Engineering Agreement: The Naming Game with Asymmetric and Heterogeneous Agents

Jie Gao, Bo Li, Grant Schoenebeck, Fang-Yi Yu

Social Convention

- Conventions are universally adopted from two or more alternatives.
- Language, etiquette, or custom.

Agreement on Convention

Engineering Agreement

- What can help or harm convergence?
 - Homogeneity or heterogeneity
 - Community structure
- How robust are the dynamics to possible manipulations?

Naming Game [Baronchelli 06]

• A agent-based process on a network

- A agent-based process on a network
 - Each agent has inventory of names

- A agent-based process on a network
 - Each agent has inventory of names

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name
 - Success

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name
 - Success: both remove all other names

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name
 - Success: both remove all other names
 - Empty

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name
 - Success: both remove all other names
 - Empty: speaker invent a new word

- A agent-based process on a network
 - Each agent has inventory of names
 - At each time an edge is selected at random, and one is speaker and the other is listener.
 - Failure: listener adds the new name
 - Success: both remove all other names
 - Empty: speaker invent a new word
 - Convergence

Different initial states

Empty initial states

Segregated initial states

Motivating Questions

- What can help or harm convergence?
 - Homogeneity or heterogeneity
 - Community structure
- How robust are the dynamics to possible manipulations?

Different graphs

Heterogeneous

Heterogeneous

Heterogeneous

Motivating Questions

- What can help or harm convergence?
 - Homogeneity or heterogeneity
 - Community structure
- How robust are the dynamics to possible manipulations?

Community Structure

Disjoint cliques

Tree Structure

Tree Structure

Adding Homogeneity

Community Structure

Simulation on Disjoint Cliques

Empty initial states

Segregated initial states

Simulation on Disjoint Cliques

Empty initial states

Segregated initial states

• Segregated start: for $p < p_0 \approx 0.110$, consensus time= $\exp(\Omega(n))$

• Segregated start: for $p < p_0 \approx 0.110$, consensus time= $\exp(\Omega(n))$

- Segregated start: for $p < p_0 \approx 0.110$, consensus time= $\exp(\Omega(n))$
 - Mean field approximation

- Segregated start: for $p < p_0 \approx 0.110$, consensus time= $\exp(\Omega(n))$
 - Mean field approximation
 - Stability of autonomous system
 - Local stability
 - Global stability

Motivating Questions

- What can help or harm convergence?
 - Homogeneity or heterogeneity
 - Community structure
- How robust are the dynamics to possible manipulations?

Robustness

Stubborn nodes

• How and when can such nodes affect the name to which the dynamics converge?

Stubborn nodes

- How and when can such nodes affect the name to which the dynamics converge?
 - The network topology
 - The time when the stubborn nodes are activated

Stubborn nodes and network

Graph size = 1000

Graph size = 10000

Adding stubborn nodes after consensus

• After consensus: with $p < p_0 \approx 0.108$ fraction of stubborn nodes, the consensus time = $\exp(\Omega(n))$.

Engineering Agreement

- What can help or harm convergence?
 - Homogeneity or heterogeneity
 - Community structure
- How robust are the dynamics to possible manipulations?

QUESTIONS?

