Volatility of Weak Ties Co-evolution of Selection and Influence in Social Networks

Fang-Yi Yu

Volatility of Weak Ties

Co-evolution of Selection and Influence in Social Networks

Jie Gao, Grant Schoenebeck, Fang-Yi Yu

Co-evolution of Selection and Influence in Social Networks

VOLATILITY OF WEAK TIES

An Experiment by Granovetter [1970]

• Weak Ties and Changing Jobs

Tie strength	Frequency	Found jobs
friend	1/week	16.7%
acquaintance	1/year	55.6%
stranger	less	27.8%

Volatility of Weak Ties

Changing Jobs

 bring fresh information to a social group

Bubble Filters

• unfriending disproportionately affect weak ties as compared to strong ties.

Outline

- Model
 - Opinion formation: Influence and Selection
 - Network: Strong and Weak Ties
- Simulation Results

Opinion Formation

- Influence
- Selection

Influence

- Influence
 - agents changing their opinions to match their neighbors

Influence

- Influence
 - agents changing their opinions to match their neighbors

Influence

- Influence
 - agents changing their opinions to match their neighbors

Influence f_{inf}

- Influence
 - agents changing their opinions to match their neighbors

$$-\chi^{t+1}(v) = 1 \text{ w.p. } f_{inf}(R^t(v))$$

Influence f_{inf}

- Influence
 - agents changing their opinions to match their neighbors

$$-\chi^{t+1}(v) = 1$$
 w.p. $f_{inf}(R^t(v))$

Selection

- Influence
 - agents changing their opinions to match their neighbors
- Selection
 - agents re-wiring to connect to new agents when the existing neighbor has a different opinion

Selection

- Influence
 - agents changing their opinions to match their neighbors
- Selection
 - agents re-wiring to connect to new agents when the existing neighbor has a different opinion

Selection

- Influence
 - agents changing their opinions to match their neighbors
- Selection
 - agents re-wiring to connect to new agents when the existing neighbor has a different opinion

Co-evolution of Selection and Influence

- Influence
 - agents changing their opinions to match their neighbors
 - bring new information through weak ties

Opinion Network

Co-evolution of Selection and Influence

- Influence
 - agents changing their opinions to match their neighbors
 - bring new information through weak ties
- Selection, p_{sel}
 - agents re-wiring to connect to new agents when the existing neighbor has a different opinion
 - unfriend weak ties

Opinion Network

Model of Network $G^0 = (V, E_S, E_W)$

- Strong ties E_S
 - grid edge
 - Not affected by selection

Model of Network $G^0 = (V, E_S, E_W)$

- Strong ties E_S
 - grid edge
 - Not affected by selection
- Weak ties E_W
 - random edge
 - affected by selection

Model of Network $G^0 = (V, E_S, E_W)$

- Strong ties *E*_S
 - grid edge
 - Not affected by selection
- Weak ties E_W
 - random edge
 - affected by selection
- Strength of strong ties, *q*_{strong}
 - Relative frequency of communication through strong ties

- Dynamic over binary opinion (χ^t)
 - Agent v has a random opinion $\chi^t(v) \sim \{0.1\}$
 - At round t + 1, a random node v is picked
- Selection w.p. *p*_{select}
 - Pick an incident weak tie (v, u) and rewire if $\chi^t(v) \neq \chi^t(u)$
- Influence w.p. 1 p_{select}
 - $R_S^t(v)/R_W^t(v)$ fraction of opinion 1 in strong/weak neighborhood of v
 - Update to 1 w.p. $f_{inf}(R^t(v))$

- Dynamic over binary opinion (χ^t)
 - Agent v has a random opinion $\chi^t(v) \sim \{0.1\}$
 - At round t + 1, a random node v is picked
- Selection w.p. *p*_{select}
 - Pick an incident weak tie (v, u) and rewire if $\chi^t(v) \neq \chi^t(u)$
- Influence w.p. 1 p_{select}
 - $R_S^t(v)/R_W^t(v)$ fraction of opinion 1 in strong/weak neighborhood of v
 - Update to 1 w.p. $f_{inf}(R^t(v))$

- Dynamic over binary opinion (χ^t)
 - Agent v has a random opinion $\chi^t(v) \sim \{0.1\}$
 - At round t + 1, a random node v is picked
- Selection w.p. *p*_{select}
 - Pick an incident weak tie (v, u) and rewire if $\chi^t(v) \neq \chi^t(u)$
- Influence w.p. $1 p_{select}$
 - $R_S^t(v)/R_W^t(v)$ fraction of opinion 1 in strong/weak neighborhood of v
 - Update to 1 w.p. $f_{inf}(R^t(v))$

- Dynamic over binary opinion (χ^t)
 - Agent v has a random opinion $\chi^t(v) \sim \{0.1\}$
 - At round t + 1, a random node v is picked
- Selection w.p. *p*_{select}
 - Pick an incident weak tie (v, u) and rewire if $\chi^t(v) \neq \chi^t(u)$
- Influence w.p. $1 p_{select}$
 - $R_S^t(v)/R_W^t(v)$ fraction of opinion 1 in strong/weak neighborhood of v
 - Update to 1 w.p. $f_{inf}(R^t(v))$

Outline

- Model
 - Opinion formation: Influence and Selection
 - Network: Strong and Weak Ties
- Simulation Results

Consensus Time of Voter Model

Consensus Time of Iterative Majority

Consensus Time

Low selection->Spread

High Selection->Bubble Filter

Strong Ties

Fast, Slow, and Stuck

Take-home Message

- In influence dynamics, the strength of weak ties is to get new information and fresh ideas into the comfort zone created by strong ties.
- In selection dynamics, the role of strong ties and weak ties, in terms of spreading fresh ideas, are swapped.

