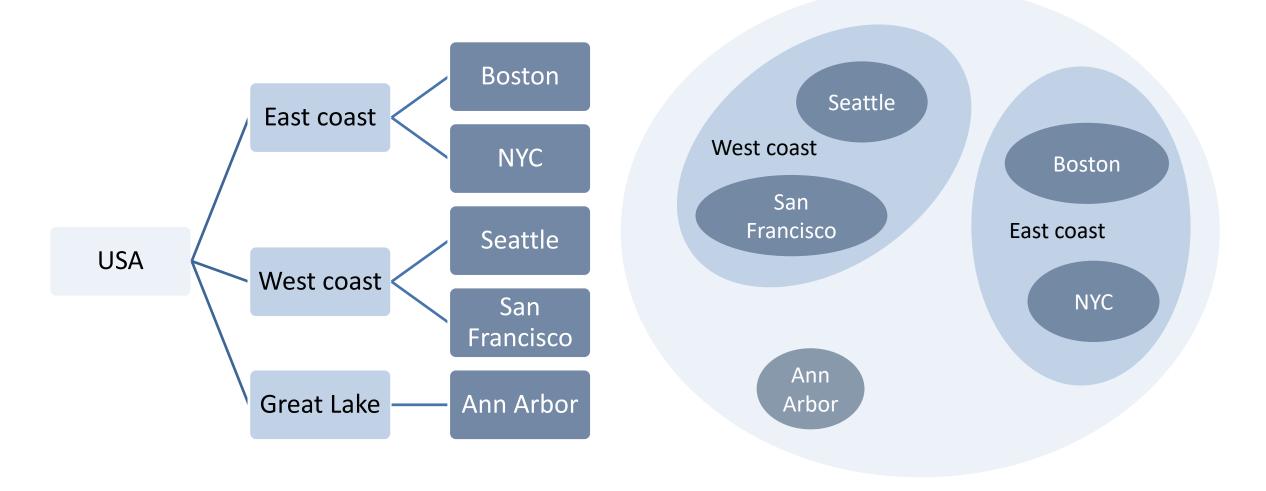


Hierarchical Community Structure

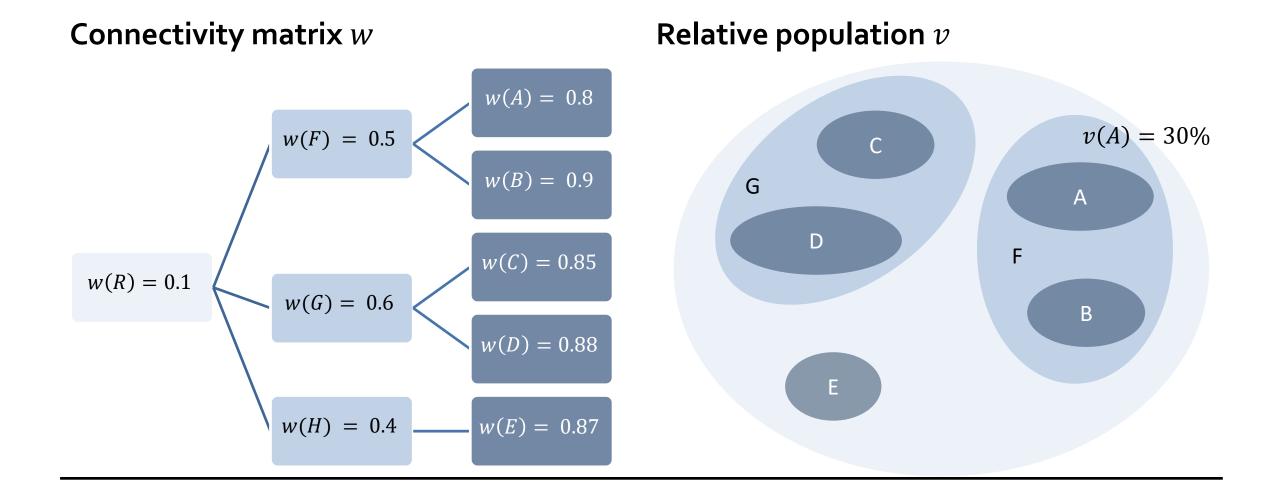
- Social networks often can be easily divided into communities densely connected internally.
- A community can be easily is divided into many subcommunities



