# Consensus of Interacting Particle Systems on Erdős-Rényi Graphs 

Grant Schoenebeck, Fang-Yi Yu

## Interacting Particle Systems

- A perfect toy model of opinion dynamics
- Agents on a graph G with opinions/types
- Opinions update locally
- Phenomena of interest
- Convergence
- Consensus



## Interacting Particle Systems

- A perfect toy model of opinion dynamics
- Agents on a graph G with opinions/types
- Opinions update locally
- Phenomena of interest
- Convergence
- Consensus



## Goal

The <dynamic> converge to consensus quickly in <graphs>

## Outline

- What is our model of <dynamic>?
- The <dynamic> reaches consensus quickly in complete graph?
- The <dynamic> reaches consensus quickly in $G_{n, p}$ ?


## Voter model

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$



## Voter model

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At round t ,
- A node $v$ is picked uniformly at random


## Voter model

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At round t ,
- A node $v$ is picked uniformly at random


## Voter model

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At round $t$,
- A node $v$ is picked uniformly at random
- $X_{t}(v)$ updates to a random neighbor's opinion



## Voter model [Aldous 13]

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At round t ,
- A node $v$ is picked uniformly at random
- $X_{t}(v)$ updates to a random neighbor's opinion



## Iterative majority

- Fixed a graph $G=(V, E)$ opinion set $\{0,1\}$
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$



## Iterative majority

- Fixed a graph $G=(V, E)$ opinion set $\{0,1\}$
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At round t ,
- A node $v$ is picked uniformly at random


## Iterative majority [Mossel et al 14]

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At roundt,
- A node $v$ is picked uniformly at random
- $X_{t}(v)=1$ if 1 is the majority opinion in its neighborhood.
$X_{t}(v)=0$ otherwise


## Iterative majority [Mossel et al 14]

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At roundt,
- A node $v$ is picked uniformly at random
- $X_{t}(v)=1$ if 1 is the majority opinion in its neighborhood.
$X_{t}(v)=0$ otherwise


## Iterative 3-majority

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$



## Iterative 3-majority

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At round t ,
- A node $v$ is picked uniformly at random


## Iterative 3-majority

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At roundt,
- A node $v$ is picked uniformly at random
- Collects the opinion of 3 randomly chosen neighbors



## Iterative 3-majority [Doerr et al 11]

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At roundt,
- A node $v$ is picked uniformly at random
- Collects the opinion of 3 randomly chosen neighbors
- Updates $X_{t}(v)$ to the opinion of the majority of those 3 opinions.


## Common Property

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration
$X_{0}: V \mapsto\{0,1\}$
- At round $t$,
- A node $v$ is picked uniformly at random

The update of opinion only depends on the fraction of opinions amongst its neighbors


## Node Dynamic ( $G, f, X_{0}$ )

- Fixed a graph $G=(V, E)$ opinion set $\{0,1\}$, an update function $\boldsymbol{f}$
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At round t ,
- A node $v$ is picked uniformly at random
- $\boldsymbol{X}_{\boldsymbol{t}}(\boldsymbol{v})=1$ w.p. $\boldsymbol{f}\left(r_{X_{t-1}(v)}\right)$;

$$
=0 \text { otherwise }
$$



## Node Dynamic ( $G, f, X_{0}$ )

- Fixed a graph $G=(V, E)$ opinion set $\{0,1\}$, an update function $f$
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At round t ,
- A node v is picked uniformly at random
- $X_{t}(v)=1$ w.p. $f\left(r_{X_{t-1}(v)}\right)$;

$$
=0 \text { otherwise }
$$



## Outline

-What is our model of $<$ dynamic>?

- The <dynamic> reaches consensus quickly in complete graph?

