Learning and Strongly Truthful Multi-Task Peer Prediction

Grant Schoenebeck, University of Michigan
Fang-Yi Yu, Harvard University

Motivation Questions

How can we design mechanisms to collect agents' truthful report without verification?

- Continuous signal
- Minimal assumption on agent's prior

Peer Prediction without Verification

People are connected and their signals are dependent

Can we design strongly truthful mechanisms?

- Bayesian Nash equilibrium
- Highest payment

Multi-task setting peer prediction (PP)

	signals	strategy	reports
x_{1}, \ldots, x_{m}	$\xrightarrow{\theta_{A}}$	$\hat{\boldsymbol{x}}=\hat{x}_{1}, \ldots, \hat{x}_{m}$	payment
$P_{X, Y}$			
	y_{1}, \ldots, y_{m}	$\left.\xrightarrow{\theta_{B}}, \hat{\boldsymbol{y}}\right)$	
		$\hat{\boldsymbol{y}}=\hat{y}_{1}, \ldots, \hat{y}_{m}$	

- a prior similar tasks
- task independent strategy

Data processing inequality and PP

Strategy as a noisy channel

- $Y \xrightarrow{P_{X \mid Y}} X \xrightarrow{\theta_{A}} \hat{X}$ Is a Markov chain

Mutual information

- Shannan: $M I(X ; Y)=\int \log \frac{d P_{X Y}}{d P_{X} P_{Y}} d P_{X Y}$
- Ф-divergence:

$$
M I^{\Phi}(X ; Y)=\int \Phi\left(\frac{d P_{X Y}}{d P_{X} P_{Y}}\right) d P_{X} P_{Y}
$$

- Data processing inequality

$$
\underset{\text { Truth-telling }}{M I^{\Phi}(Y ; X)} \geq M I^{\Phi}(Y ; \hat{X}) \geq \underset{\text { Non-truthtufu }}{M I^{\Phi}(\hat{Y} ; \hat{X})}
$$

Strategy space

Estimate mutual information

Given Alice and Bob reports on m tasks, how can we estimate mutual information between their reports?

\hat{x}_{1}	\hat{x}_{2}	\ldots	\hat{x}_{b}	\ldots	\hat{x}_{p}	\ldots	\hat{x}_{q}	\ldots	\hat{x}_{m}
\hat{y}_{1}	\hat{y}_{2}	\ldots	\hat{y}_{b}	\ldots	\hat{y}_{p}	\ldots	\hat{y}_{q}	\ldots	\hat{y}_{m}

Plug-in estimation
$\widehat{P}_{X, Y}$ from a pair of reports on a common task.
$\hat{P}_{X} \hat{P}_{Y}$ from a pair of reports on distinct tasks.
Accuracy and error

- No unbiased estimator
- Uniform error upper bound

Variational Statistics to Mechanisms

Convex conjugate

- $\Phi(a)=\sup _{b} a b-\Phi^{*}(b)$ with maximum at $b=\Phi^{\prime}(a)$.
- $M I^{\Phi}=\sup _{K}\left\{\mathbb{E}_{P_{X, Y}}[K(x, y)]-\mathbb{E}_{P_{X} P_{Y}}\left[\Phi^{*} K(x, y)\right]\right\}$ with maximum at $K^{\star}(x, y)=\Phi^{\prime}\left(\frac{d P_{X Y}}{d P_{X} P_{Y}}(x, y)\right)$

Ideal Scoring function

Pairing mechanism

1. Estimate K^{\star} from learning tasks.
2. Sample $P_{X, Y}$ from a pair of reports on a common task.
3. Sample $P_{X} P_{Y}$ from a pair of reports on distinct tasks.
4. Pay $K^{\star}\left(x_{b}, y_{b}\right)-\Phi^{*}\left(K^{\star}\left(x_{p}, y_{q}\right)\right)$

x_{1}	x_{2}	\ldots	x_{b}	\ldots	x_{p}	\ldots	x_{q}	\ldots	\ldots	\ldots	x_{m}
y_{1}	y_{2}	\ldots	y_{b}	\ldots	y_{p}	\ldots	y_{q}	\ldots	\ldots	\ldots	y_{m}

Maximum happens only if both

- Ideal scoring function $\widehat{K}=K^{\star}=\Phi^{\prime}\left(\frac{d P_{X Y}}{d P_{X} P_{Y}}\right)$
- Truthful report

Approximated Strongly truthful