Hierarchical Community Structure



Stochastic Hierarchical Blockmodel (V_T, E_T, w, v)

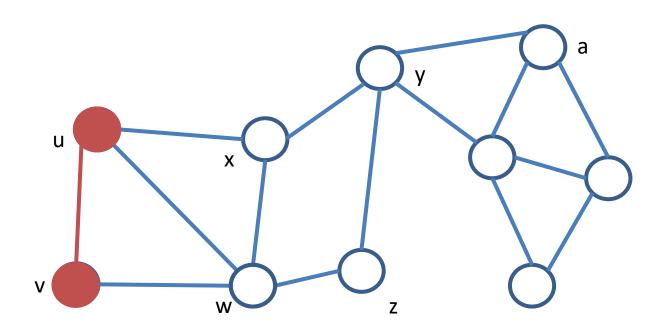


Outline

- Stochastic Hierarchical Blockmodel (SHBM)
- *r*-complex contagions
- Main result

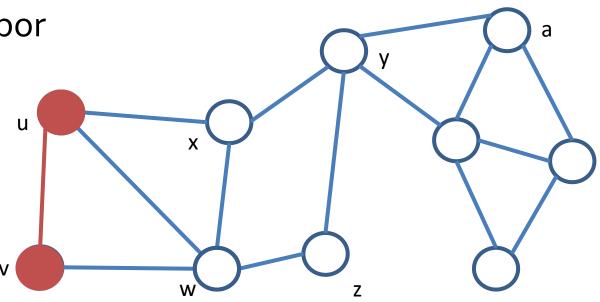
r-Complex Contagions [CLR 79; GEG13]

• Given an initial seed set $I = \{u, v\}$, and a graph G

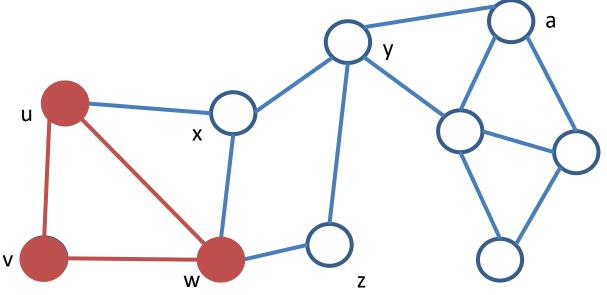


r-Complex Contagions [CLR 79; GEG13]

- Given an initial seed set $I = \{u, v\}$, and a graph G
- Node becomes infected if it has at least r(= 2) infected neighbor

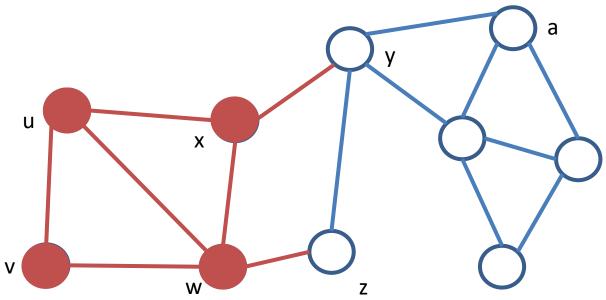


- Given an initial seed set $I = \{u, v\}$, and a graph G
- Node becomes infected if it has at least *r* infected neighbor

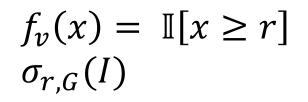


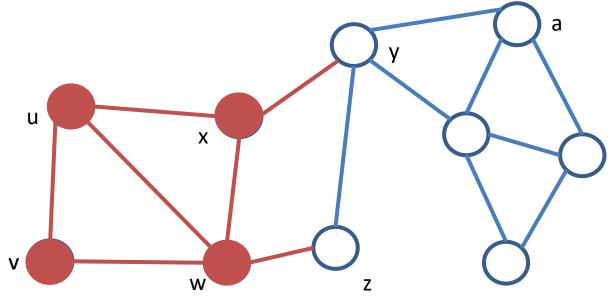
- Given an initial seed set *I* = {*u*, *v*}, and a graph *G*
- Node becomes infected if it has at least *r* infected neighbor