Which are similar to iterative majority, 3-majority

## A Warm-up Theorem

- Given a node dynamic ( $K_{n}, f, X_{\mathbf{0}}$ ) over the complete graph. If the update function $f$ is "rich get richer", then the maximum expected consensus time $O\left(n^{2}\right)$



## A Warm-up Theorem

- Given a node dynamic ( $K_{n}, f, X_{\mathbf{0}}$ ) over the complete graph. If the update function $f$ is "rich get richer", then the maximum expected consensus time $O\left(n^{2}\right)$


## Hitting Time

- $\left(X_{0}, X_{1}, \ldots\right)$ is a discrete time-homogeneous Markov chain with finite state space $\Omega$ and transition kernel $P$.
- Hitting time for $A \subset \Omega: \tau_{A}=\min \left\{t \geq 0: X_{t} \in A\right\}$.


## A Warm-up Theorem

- Given a node dynamic ( $K_{n}, f, X_{\mathbf{0}}$ ) over the complete graph. If the update function $f$ is "like majority", then the maximum expected hitting time for consensus configuration is small


## More about Hitting Time

- Expected hitting time and potential function

$$
\begin{aligned}
& \tau_{A} \text { Expected hitting time for } A \subset \Omega \\
& \begin{cases}\mathbf{E}\left[\tau_{A}(x)\right]=1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}\left[\tau_{A}(y)\right] & \text { if } x \notin A, \\
\mathbf{E}\left[\tau_{A}(x)\right]=0 & \text { if } x \in A\end{cases}
\end{aligned}
$$

## More about Hitting Time

- Expected hitting time and potential function

| $\tau_{A}$ Expected hitting time for $A \subset \Omega$ | $\psi$ Potential function for $\tau_{A}$ |
| :--- | :--- |
| $\begin{cases}\mathbf{E}\left[\tau_{A}(x)\right]=1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}\left[\tau_{A}(y)\right] & \text { if } x \notin A, \\ \mathbf{E}\left[\tau_{A}(x)\right]=0 & \text { if } x \in A\end{cases}$ | $\begin{cases}\mathbf{E}[\psi(x)] \geq 1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}[\psi(y)] & \text { if } x \notin A, \\ \mathbf{E}[\psi(x)] \geq 0 & \text { if } x \in A\end{cases}$ |

## More about Hitting Time

- Expected hitting time and potential function



## A Conventional Approach for the Theorem

- Expected hitting time and potential function

| $\tau_{A}$ Expected hitting time for $A \subset \Omega$ | $\psi$ Potential function for $\tau_{A}$ |
| :--- | :--- |
|  |  |
| $\left\{\begin{array}{lll}\mathbf{E}\left[\tau_{A}(x)\right]=1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}\left[\tau_{A}(y)\right] & \text { if } x \notin A, \\ \mathbf{E}\left[\tau_{A}(x)\right]=0 & \text { if } x \in A\end{array}\right.$ |  |
| $\forall x \in \Omega, E\left[\tau_{A}(\mathrm{x})\right] \leq \psi(x)$ |  |

- Guess a function $\psi$ (only depends on the number of 1 )


## Outline

- What is our model of <dynamic>?
- The <dynamic> reaches consensus quickly in complete graph?
- The <dynamic> reaches consensus quickly in $G_{n, p}$ ?


## The Main Theorem

- Given a node dynamic $\left(G, f, X_{\mathbf{0}}\right)$ over $G \sim G_{n, p}$ where $p=$ $\Omega(1)$, and $f$ be "smooth rich get richer", the maximum expected consensus time is $O(n \log n)$ with high probability.



## The Conventional Approach

- Expected hitting time and potential function

| $\tau_{A}$ Expected hitting time for $A \subset \Omega$ | $\psi$ Potential function for $\tau_{A}$ |
| :--- | :--- |
|  |  |
| $\left\{\begin{array}{lll}\mathbf{E}\left[\tau_{A}(x)\right]=1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}\left[\tau_{A}(y)\right] & \text { if } x \notin A, \\ \mathbf{E}\left[\tau_{A}(x)\right]=0 & \text { if } x \in A\end{array}\right.$ |  |
| $\forall x \in \Omega, E\left[\tau_{A}(\mathrm{x})\right] \leq \psi(x)$ |  |
| $\mathbf{E}[\psi(x)] \geq 0$ |  |

- Guess a function $\psi$ (only depends on the number of 1 s )


