Consensus of Interacting Particle Systems on Erdős–Rényi Graphs

Grant Schoenebeck, Fang-Yi Yu

Interacting Particle Systems

- A perfect toy model of opinion dynamics
 - Agents on a graph G with opinions/types
 - Opinions update locally
- Phenomena of interest
 - Convergence
 - Consensus

Interacting Particle Systems

- A perfect toy model of opinion dynamics
 - Agents on a graph G with opinions/types
 - Opinions update locally
- Phenomena of interest
 - Convergence
 - Consensus

The <dynamic> converge to consensus quickly in <graphs>

Outline

- What is our model of <*dynamic*>?
- The <*dynamic*> reaches consensus quickly in complete graph?
- The <dynamic> reaches consensus quickly in $G_{n,p}$?

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v)$ updates to a random neighbor's opinion

Voter model [Aldous 13]

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v)$ updates to a random neighbor's opinion

Iterative majority

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$

Iterative majority

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random

Iterative majority [Mossel et al 14]

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v) = 1$ if 1 is the majority opinion in its neighborhood. $X_t(v) = 0$ otherwise

Iterative majority [Mossel et al 14]

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v) = 1$ if 1 is the majority opinion in its neighborhood. $X_t(v) = 0$ otherwise

Iterative 3-majority

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$

Iterative 3-majority

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random

Iterative 3-majority

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - Collects the opinion of *3* randomly chosen neighbors

Iterative 3-majority [Doerr et al 11]

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - Collects the opinion of *3* randomly chosen neighbors
 - Updates $X_t(v)$ to the opinion of the majority of those 3 opinions.

Common Property

- Fixed a graph G = (V, E) opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random

The update of opinion only depends on the fraction of opinions amongst its neighbors

Node Dynamic (G, f, X_0)

- Fixed a graph G = (V, E) opinion set {0,1}, an update function f
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v) = 1$ w.p. $f(r_{X_{t-1}(v)})$; = 0 otherwise

Node Dynamic (G, f, X_0)

- Fixed a graph G = (V, E) opinion set $\{0,1\}$, an update function f
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v) = 1$ w.p. $f(r_{X_{t-1}(v)});$ = 0 otherwise

Outline

- What is our model of <*dynamic*>?
- The <*dynamic*> reaches consensus quickly in complete graph?

Which are similar to iterative majority, 3-majority

A Warm-up Theorem

• Given a node dynamic (K_n, f, X_0) over the complete graph. If the update function f is "rich get richer", then the maximum expected consensus time $O(n^2)$

A Warm-up Theorem

• Given a node dynamic (K_n, f, X_0) over the complete graph. If the update function f is "rich get richer", then the maximum expected <u>consensus time $O(n^2)$ </u>

Hitting Time

- $(X_0, X_1, ...)$ is a discrete time-homogeneous Markov chain with finite state space Ω and transition kernel P.
- Hitting time for $A \subset \Omega$: $\tau_A = \min\{t \ge 0 : X_t \in A\}$.

A Warm-up Theorem

 Given a node dynamic (K_n, f, X₀) over the complete graph. If the update function f is "like majority", then the maximum expected <u>hitting time for consensus configuration is small</u>

More about Hitting Time

• Expected hitting time and potential function

 τ_A Expected hitting time for $A \subset \Omega$

$$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$$

More about Hitting Time

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] & \text{if } x \notin A, \\ \mathbf{E}[\psi(x)] \ge 0 & \text{if } x \in A \end{cases}$

More about Hitting Time

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$	
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] & \text{if } x \notin A, \\ \mathbf{E}[\psi(x)] \ge 0 & \text{if } x \in A \end{cases}$	
$\forall \alpha \in O = (\alpha) \leq d_{1}(\alpha)$		

 $\forall x \in \Omega, \tau_A(\mathbf{x}) \leq \psi(x)$

A Conventional Approach for the Theorem

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] & \text{if } x \notin A, \\ \mathbf{E}[\psi(x)] \ge 0 & \text{if } x \in A \end{cases}$

 $\forall x \in \Omega, E[\tau_A(\mathbf{x})] \leq \psi(x)$

• Guess a function ψ (only depends on the number of 1)

Outline

- What is our model of <*dynamic*>?
- The <*dynamic*> reaches consensus quickly in complete graph?
- The <dynamic> reaches consensus quickly in $G_{n,p}$?

The Main Theorem

• Given a node dynamic (G, f, X_0) over $G \sim G_{n,p}$ where $p = \Omega(1)$, and f be "smooth rich get richer", the maximum expected consensus time is $O(n \log n)$ with high probability.

The Conventional Approach

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] & \text{if } x \notin A, \\ \mathbf{E}[\psi(x)] \ge 0 & \text{if } x \in A \end{cases}$

 $\forall x \in \Omega, E[\tau_A(\mathbf{x})] \leq \psi(x)$

• Guess a function ψ (only depends on the number of 1s)

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] & \text{if } x \notin A, \\ \mathbf{E}[\psi(x)] \ge 0 & \text{if } x \in A \end{cases}$

 $\forall x \in \Omega, E[\tau_A(\mathbf{x})] \leq \psi(x)$

• Guess a function ψ (only depends on the number of 1s)

Reduce to One Dimension

• Expected hitting time and potential function

τ_A Expected hitting time for $A \subset \Omega$	ψ Potential function for $ au_A$	
$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases}$	$-g_{\text{CM}}$	$\begin{array}{l} x \not\in A, \\ x \in A \end{array}$
$\forall x \in \Omega, \tau_A(\mathbf{x}) \leq \psi(x)$		

• Guess a function ψ (only depends on the number of 1s)

• Expected hitting time and potential function

$\begin{cases} \mathbf{E}[\tau_A(x)] = 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\tau_A(y)] & \text{if } x \notin A, \\ \mathbf{E}[\tau_A(x)] = 0 & \text{if } x \in A \end{cases} \end{cases}$	$\begin{cases} \mathbf{E}[\psi(x)] \ge 1 + \sum_{y \in \Omega} P_{x,y} \mathbf{E}[\psi(y)] \\ \mathbf{E}[\psi(x)] \ge 0 \end{cases}$	$\begin{array}{l} \text{if } x \not\in A, \\ \text{if } x \in A \end{array}$

 $\forall x \in \Omega, E[\tau_A(\mathbf{x})] \leq \psi(x)$

• Construct a function ψ (only depends on the number of 1s)

Expected hitting time and potential function

A system of linear inequalities with variable $\{\psi(x)\}_{x\in\Omega}$

• Construct a function ψ (only depends on the number of 1s)

Proof Outline

- Control the system of linear inequalities
- Construct {φ(k)}_{k∈[n]} iteratively satisfying the system of linear inequalities.

Reduce to one dimensional

Reduce to birth-death process

Proof Outline

- Control the system
 - Drift: $\{p^+(x) p^-(x)\}_{x \in \Omega}$
 - Non-laziness: $\{p^+(x)\}_{x\in\Omega}$
- Construct {φ(k)}_{k∈[n]} iteratively satisfying the system of linear inequalities.

Future Work

- Does <u>iterative majority</u> reach consensus fast in dense Erdős– Rényi random graphs?
- Does iterative majority reach consensus fast in <u>sparse</u> Erdős– Rényi random graphs? Or expander+?