Local activation function $f_v(x) = \mathbb{I}[x \ge r]$



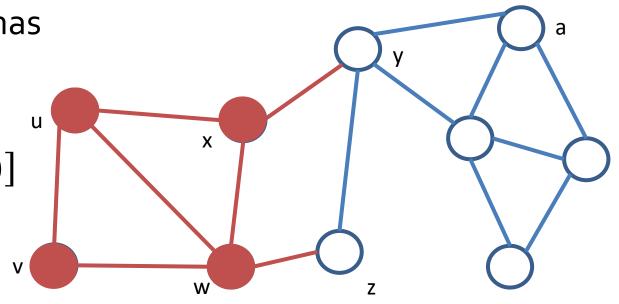
- Given an initial seed set $I = \{u, v\}$, and a graph G
- Node becomes infected if it has at least *r* infected neighbor
- The total number of infected vertices $\sigma_{r,G}(I)$





- Given an initial seed set I = {u, v}, and a distribution over graphs, g, e.g., SHBM.
- Node becomes infected if it has at least *r* infected neighbor
- The total number of infected vertices $\sigma_{r,g}(I) = \mathbb{E}_{g}[\sigma_{r,G}(I)]$

 $(r, G, I) \mapsto \sigma_{r,G}(I)$

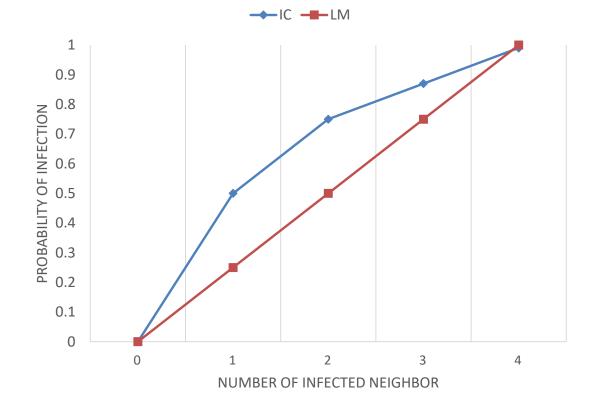


Nonsubmodular vs Submodular InfMax

Submodular InfMax

- linear threshold, independent cascade
- Complexity:
 - (1 1/e)-approximation

For all $A \subset B \subseteq V$, and $x \in V$ $f_v(A \cup \{x\}) - f_v(A) \ge f_v(B \cup \{x\}) - f_v(B)$

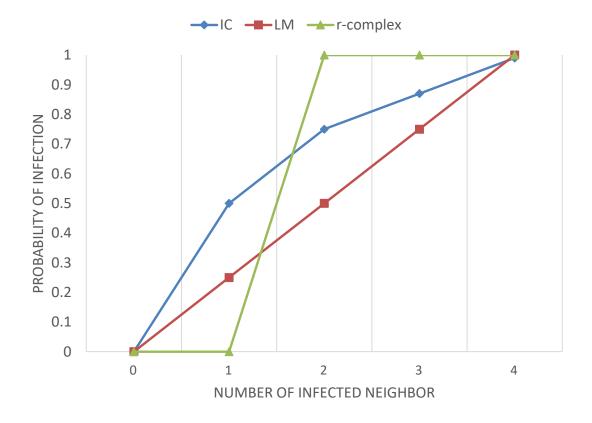


Nonsubmodular vs Submodular InfMax

Submodular InfMax

- linear threshold, independent cascade
- Complexity:
 - (1 1/e)-approximation

For all $A \subset B \subseteq V$, and $x \in V$ $f_{v}(A \cup \{x\}) - f_{v}(A) \ge f_{v}(B \cup \{x\}) - f_{v}(B)$



Nonsubmodular vs Submodular InfMax

Submodular InfMax

- linear threshold, independent cascade
- Complexity:
 - (1 1/e)-approximation

Nonsubmodular InfMax

- *r*-complex contagions, general threshold model
- Complexity:
 - NP-hard to approximate within $n^{1-\epsilon}$ [KKTo3]
 - NP-hard to approximate within $n^{1-\epsilon}$ on SHBM if nodes can have different thresholds r [ST17]