## Observation 1

- Expected hitting time and potential function

| $\tau_{A}$ Expected hitting time for $A \subset \Omega$ | $\psi$ Potential function for $\tau_{A}$ |
| :--- | :--- |
| $\left\{\begin{array}{lll}\mathbf{E}\left[\tau_{A}(x)\right]=1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}\left[\tau_{A}(y)\right] & \text { if } x \notin A, \\ \mathbf{E}\left[\tau_{A}(x)\right]=0 & \text { if } x \in A\end{array}\right.$ | $\mathbf{E}[\psi(x)] \geq 1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}[\psi(y)]$ if $x \notin A$, <br> $\mathbf{E}[\psi(x)] \geq 0$ if $x \in A$ |
| $\forall x \in \Omega, E\left[\tau_{A}(\mathrm{x})\right] \leq \psi(x)$ |  |

- Guess a function $\psi$ (only depends on the number of 1 s)



## Reduce to One Dimension



## Observation 2

- Expected hitting time and potential function

$$
\begin{aligned}
& \tau_{A} \text { Expected hitting time for } A \subset \Omega \quad \psi \text { Potential function for } \tau_{A} \\
& \left\{\begin{array} { l l } 
{ \mathbf { E } [ \tau _ { A } ( x ) ] = 1 + \sum _ { y \in \Omega } P _ { x , y } \mathbf { E } [ \tau _ { A } ( y ) ] } & { \text { if } x \notin A , } \\
{ \mathbf { E } [ \tau _ { A } ( x ) ] = 0 } & { \text { if } x \in A }
\end{array} \quad \left\{\begin{array}{ll}
\mathbf{E}[\psi(x)] \geq 1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}[\psi(y)] & \text { if } x \notin A, \\
\mathbf{E}[\psi(x)] \geq 0 & \text { if } x \in A
\end{array}\right.\right. \\
& \forall x \in \Omega, \tau_{A}(\mathrm{x}) \leq \psi(x)
\end{aligned}
$$

- Guess a function $\psi$ (only depends on the number of 1 s)


## Observation 2

- Expected hitting time and potential function

$$
\begin{aligned}
& \tau_{A} \text { Expected hitting time for } A \subset \Omega \quad \psi \text { Potential function for } \tau_{A} \\
& \left\{\begin{array} { l l } 
{ \mathbf { E } [ \tau _ { A } ( x ) ] = 1 + \sum _ { y \in \Omega } P _ { x , y } \mathbf { E } [ \tau _ { A } ( y ) ] } & { \text { if } x \notin A , } \\
{ \mathbf { E } [ \tau _ { A } ( x ) ] = 0 } & { \text { if } x \in A }
\end{array} \quad \left\{\begin{array}{ll}
\mathbf{E}[\psi(x)] \geq 1+\sum_{y \in \Omega} P_{x, y} \mathbf{E}[\psi(y)] & \text { if } x \notin A, \\
\mathbf{E}[\psi(x)] \geq 0 & \text { if } x \in A
\end{array}\right.\right. \\
& \forall x \in \Omega, E\left[\tau_{A}(\mathrm{x})\right] \leq \psi(x)
\end{aligned}
$$

- Construct a function $\psi$ (only depends on the number of 1 s)


## Observation 2

- Expected hitting time and potential function

A system of linear inequalities with variable $\{\psi(x)\}_{x \in \Omega}$

- Construct a function $\psi$ (only depends on the number of 1 s)


## Proof Outline

- Control the system of linear inequalities
- Construct $\{\phi(k)\}_{k \in[n]}$ iteratively satisfying the system of linear inequalities.



## Reduce to one dimensional



## Reduce to birth-death process



## Proof Outline

- Control the system
- Drift: $\left\{p^{+}(x)-p^{-}(x)\right\}_{x \in \Omega}$
- Non-laziness: $\left\{p^{+}(x)\right\}_{x \in \Omega}$
- Construct $\{\phi(k)\}_{k \in[n]}$ iteratively satisfying the system of linear inequalities.


## Future Work

- Does iterative majority reach consensus fast in dense ErdősRényi random graphs?
- Does iterative majority reach consensus fast in sparse ErdősRényi random graphs? Or expander+?