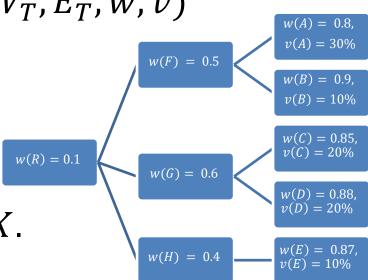
Outline

- Stochastic Hierarchical Blockmodel
- *r*-complex contagions
- Main result

Research Question

Find the best *K* nodes to maximize adoptions

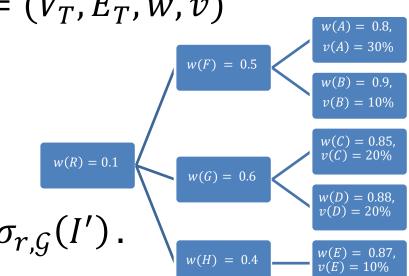
- Input
 - stochastic hierarchical blockmodel, $\mathcal{G} = (V_T, E_T, w, v)$
 - *r*-complex contagion
 - Total number of seeds K, budget
- Output
 - Seed set *I* to maximize $\sigma_{r,G}(I)$ s.t. |I| = K.



Research Question

Find the best *K* nodes to maximize adoptions

- Input
 - stochastic hierarchical blockmodel, $\mathcal{G} = (V_T, E_T, w, v)$
 - *r*-complex contagion
 - Total number of seeds K, budget
- Output
 - Seed set *I* to maximize $\sigma_{r,\mathcal{G}}(I) \approx \max_{|I'| \leq K} \sigma_{r,\mathcal{G}}(I')$.

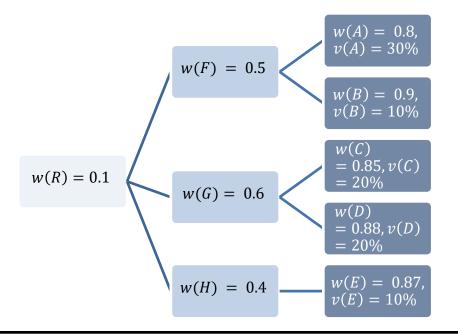


Main result

Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community

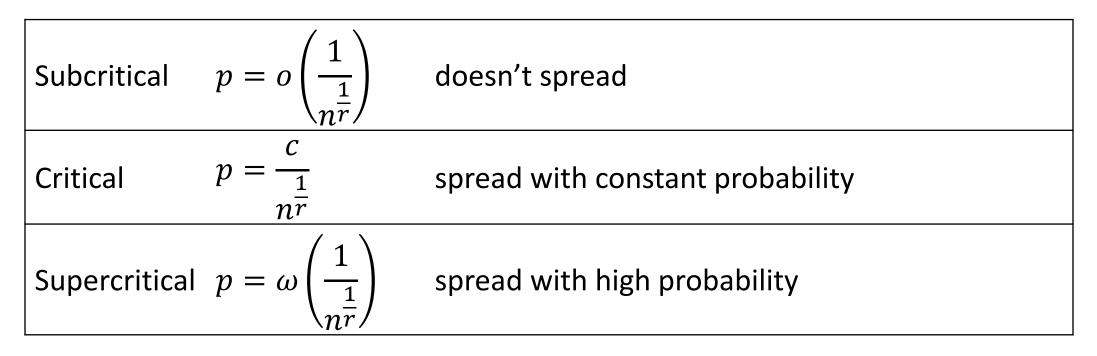
$$t^* = \arg \max v(t) n \cdot w(t)^r$$

- Large communities
- Proper separation
- Dense tree



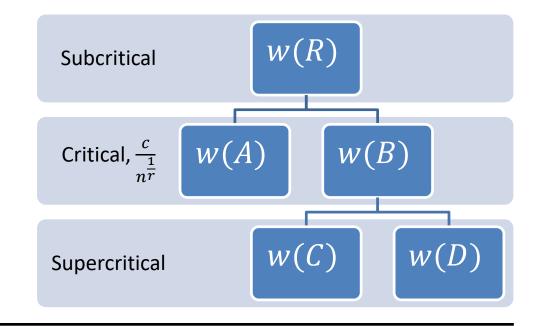
Observation 1

• Does r-complex contagion spread with constant number on Erdős-Rényi Graph G(n, p)? [JLTV12]



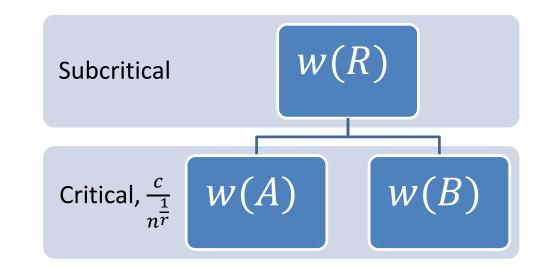
Main Result

Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community $t^* = \arg \max v(t)n \cdot w(t)^r$



Main Result

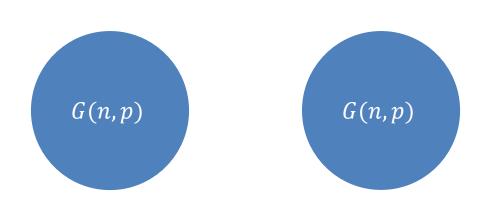
Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community $t^* = \arg \max v(t)n \cdot w(t)^r$



Observation 2

Given two isolated G(n, p) with $p = cn^{-1/r}$, and budget K, to maximize the infection you should:

- 1) Go all in (K, 0)
- 2) Hedge your bet: (K/2, K/2)

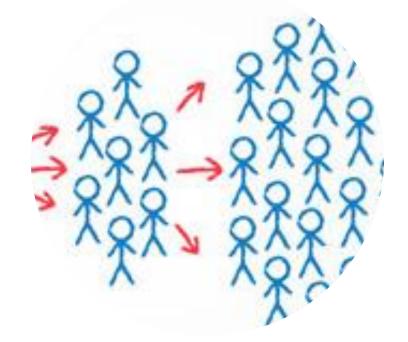


Take-Home Messages

- For nonsubmodular influence maximization (e.g., *r*-complex contagion), putting seeds together to create synergy is more beneficial.
- In sharp contrast to submodular influence maximization (e.g., Linear Threshold, Independent Cascade) where we should spread the seeds to avoid waste of seeds' power.

Open Problems on Influence Maximization

- Information about graphs
 - Community structure, Centrality, Betweenness
 - Node query, Edge query
- Beyond submodular contagions models
 - -r-complex contagions
 - general threshold [GGSY16]
 - 2-quasi-submodular [ST17]



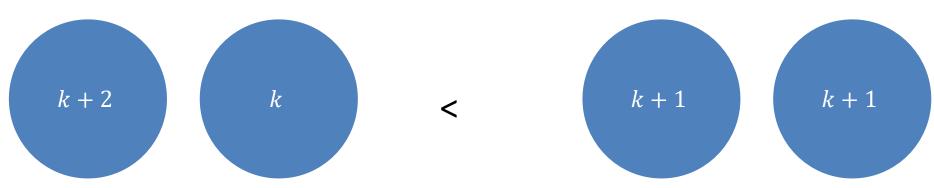
Technical Lemma

Let E_k^n : the event that k seeds *do not* infected the graph G(n, p) with $p = cn^{-1/r}$. For all $k \ge r - 1$ $\Pr(E_{k+2}^n) \Pr(E_k^n) < \Pr(E_{k+1}^n) \Pr(E_{k+1}^n)$

as $n \to \infty$.

Both graphs are not infected

Both graphs are not infected



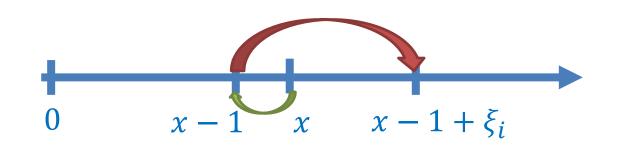
Erdős-Rényi Graphs G(n, p) with $p = cn^{\frac{1}{r}}$

Equivalent (when $n \to \infty$) inhomogeneous random walk on \mathbb{R} :

- Start at x = k;
- In each iteration *i*:
 - move to the left by 1 unit;
 - sample $\xi_i \sim \text{Poisson}\left(\binom{i-1}{r-1} \cdot c^r\right)$, move to right by ξ_i units;
- Terminate if hits x = 0;

Two cases:

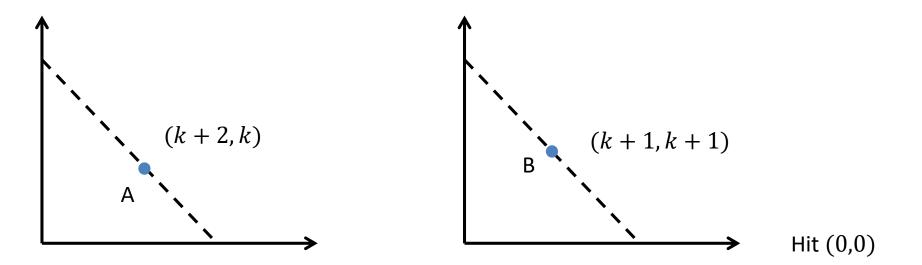
- Hit x = 0: not infected, E_k^n
- Go to infinity: infected



Back to our technical lemma

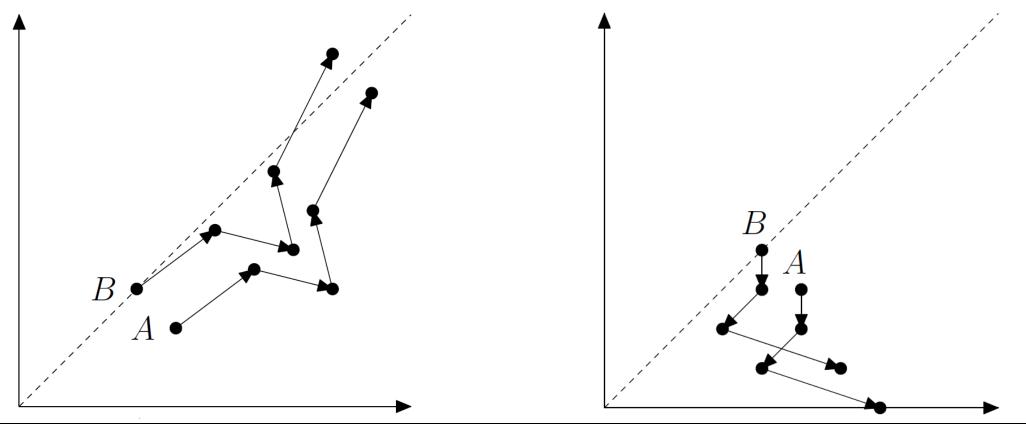
Let E_k^n : the event that k seeds <u>do not</u> infected the graph G(n, p) with $p = cn^{-1/r}$. For all $k \ge r - 1$ $\Pr(E_{k+2}^n) \Pr(E_k^n) < \Pr(E_{k+1}^n) \Pr(E_{k+1}^n)$ Both graphs are not infected

as $n \to \infty$.

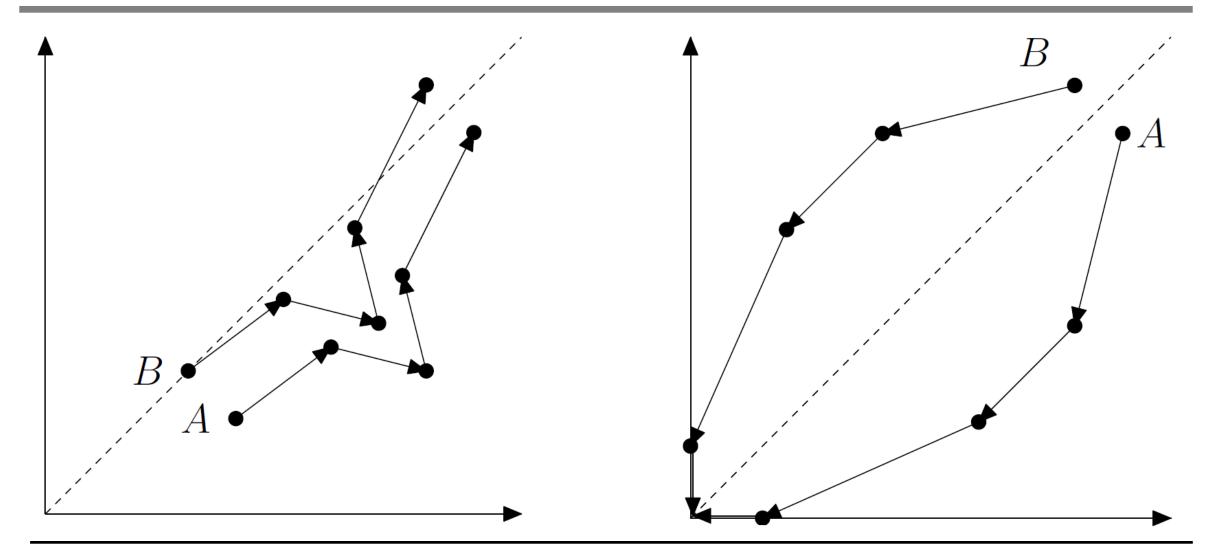


A coupling argument

We couple the two walks A, B in the same way until...A, B are symmetric, \mathcal{E}_{symm} A hits the x-axis, \mathcal{E}_{skew}



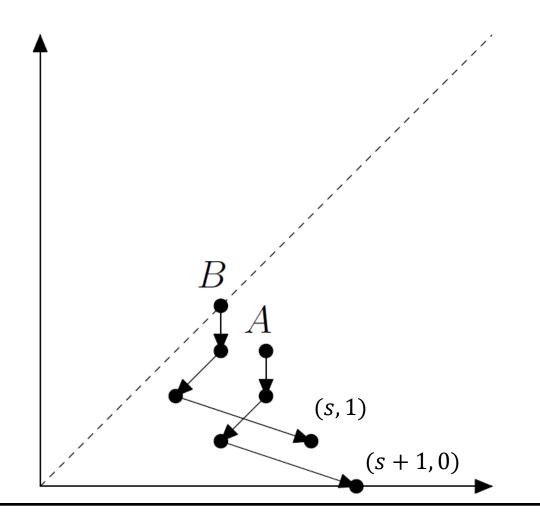
When A, B are symmetric to y = x, \mathcal{E}_{symm}



When A hits the x-axis, \mathcal{E}_{skew}

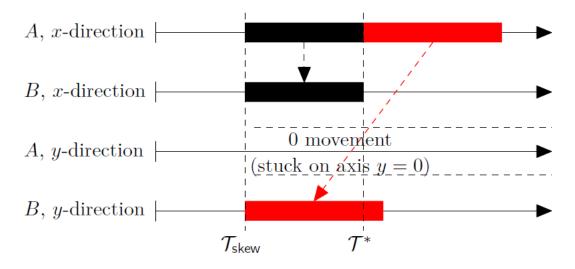
- Both needs to move *S* + 1 units to reach (0, 0).
 - -A: S + 1 steps *sequentially*.
 - B: S steps in x-direction and 1 step in y-direction in parallel.
- *B* is easier to reach (0, 0), as the Poisson mean is increasing.

$$\xi_i \sim \operatorname{Poisson}\left(\binom{i-1}{r-1} \cdot c^r\right)$$



When A hits the x-axis, \mathcal{E}_{skew}

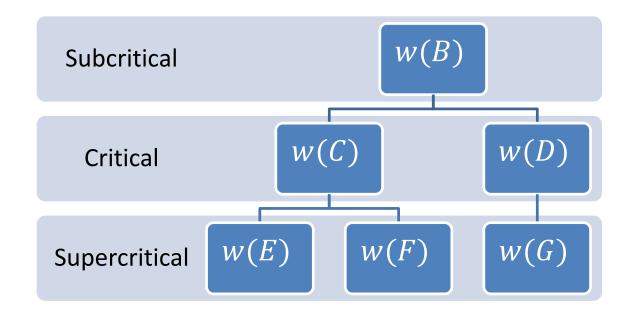
- Both needs to move *S* + 1 units to reach (0, 0).
 - -A: S + 1 steps sequentially.
 - B: S steps in x-direction and 1 step in y-direction in parallel.
- *B* is easier to reach (0, 0), as the Poisson mean is increasing.



The time line for the coupling after event \mathcal{E}_{skew} happens.

Beyond Dense Tree

• Find the densest community



Beyond Dense Tree

- Decompose into dense subtree
 - Find the densest community
 - Dynamic programming

